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Abstract

In this paper, using the MCMC method, we derive the conditional

distribution of ”mean variance” variable. This random variable appears

in the option pricing problem under the stochastic volatility assumption.

Two real data sets are considered.
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1 Introduction

In finance theory, the Black and Scholes’s (1973) option pricing formula

is used to model the dynamic of a specified stock price, {st, t ∈ [0, T ]}. It

implies that the increment of the log(st) over an infinitesimal interval of time

is governed by the increment of Weiner process. However, the Black-Scholes

model assumes that the volatility parameter is constant over time. Obviously,

this model is not able to describe the observed market patterns. In practice,

for goodness of fit purposes, we shall assume that the volatility parameter is
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a time varying stochastic function (say σt). Because of this, the stochastic

volatility models (going back to the Hull and White (1987)) are introduced

to be extensions for the traditional Black-Scholes model. In the stochastic

volatility models, it is assumed that the volatility itself satisfies in the other

stochastic differential equation. Let vt = σ2
t be the variance function and

R = log(sT/s0) = log(sT )− log(s0)

be the total variation of log-price process over time interval [0, T ].

Nowadays, stochastic volatility models are necessary instruments for an-

alyzing asset prices (see Ghysels et al. (1996) and Shephard (2005)). These

models work very well, in practice. Characteristics of financial markets are

measured by defining quantities on these models. For example, Hull and White

(1987) introduced the ”mean variance” variable (v) in stochastic volatility se-

ries as the integral of variance function of a fixed derivative security over its

life time (i.e. T ) over T, that is,

v = (1/T )

∫ T

0

vτdτ.

They showed that, in a risk-neutral world, the distribution of R conditional

upon v is normal distribution. They also stressed that there is no analytical

form for the distribution of v.

In this paper, following Chib et al. (2006), the price equation is given by

d log(st) = {θ1 + θ2σ
2
t }dt+ σtdBt,

t ∈ [0, T ]. Following Hull and White (1987), when ρ = 0, we can show that the

conditional distribution of R given v is N(η∗, λ∗2) where

η = (θ1 + θ2v)T and λ2 = Tv.

To see this, first assume that the variance function σ2
t is deterministic and time

varying. Then

R =

∫ T

0

{θ1 + θ2σ
2
t }dt+

∫ T

0

σtdBt.

In this case, it is easy to see that the distribution of R is normal with mean

and variance η∗, λ∗2, respectively. Note that the parameters of this normal
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distribution depend on vt throughout v. When σ2
t is stochastic, there are an

infinite number of paths with the same v, but all of paths present the same

distribution for conditional distribution of R. This completes the proof. There

is another proof. In this case, we assume the variance changes at only n equally

spaced times in the interval [0, T ]. Let si and vi denote the price and volatility

during the i-th interval. We can see that

log(
si
si−1

) = {θ1 + θ2vi}(T/n) +
√
viNi,

where Ni has N(0, T/n) distribution. Therefore, log( si
si−1

) given vi is normal

distribution with mean

{θ1 + θ2vi}(T/n),

and variance (T/n)vi. Therefore, R given v = (v1, ..., vn) is normal random

variable with mean

θ1T + θ2(T/n)(
n

∑

i=1

vi)

and variance (T/n)(
∑n

i=1 vi). By letting, n → ∞, the proof is completed. This

method of proof helps us in the case of ρ 6= 0.

One can note that v is a useful criteria to compare the situation of two

stocks. However, it is reasonable to compare the performance of two stocks,

based their mean variances, at the same levels of total variations. This fact

motivates us to derive the density of v given R = r. The MCMC method can

be applied to generate samples from this posterior distribution as follows. Note

that this type of MCMC method is referred as ”conditional diffusion process

simulation” which is appeared in Baltazar-Larios and Sørensen (2009).

1. Generate an initial unrestricted stationary sample path {v(0)t , t ∈ [0, T ]} of

the diffusion of vt using for instance the Milstein scheme or one of the other

methods in Kloeden & Platen (1999). Then calculate v0 = (1/T )
∫ T

0
v
(0)
τ dτ.

2. Set l = 1.

3. Propose a new sample paths by simulating {v(l)t , t ∈ [0, T ]} and as well as

calculate vl.



272 An Application of MCMC Methods...

4. Accept the proposed diffusion with probability

min(1,
φ(r, ηl, λ

2
l )

φ(r, ηl−1, λ2
l−1)

),

otherwise set v(l) = v(l−1). Here, φ(r, ηl, λ
2
l ) is the density of normal distribution

with mean ηl and variance λ2
l computed at r.

5. Set l = l + 1 and go to 2.

Remark 1.1. Following Smith and Gelfand (1992), there is an alterna-

tive method against MCMC approach for generating samples from posterior

distribution v given R = r as follows. Generate L sample paths {v(l)}Ll=1 and

calculate {v(l)}Ll=1, {ηl}Ll=1 and {λ2
l }Ll=1. Therefore, compute importance weights

{wl}Ll=1 defined by

wl =
φ(r, ηl, λ

2
l )

∑L

l=1 φ(r, ηl, λ
2
l )
.

Finally, by re-sampling {v(l)}Ll=1 according to wl and calculating v(l), samples

form posterior distribution is extracted.

