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An Improved Minimum Mean Squared Error Estimate of
the Square of the Normal Population Variance Using

Computational Intelligence
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Abstract

Building upon the commonly-employed approach by Searls, substantial work has
addressed the use of the known coefficient of the normal population mean and the
normal population variance. Subsequently, several attempts have also sought to
formulate estimators for the population mean and variance for a more probable
case of the population coefficient of variation being unknown. Across numerous
real-world applications within basic science, economic, and medical research, an
analyst is required to have an efficient estimator of the square of the population
variance. As such, the purpose of the current investigation was to develop and
test a more efficient estimator of the square of the population variance for a
normal distribution, beyond that of the Minimum Mean Squared Error (MMSE)

for the square of the population variance. The proposed approach, which
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incorporated a metaheuristic optimization algorithm of Computational Intelligence
in its derivation, captures the information in the sample more fully by including
the sample coefficient of variation with the sample mean and sample variance.
Results of an empirical simulation study found comprehensive improvement in the
relative efficiency of the proposed estimator versus the MMSE estimator compared
to the square of the sample variance across all defined sample sizes and population

standard deviations.

Mathematics Subject Classification: 62H12
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1 Introduction

Substantial work accompanies the initial research conducted by Searls [1]
regarding the estimator for the normal population mean with a known coefficient of
variation. In these extensions, to illustrate, focus has often been directed toward
utilizing the known coefficient of variation and kurtosis as presented in Khan [2],
Gleser and Healy [3], Searls and Intarapanich [4], Arnholt and Hebert [5], and Sahai
[6]. Subsequently, numerous approaches have been motivated by a need to
formulate estimators for a population mean and variance for a more probable case
of the population coefficient of variation being unknown, appearing in Sahai et al.
[7], Richards et al. [8], Sahai et al. [9], and Lovric and Sahai [10].

Several research applications exist wherein the analyst requires an efficient
estimator of the square of the population variance, particularly within basic science,
economic, and medical research (e.g., randomized clinical trials, comparative or
cost-effectiveness analyses). In the context of an efficient confidence interval

estimation problem for the mean of a lognormal distribution which is commonplace
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in these studies, the usual point estimator of the lognormal mean is x+s2/2, as
described in Verma and Sahai [10], Skrepnek [11], and Skrepnek et al. [12]. This
estimator utilizes the sample mean, X, and the sample variance, s°, based upon a

random sample from the resultant normal population, following log-transformation

of the data, as: x = log(y) ~ N(0,6°). The variance of the usual point estimator,

x+8%/2,is:
02 0'4
9,9 1
n +2-(1+n) @)

Notably, to estimate the variance expressed in (1), the analyst is required to have an
efficient estimator of the square of the normal population variance, o*, which
ultimately may lead to an efficient confidence internal estimation of the lognormal
mean. In this context, following the approach of Searls [1], a class of estimators,
k-s*, may be considered for estimating the square of the normal population variance
to establish the Minimum Mean Squared Error (MMSE) for the square of the normal
population variance, ¢”.

Considering the prior issues, the purpose of the current research endeavor was
to develop and test a more efficient estimator of the square of the population
variance for a normal distribution, beyond that of the existing Minimum Mean
Squared Error (MMSE) for the square of the population variance. The proposed
approach, which incorporated a metaheuristic optimization (bat) algorithm of
Computational Intelligence (CI) in its derivation, utilizes the information in the
sample more fully by incorporating the sample coefficient of variation with the
sample mean and sample variance. An empirical simulation study was conducted
to assess the relative efficiency of the new proposed estimator, an Improved Mixed
Minimum Squared Error (IMMMSE), and the MMSE compared to the square of the
sample variance, s* (i.e., the sample counterpart estimator of the estimator of the
square of the population variance, ¢*). The empirical investigation consisted of the
calculations of the actual Mean Squared Error (MSE) of the estimators MMSE(s*),

IMMMSE(s*), and s*. For comprehensibility, results concerning the relative
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efficiency of MMSE(s*) and IMMMSE(s*) versus s* were expressed in percentage

terms.

2 The Proposition of an Efficient Estimator of the Square of

a Normal Population Variance, o
When considering a normal population with a population variance, N(8, ¢°),
the process of obtaining the most efficient estimator of the square of the population
variance, ¢”, seeks to utilize to the fullest extent possible information contained in
the random sample from this population of size n ~ x3, Xo, ..., X, that is summarized
via the following two population statistics:
i=n X

sample mean: X ==t L
n

2 Zi:]_(xi _Y) )

sample variance:  s° = (n-1)

By applying the well-known approach of using the sampling distribution of the

sample variance, namely, (n—l)-(sz/az)~;(2, and given that the degrees of

freedom, df = (n — 1), the following are obtained:

B =" ©)
E(s6>=% where cn, :m ©)
E(SB):% where cn, ~{(n +1)((:2)3(n+5)} ©)

