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Abstract 

Alternatives to the Black-Scholes-Vasicek deflator introduced in [25] are proposed. They 

are based on the multivariate Wang variance-gamma process considered in [66]. As an 

application, closed form analytical multiple integral formulas for pricing the European 

geometric basket option with a deflated multivariate exponential Wang variance-gamma 

asset pricing model are derived. 
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1  Introduction 

The concept of state-price deflator or stochastic discount factor, which has been introduced 

by Duffie [16], p. 23 and 97, is a convenient ingredient of general financial pricing rules. It 

contains information about the valuation of payments in different states at different points 

in time. The state-price deflator is a natural extension of the notion of state prices that were 

introduced earlier and studied by Arrow [2]-[5], Debreu [12], Negishi [55] and Ross [60], 

a milestone in the history of asset pricing (see Dimson and Mussavian [14]). Although 

general frameworks for deriving state-price deflators exist (e.g. Milterssen and Persson [53] 

and Jeanblanc et al. [34]), there are not many papers, which propose explicit expressions 

for them and their corresponding distribution functions. 

We are interested in the construction of alternatives to the multivariate Black-Scholes-

Vasicek (BSV) deflator introduced in Hürlimann [25] (see also [26]). A valuable and 

popular alternative choice to a log-normal distribution for asset pricing is an exponential 
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variance-gamma process. It has been introduced in Madan and Seneta [48] and extensively 

used in financial applications (e.g. Madan and Milne [50], Madan et al. [49], Madan [47], 

Carr et al. [9], Geman [21], Fiorani [18], Fu et al. [20], Stein et al. [62], Domenig and 

Vanini [15], etc.). In the present paper we report on state-price deflators of multivariate 

normal variance-gamma type that are based on the multivariate Wang variance-gamma 

(WVG) process introduced in Wang [66]. 

For the interested reader we remark that the article Hürlimann [28] contains an extension 

of the Black-Scholes deflator to a more general version with interest rates as additional 

source of randomness. From a mathematical viewpoint it is natural to investigate other 

generalizations, namely the consideration of alternative asset price processes for use in 

incomplete financial markets. Indeed, let us assume that asset prices admit no arbitrage. 

Then, there exists a unique state-price deflator if, and only if, the market is complete. 

Otherwise, if the market is incomplete, several state-price deflators exist and pricing is a 

more complex topic (e.g. Munk [54], Theorem 4.2). Therefore, the study of state-price 

deflators is motivated by one of the main problems of Modern Finance, which consists to 

understand the pricing and hedging or replication of arbitrary portfolios in incomplete 

markets. Even if the portfolio is only made of derivatives there is no widely accepted 

solution to this problem (e.g. Cherny and Madan [10], Section 1). 

A short account of the content follows. Section 2 recalls the two main representations of 

the variance-gamma process. Its generalization to the multivariate Wang variance-gamma 

(WVG) process is introduced in Section 3. The construction of the multivariate WVG 

deflator is found in Section 4. Section 5 extends the univariate normal variance-gamma 

process to its multivariate context and Section 6 derives the corresponding state-price 

deflator. As an application we derive in Section 7 closed form analytical multiple integral 

formulas for pricing the European geometric basket option with a deflated multivariate 

exponential WVG asset pricing model. 

 

 

2  The Univariate Variance-gamma Process 

There are two different representations of the variance-gamma (VG) process. In the original 

first version, the variance-gamma process is considered as a drifted Brownian motion time 

changed by an independent gamma process. Viewed from the initial time 0 it is defined by 

 

,0,  tWGX
tGtt                                                (2.1) 

 

where  tW   is a standard Wiener process and the independent subordinator  

),(~ 11   tGt
  is a gamma process with unit mean rate and variance rate   . Since  

tX   is a Lévy process, its dynamics is determined by its distribution at unit time. In fact, 

the random variable  ),,(~ 2

1 VGXX    follows a three parameter distribution 

with cumulant generating function (cgf) 