Next, suppose that ρ 6= 0 and let vt obey the following stochastic process

dvt = µvtdt+ ξvtdwt.

Then, log( vi
vi−1

) is normal with mean

µT

n
− ξ2T

2n
,

and variance ξ2T

n
. It can be seen that the conditional distribution of log( si

si−1

)

given vi is normal with mean

(θ1 + θ2vi)(T/n) + ρ

√
vi
ξ

{log( vi
vi−1

)− µT

n
+

ξ2T

2n
},

and variance

vi(1− ρ2)T/n.

Therefore, R conditional on the path followed by {v1, ..., vn} has a normal

distribution with mean

η∗ = (θ1 + θ2v)T +
ρ

ξ

n
∑

i=1

√
vi{log(

vi
vi−1

)− µT

n
+

ξ2T

2n
},
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and variance

λ∗2 = (1− ρ2)Tv.

Letting, n → ∞, the conditional distribution of R given {vt}t∈[0,T ] is derived.

Note that this conditional distribution depends on the path vt rather that

v. Also, note that the above mentioned MCMC method can be applied by

substituting η, λ2 with η∗, λ∗2. To this end, it is necessary to generate stationary

sample paths

{v(l)t , t ∈ [0, T ]}, l ≥ 1,

of the diffusion of vt at time points ti = iT/n, i = 1, 2, ..., n and, using the above

formulas, calculate η∗ and λ∗2, respectively. The variable v is approximated

by

(1/nT )
n

∑

i=1

vi.

This paper is organized as follows. Two real data sets S&P 500 and U.S.

equity returns are considered in section 2.

2 Real data sets

In this section, we apply the mentioned MCMC to two real data sets. They

are (1) Standard and Poor’s 500 index (S&P 500) and (2) U.S. equity returns.

Example 2.1. The daily returns data on closing prices of the S&P 500

are accessible and valuable time series. The prices of 500 large-cap common

stocks (actively traded in the U.S.) are aggregated in this weighted index. We

consider this time series from 5/5/1995 to 14/4/2003. Following Chib et al.

(2006), we consider the GARCH form for the variance process vt defined by

dvt = θ4(θ5 − vt)dt+ θ3vtdwt.

Using the generalized method of moments (Iacus (2008)), the estimates of

parameters θ2 and θ4 are zero approximately and (θ1, θ
2
3, θ5, ρ) = (0.022,

0.029, 3.09, -0.84). Here, Bt and wt are two standard Brownian motions on

[0, T ] such that cor(Bt, wt) = ρ. This parameter is called leverage factor. The

marginal distribution of log( vi
vi−1

) is normal with mean − θ2
3
T

2n
and variance

θ2
3
T

n
.
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Under this information, we find that the conditional distribution of R given

{v1, ..., vn} is normal with mean

θ1T +
ρ

θ3

n
∑

i=1

√
vi{log(

vi
vi−1

) +
θ23T

2n
},

and variance (1−ρ2)Tv. The conditional expectation of v given R = r, E(v|r),
are 0.012, 0.0139 and 0.0144 for r = 0.039, 0.05 and 0.055, respectively. It is

seen that this index has little conditional average volatility and therefore it is

a good siuation.

Remark 2.2. Chib et al. (2006) also considered the log-normal form for

variance process given by

dvt = θ4vt(θ5 − log(vt))dt+ θ3vtdwt.

Here, θ1 ' 0. The estimates of parameters are θ2 = 0.021, θ23 = 0.033, θ4 =

0.027, θ5 = 0.72 and ρ = −0.83. It is easy to see that the logarithm of vt is

Ornstein-Uhlenbeck process, that is

dyt = c(µ− yt)dt+ σdwt,

where c = θ4, µ = θ5 − θ2
3

2θ4
and σ = θ3. Therefore, log(vt) is normal N(κt, π

2
2),

where

κt = e−ct[y0 + µ(ect − 1)] and π2
t =

σ2

2c
(1− e−2ct).

It is easy to see that

cov(ys, yt) =
σ2

2c
e−c(s+t)(e2cmin(s,t) − 1).

Therefore, log( vi
vi−1

) is normal with mean ιi = κti− κti−1
and variance

ϑi = π2
ti
+ π2

ti−1
− 2

cov(yti , yti−1
).Theconditionaldistributionof log( si

si−1

) given vi is normal with

mean and variance

{θ1 + θ2vi}(T/n) + ρ

√

(T/n)vi√
ϑi

{log( vi
vi−1

)− ιi},

and

(1− ρ2)Tv,

respectively. We consider this volatility process in the following example.
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Example 2.3. This example is taken from Andersen et al. (2002). The

price equation is given by

d log(st) = θ1dt+ σtdBt,

where the log-volatility process αt = log(σ2
t ) follows the Ornstein-Uhlenbeck

process

dαt = −θ4(αt − θ5)dt+ θ3dwt.

The parameters estimates are

θ1 = 0.03, θ3 = 0.125, θ4 = 1.389, θ5 = 0, and ρ = −0.62.

The values of E(v|r) based on r = 0.55, 0.78 and 1.035 are 0.022, 0.0339 and

0.0244, respectively.
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