As such, the subsequent lemma may be established.
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Lemma. In the class of estimators k-s*, the Minimum Mean Squared Error
(MMSE) estimator of ¢* (i.e., the square of the normal population variance, ¢°) is
MMSE;(s*) = ks, given that:

._cng_ (n-1)° @)
cn,  {(n+3)(n+5)}
Proof. For the MMSE in the class of estimators k-s*, the optimal value of k is:
4
K =E(s*) -2
) E(s%)
via the straightforward application of (4) and (6). O

Contextually, it is also important to note, too, that based upon (4) and (6), the
Relative Variance, RV (s*)=V (s*)/c®, of the estimator MMSE;(s") is:
V, =RV (MMSE, (s*))
V (MMSE, (s*))

8
(o}

() RV ()
8-(k') -(n+1)-(n+2)
(n-1y

Building upon the aforementioned, an estimator based upon the sample

(8)

coefficient of variation intended to more fully utilize the information within a given

sample (i.e., the proposed estimator) may be formulated based upon notation set as

a= sz/(§)2 and the square of the sample coefficient of variation designated as V.

. : —\4 .
In considering a new class of estimators, C (x) , it may be noted that:

2
X~ N [9,"—)
n

E(X)=0
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E(X) = 1+%)92

E(7)3 = 1+3~%j-93

2
E(X) = 1+6-%+3-(%j

E(X)’ =|1+10- —+15 (

E(X)° =|1+15. —+45 (Ej +15-(3T]~96

a
n

n n
2 3
E(x) =|1+21-2+105. (ij 105-(3j }97
n n n
2 3
E(x) = 1+28-%+210-(%) +525-(%j ]-98 9)

Thus, the MMSE estimator in the class C -(?)4 is:
o E(?)j -894
E(x)

and, via (9), the following is obtained:

e

C' = - 5 (10)
£1+28-a+210-(aj +525-(aj ]
n n n

Therefore, in the class of estimators C -(?)4, the MMSE of ¢* (i.e., the square of the

normal population variance 6%) would be:

c.s*
2

MMSE, (s*) = .

(11)
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The relative variance, RV (s*)=V (34)/08 , of the estimator MMSE,(s?) is:
V, =RV (MMSE, (s*))

V (MMSE, (s*))

. [Z_j RV(s°) (12)

Given the aforementioned, a ‘Mixed” MMSE estimator of o* may be expressed
as:
Vi +(MMSE, (s*))+V, -(MMSE, (s*))

MMMSE, (s*) = V]

(13)

Subsequently, we may consider a class of estimators as follows, with ‘m’

defined as a non-negative integer:
MMMMSE, (s*) = MMSE, (s*)+m-{MMSE, (s*) - MMMSE, (s* )| (14)

With the application of Computational Intelligence (CI) and simulation
through a bat-inspired metaheuristic optimization algorithm described in Yang [13]
and Khan et al. [14], it may be observed that optimum results for the non-negative
integer in (14) are achieved with m = 10. Hence, it is proposed that an Improved
Mixed Minimum Mean Squared Error, IMMMSE(s?), is defined as follows, which is
ultimately the focus of the empirical simulation study to evaluate its relative
efficiency versus the Minimum Mean Squared Error, MMSE,(s*), for the square of

the population variance o*:

IMMMSE (s*) = MMSEl(s4)+1O-{MMSE1(s4)— MMMSE, (54)} (15)
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3 Empirical Simulation Study

3.1 Methodology

An empirical simulation study was undertaken to assess the efficiency of the
proposed estimators developed in the current investigation relative to the square of
the sample variance, which is the sample counterpart estimator of the square of the
population variance, s*. This simulation consists in the calculations of the actual
MSEs (Mean Squared Error) of the estimators MMSE(s*), IMMMSE(s*), and (s%);
results are presented as a Relative Efficiency for MMSE(s") and IMMMSE(s®)
versus s*, expressed in percentage terms.

The parent population sampled in the simulation study was defined as a normal
distribution with illustrative values of its population standard deviation as o = 0.20,
0=0.25,06=0.30,0=0.40,0=0.45,and 6 = 0.50. Sample sizes were defined as n
=6,n=11,n=21,n=31,n=41,n=51,n=71,n=101, n =202, and n = 303.
Additionally, population means were also considered. While the population
coefficient of variation is typically unknown, the empirical investigation utilized a
value of 0.25 as 8 = 40. Matlab 2010b code [The Mathworks Inc., Natick,
Massachusetts] was developed and run with 51,000 replications. Again, results

were presented as ‘Relative Efficiencies’:
RelEff,, {MMSE(S“)versus(s“)}
MSE (s*)
0-
MSE (MMSE (s*))

ReIEff%{IMMMSE(34)versus(54)}
MSE (s*) (19
MSE (IMMMSE (s*))

