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Abstract 

Building upon the commonly-employed approach by Searls, substantial work has 

addressed the use of the known coefficient of the normal population mean and the 

normal population variance.  Subsequently, several attempts have also sought to 

formulate estimators for the population mean and variance for a more probable 

case of the population coefficient of variation being unknown.  Across numerous 

real-world applications within basic science, economic, and medical research, an 

analyst is required to have an efficient estimator of the square of the population 

variance.  As such, the purpose of the current investigation was to develop and 

test a more efficient estimator of the square of the population variance for a 

normal distribution, beyond that of the Minimum Mean Squared Error (MMSE) 

for the square of the population variance.  The proposed approach, which 
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incorporated a metaheuristic optimization algorithm of Computational Intelligence 

in its derivation, captures the information in the sample more fully by including 

the sample coefficient of variation with the sample mean and sample variance.  

Results of an empirical simulation study found comprehensive improvement in the 

relative efficiency of the proposed estimator versus the MMSE estimator compared 

to the square of the sample variance across all defined sample sizes and population 

standard deviations. 
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1  Introduction  

Substantial work accompanies the initial research conducted by Searls [1] 

regarding the estimator for the normal population mean with a known coefficient of 

variation.  In these extensions, to illustrate, focus has often been directed toward 

utilizing the known coefficient of variation and kurtosis as presented in Khan [2], 

Gleser and Healy [3], Searls and Intarapanich [4], Arnholt and Hebert [5], and Sahai 

[6].  Subsequently, numerous approaches have been motivated by a need to 

formulate estimators for a population mean and variance for a more probable case 

of the population coefficient of variation being unknown, appearing in Sahai et al. 

[7], Richards et al. [8], Sahai et al. [9], and Lovric and Sahai [10]. 

Several research applications exist wherein the analyst requires an efficient 

estimator of the square of the population variance, particularly within basic science, 

economic, and medical research (e.g., randomized clinical trials, comparative or 

cost-effectiveness analyses).  In the context of an efficient confidence interval 

estimation problem for the mean of a lognormal distribution which is commonplace 
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in these studies, the usual point estimator of the lognormal mean is 2 2x s+ , as 

described in Verma and Sahai [10], Skrepnek [11], and Skrepnek et al. [12].  This 

estimator utilizes the sample mean, x , and the sample variance, s2, based upon a 

random sample from the resultant normal population, following log-transformation 

of the data, as: x = log(y) ~ N(θ,σ2).  The variance of the usual point estimator, 
2 2x s+ , is: 

( )
2 4

2 1n n
σ σ

+
⋅ +

                        (1) 

Notably, to estimate the variance expressed in (1), the analyst is required to have an 

efficient estimator of the square of the normal population variance, σ4, which 

ultimately may lead to an efficient confidence internal estimation of the lognormal 

mean.  In this context, following the approach of Searls [1], a class of estimators, 

k·s4, may be considered for estimating the square of the normal population variance 

to establish the Minimum Mean Squared Error (MMSE) for the square of the normal 

population variance, σ4.  

Considering the prior issues, the purpose of the current research endeavor was 

to develop and test a more efficient estimator of the square of the population 

variance for a normal distribution, beyond that of the existing Minimum Mean 

Squared Error (MMSE) for the square of the population variance.  The proposed 

approach, which incorporated a metaheuristic optimization (bat) algorithm of 

Computational Intelligence (CI) in its derivation, utilizes the information in the 

sample more fully by incorporating the sample coefficient of variation with the 

sample mean and sample variance.  An empirical simulation study was conducted 

to assess the relative efficiency of the new proposed estimator, an Improved Mixed 

Minimum Squared Error (IMMMSE), and the MMSE compared to the square of the 

sample variance, s4 (i.e., the sample counterpart estimator of the estimator of the 

square of the population variance, σ4).  The empirical investigation consisted of the 

calculations of the actual Mean Squared Error (MSE) of the estimators MMSE(s4), 

IMMMSE(s4), and s4.  For comprehensibility, results concerning the relative 
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efficiency of MMSE(s4) and IMMMSE(s4) versus s4 were expressed in percentage 

terms. 