=100-
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3.2 Results

Presented in Table 1, the relative efficiency of IMMMSE(s") ranged from a
of 105.245 percent (¢ = 0.25, n = 303) and a high of 647.400 percent (¢ = 0.50, n
6), while the relative efficiency of MMSE(s*) ranged from a low of 103.961
(0 = 0.25, n = 303) to a high of 602.842 percent (¢ = 0.50, n = 6). Contingent
this observation, the absolute difference between the IMMMSE(s*) and MMSE(s*)
was at a maximum under conditions of a large population standard deviation and
small sample size (¢ = 0.50, n = 6) of 44.558 percentage points (IMMMSE(s*) =
647.400% versus MMSE(s*) = 602.842%), and at a minimum of 1.284 percentage
points as sample sizes increased (¢ = 0.25, n = 303) (IMMMSE(s") = 105.245%
versus MMSE(s*) =103.961%). Collectively, findings support the proposed
efficient estimator, IMMMSE(s*), under all combinations of sample size and
population standard deviations as illustrated by the gains in efficiency compared
MMSE(s?).

Table 1: Relative Efficiencies of IMMMSE(s*) and MMSE(s*) Estimators Across

Varying Sample Sizes and Population Standard Deviations

Relative Efficiency Compared to s*
(in %)

Population Standard Deviation

Sample

Size, o= o= o= o= o= o= o=
0.20 0.25 0.30 0.35 0.40 0.45 0.50

Estimators

n=6

MMSE (s*) | 572.647 | 589.823 | 581.617 | 566.441 | 576.710 | 575.012 | 602.842
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IMMMSE | 610.154 | 632.370 | 618.729 | 600.219 | 613.251 | 610.602 | 647.400
"
n=11
MMSE (s%) | 279.938 | 280.518 | 275.787 | 276.921 | 277.612 | 273.618 | 278.949
IMMMSE | 299.897 | 300.768 | 293.331 | 294.867 | 297.200 | 291.671 | 298.286
"
n=21
MMSE (s*) | 173.994 | 173.182 | 175.231 | 173.994 | 174.589 | 175.884 | 173.907
IMMMSE | 185.468 | 184.363 | 187.331 | 185.462 | 186.445 | 187.671 | 185.608
s
n=31
MMSE (s%) | 146.215 | 146.519 | 147.752 | 145.377 | 147.658 | 147.858 | 147.194
IMMMSE | 155.724 | 156.171 | 157.709 | 154.847 | 157.500 | 157.798 | 157.015
"
n=41
MMSE (s%) | 133.858 | 134.665 | 134.216 | 134.498 | 134.065 | 134.043 | 133.544
IMMMSE | 142.700 | 143.695 | 142.786 | 143.485 | 143.183 | 142.600 | 142.017
s
n=51
MMSE (s%) | 127.318 | 127.266 | 126.125 | 126.344 | 127.451 | 126.449 | 127.669
IMMMSE | 135.750 | 135.616 | 133.841 | 134.255 | 135.640 | 134.204 | 136.169
"
n=71
MMSE (s*) | 118.928 | 118.252 | 118.873 | 117.912 | 118.723 | 119.297 | 118.862
IMMMSE | 126.057 | 125.197 | 125.937 | 124.673 | 125.814 | 126.713 | 126.122
s

n=101
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MMSE (s*) | 112.786 | 113.153 | 112.765 | 113.122 | 112.425 | 112.863 | 112.502

IMMMSE 118.881 | 119.464 | 118.906 | 119.393 | 118.217 | 119.055 | 118.513
(s
n=202

MMSE (s*) | 106.320 | 106.076 | 106.493 | 106.618 | 106.613 | 105.908 | 106.436

IMMMSE 110.102 | 109.589 | 110.483 | 110.614 | 110.391 | 109.248 | 110.199
&)
n=303

MMSE (s*) | 104.403 | 103.961 | 104.251 | 104.342 | 104.224 | 104.240 | 104.307

IMMMSE | 106.239 | 105.245 | 105.808 | 105.952 | 105.907 | 105.793 | 106.072
s
MMSE = Minimum Mean Squared Error; IMMMSE = Improved Mixed Minimum

Mean Squared Error (proposed estimator); s* = estimate of the square of the

population variance; n = sample size; o = population standard deviation

4 Conclusion

The current investigation sought to develop and test a more efficient estimator
of the square of the population variance for a normal distribution, beyond that of the
Minimum Mean Squared Error (MMSE) for the square of the population variance.
By using the information in the sample more fully by via the sample coefficient of
variation with the sample mean and sample variance, and applying a bat-inspired
metaheuristic optimization algorithm of Computational Intelligence in its
derivation, results of an empirical simulation study found improvements in relative
efficiency comprehensively across all defined sample sizes and population standard

deviations.
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