 

 

2  The Proposition of an Efficient Estimator of the Square of  

    a Normal Population Variance, σ4 
When considering a normal population with a population variance, N(θ, σ2), 

the process of obtaining the most efficient estimator of the square of the population 

variance, σ4, seeks to utilize to the fullest extent possible information contained in 

the random sample from this population of size n ~ x1, x2, …, xn that is summarized 

via the following two population statistics: 

 sample mean:  1

i n
ii

x
x

n

=

== ∑   

sample variance:  
( )

( )

2
2 1

1

i n
ii

x x
s
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=
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−

=
−

∑                  (2) 

By applying the well-known approach of using the sampling distribution of the 

sample variance, namely, ( ) ( )2 2 21 ~n s σ χ− ⋅ , and given that the degrees of 

freedom, df = (n – 1), the following are obtained:  
2 2( )E s σ=                       (3) 

4
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As such, the subsequent lemma may be established. 
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Lemma.  In the class of estimators k·s4, the Minimum Mean Squared Error 

(MMSE) estimator of σ4 (i.e., the square of the normal population variance, σ2) is 

MMSE1(s4) = k*·s4, given that: 

( )( ){ }
2

* 3

1

( 1)
3 5

cn nk
cn n n

−
= =

+ +
                   (7) 

Proof.  For the MMSE in the class of estimators k·s4, the optimal value of k is: 
4

* 4
8( )

( )
k E s

E s
σ

= ⋅
  

via the straightforward application of (4) and (6).                    □ 

 

Contextually, it is also important to note, too, that based upon (4) and (6), the 

Relative Variance, 4 4 8( ) ( )RV s V s σ= , of the estimator MMSE1(s4) is: 

( )( )
( )( )

( ) ( )
( ) ( ) ( )
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                  (8) 

Building upon the aforementioned, an estimator based upon the sample 

coefficient of variation intended to more fully utilize the information within a given 

sample (i.e., the proposed estimator) may be formulated based upon notation set as 

( )22a s x= and the square of the sample coefficient of variation designated as V.  

In considering a new class of estimators, ( )4
C x⋅ , it may be noted that:  

2

~ ,x N
n
σθ

 
 
 

 

( )E x θ=  
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( )2 21 aE x
n
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               (9) 

Thus, the MMSE estimator in the class ( )4
C x⋅ is: 

( )
( )

4 4
*

8

E x
C

E x

θ⋅
=

 
and, via (9), the following is obtained: 
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            (10) 

Therefore, in the class of estimators ( )4
C x⋅ , the MMSE of σ4 (i.e., the square of the 

normal population variance σ2) would be: 

( )
* 4

4
2 2

C sMMSE s
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=                  (11) 
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The relative variance, ( ) ( )4 4 8RV s V s σ= , of the estimator MMSE2(s4) is: 

( )( )4
2 2V RV MMSE s≡    

( )( )
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Given the aforementioned, a ‘Mixed’ MMSE estimator of σ4 may be expressed 

as: 

( ) ( )( ) ( )( )
( )

4 4
1 1 2 24

2
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V MMSE s V MMSE s
MMMSE s

V V

⋅ + ⋅
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+
          (13) 

Subsequently, we may consider a class of estimators as follows, with ‘m’ 

defined as a non-negative integer: 

( ) ( ) ( ) ( ){ }4 4 4 4
2 1 1 2MmMMSE s MMSE s m MMSE s MMMSE s= + ⋅ −        (14) 

With the application of Computational Intelligence (CI) and simulation 

through a bat-inspired metaheuristic optimization algorithm described in Yang [13] 

and Khan et al. [14], it may be observed that optimum results for the non-negative 

integer in (14) are achieved with m = 10.  Hence, it is proposed that an Improved 

Mixed Minimum Mean Squared Error, IMMMSE(s4), is defined as follows, which is 

ultimately the focus of the empirical simulation study to evaluate its relative 

efficiency versus the Minimum Mean Squared Error, MMSE1(s4), for the square of 

the population variance σ4: 

( ) ( ) ( ) ( ){ }4 4 4 4
1 1 210IMMMSE s MMSE s MMSE s MMMSE s= + ⋅ −        (15) 
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3  Empirical Simulation Study  

3.1 Methodology 
An empirical simulation study was undertaken to assess the efficiency of the 

proposed estimators developed in the current investigation relative to the square of 

the sample variance, which is the sample counterpart estimator of the square of the 

population variance, s4.  This simulation consists in the calculations of the actual 

MSEs (Mean Squared Error) of the estimators MMSE(s4), IMMMSE(s4), and (s4); 

results are presented as a Relative Efficiency for MMSE(s4) and IMMMSE(s4) 

versus s4, expressed in percentage terms.   

The parent population sampled in the simulation study was defined as a normal 

distribution with illustrative values of its population standard deviation as σ = 0.20, 

σ = 0.25, σ = 0.30, σ = 0.40, σ = 0.45, and σ = 0.50.  Sample sizes were defined as n 

= 6, n = 11, n = 21, n = 31, n = 41, n = 51, n = 71, n = 101, n = 202, and n = 303.  

Additionally, population means were also considered.  While the population 

coefficient of variation is typically unknown, the empirical investigation utilized a 

value of 0.25 as θ = 4σ.  Matlab 2010b code [The Mathworks Inc., Natick, 

Massachusetts] was developed and run with 51,000 replications.  Again, results 

were presented as ‘Relative Efficiencies’:  
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3.2 Results 
 Presented in Table 1, the relative efficiency of IMMMSE(s4) ranged from a 

of 105.245 percent (σ = 0.25, n = 303) and a high of 647.400 percent (σ = 0.50, n 

6), while the relative efficiency of MMSE(s4) ranged from a low of 103.961 

(σ = 0.25, n = 303) to a high of 602.842 percent (σ = 0.50, n = 6).  Contingent 

this observation, the absolute difference between the IMMMSE(s4) and MMSE(s4) 

was at a maximum under conditions of a large population standard deviation and 

small sample size (σ = 0.50, n = 6) of 44.558 percentage points (IMMMSE(s4) = 

647.400% versus MMSE(s4) = 602.842%), and at a minimum of 1.284 percentage 

points as sample sizes increased (σ = 0.25, n = 303) (IMMMSE(s4) = 105.245% 

versus MMSE(s4) =103.961%).  Collectively, findings support the proposed 

efficient estimator, IMMMSE(s4), under all combinations of sample size and 

population standard deviations as illustrated by the gains in efficiency compared 

MMSE(s4). 

 

 

Table 1: Relative Efficiencies of IMMMSE(s4) and MMSE(s4) Estimators Across  

       Varying Sample Sizes and Population Standard Deviations 

  

Relative Efficiency Compared to s4 

(in %) 

 Population Standard Deviation 

Sample 

Size, 

 

Estimators 

σ = 

0.20 

σ = 

0.25 

σ = 

0.30 

σ = 

0.35 

σ = 

0.40 

σ = 

0.45 

σ =  

0.50 

n=6        

 MMSE (s4) 572.647 589.823 581.617 566.441 576.710 575.012 602.842 
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 IMMMSE 

(s4) 

610.154 632.370 618.729 600.219 613.251 610.602 647.400 

n=11        

 MMSE (s4) 279.938 280.518 275.787 276.921 277.612 273.618 278.949 

 IMMMSE 

(s4) 

299.897 300.768 293.331 294.867 297.200 291.671 298.286 

n=21        

 MMSE (s4) 173.994 173.182 175.231 173.994 174.589 175.884 173.907 

 IMMMSE 

(s4) 

185.468 184.363 187.331 185.462 186.445 187.671 185.608 

n=31        

 MMSE (s4) 146.215 146.519 147.752 145.377 147.658 147.858 147.194 

 IMMMSE 

(s4) 

155.724 156.171 157.709 154.847 157.500 157.798 157.015 

n=41        

 MMSE (s4) 133.858 134.665 134.216 134.498 134.065 134.043 133.544 

 IMMMSE 

(s4) 

142.700 143.695 142.786 143.485 143.183 142.600 142.017 

n=51        

 MMSE (s4) 127.318 127.266 126.125 126.344 127.451 126.449 127.669 

 IMMMSE 

(s4) 

135.750 135.616 133.841 134.255 135.640 134.204 136.169 

n=71        

 MMSE (s4) 118.928 118.252 118.873 117.912 118.723 119.297 118.862 

 IMMMSE 

(s4) 

126.057 125.197 125.937 124.673 125.814 126.713 126.122 

n=101        
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 MMSE (s4) 112.786 113.153 112.765 113.122 112.425 112.863 112.502 

 IMMMSE 

(s4) 

118.881 119.464 118.906 119.393 118.217 119.055 118.513 

n=202        

 MMSE (s4) 106.320 106.076 106.493 106.618 106.613 105.908 106.436 

 IMMMSE 

(s4) 

110.102 109.589 110.483 110.614 110.391 109.248 110.199 

n=303        

 MMSE (s4) 104.403 103.961 104.251 104.342 104.224 104.240 104.307 

 IMMMSE 

(s4) 

106.239 105.245 105.808 105.952 105.907 105.793 106.072 

  MMSE = Minimum Mean Squared Error; IMMMSE = Improved Mixed Minimum  

   Mean Squared Error (proposed estimator); s4 = estimate of the square of the  

   population variance; n = sample size; σ = population standard deviation

 

 

4  Conclusion 

The current investigation sought to develop and test a more efficient estimator 

of the square of the population variance for a normal distribution, beyond that of the 

Minimum Mean Squared Error (MMSE) for the square of the population variance.  

By using the information in the sample more fully by via the sample coefficient of 

variation with the sample mean and sample variance, and applying a bat-inspired 

metaheuristic optimization algorithm of Computational Intelligence in its 

derivation, results of an empirical simulation study found improvements in relative 

efficiency comprehensively across all defined sample sizes and population standard 

deviations. 
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