 

.,0,

)},(1ln{])exp([ln)( 22

2
11



 



 uuuXEuCX
                   (2.2) 



The Multivariate Exponential Wang Normal Variance: Gamma Asset Pricing Models   3 

Of course, the cgf is only defined over an open interval (use (2.4)-(2.5) below). This 

formula is obtained from the cgf  )1ln()( 1 uuCG      of the gamma random 

variable  1GG    by conditioning using that  ),(~ 2GGNGX    is normally 

distributed. The increments of the process follow a VG distribution, namely 

tstttVGXX sst  0),/,,(~ 2  . The symmetric case  0   is used in the 

original asset and option pricing model by Madan and Seneta [48] and Madan and Milne 

[50]. 

In the second representation, the VG process is viewed as a bilateral gamma process (e.g. 

Carr et al. [9], Küchler and Tappe [43]) with the different parameterization 

 

,0,,),,,(*~)2(1)1(1    tVGGGX ttdt
               (2.3) 

 

where  ,2,1),1,(~)(  itG i

t  are independent copies of standardized gamma processes 

with scale parameter 1. The equality in distribution of the formulas (2.1) and (2.3) follows 

from the fact that the cgf of the independent gamma distributed difference in (2.3) equals 

 

.),)()(1ln()( 2111    uuutuC
tX                (2.4) 

 

The two representations are linked by the one-to-one transformation of parameters 
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    (2.5) 

 

The VG process has been extensively studied in Madan et al. [49]. It is worthwhile to 

mention that it is a special case of the CGMY model by Carr et al. [9]. 

 

 

3  The Multivariate Wang Variance-gamma Process  

Several multivariate versions of the VG process have been considered so far. Madan and 

Seneta [48] first introduced a multivariate symmetric VG process by subordinating a 

multivariate Brownian motion without drift by a common gamma process. The asymmetric 

version of this model has been developed in Cont and Tankov [11] and Luciano and 

Schoutens [44]. Generalizing (2.1) these authors consider multivariate Lévy processes with 

VG components of the type 

 

,,...,1,)()( nkWGX k

Gktk

k

t t
                                     (3.1) 

 

where the  
)(k

tW ’s  are correlated standard Wiener processes such that 

dtdWdWE ij

j

t

i

t ][ )()(
. This simple model is easy to work with but has some serious 

drawbacks. For example, linear correlation cannot be fitted once the margins are fixed. 
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Moreover, the choice of a single parameter     causes great difficulty in the joint 

calibration to option prices on the margins as observed by Luciano and Semeraro [45]. To 

overcome these deficiencies Semeraro [61] and Luciano and Semeraro [45]-[46] consider 

multivariate subordination to multivariate Brownian motions through the generalized 

specification 

 

,,...,1,)()()(
)( nkWGX k

Gk

k

tk

k

t k
t

                                   (3.2) 

 

where the  
)(k

tW ’s  are independent standard Wiener processes and  

),...,( )()1( n

ttt GGG    is a multivariate subordinator defined by 
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k

t

k

t ZaYG                                                      (3.3) 

 

with  ,0ka  and independent gamma processes  ),(~),,(~)( qpZmtY tkk

k

t   . 

To ensure that the margins (3.2) are VG processes one requires that (3.3) is a gamma 

process. As observed by Hitaj and Mercuri [24] this is the case under the two alternative 

choices (i) 0ka  the independent case or (ii) kk mqa /  with 

),)((~)(

kk

k

t mtpG   . Wang [66] notes that a closed-form joint characteristic function, 

which plays a critical role in option pricing and parameter estimation, can only be found in 

the case of independent Brownian motions in (3.2). In this situation the dependence is 

mainly due to the drift part, which might be too weak in financial applications. For this 

reason, Wang [66], Section 2.2, introduces a new multivariate VG process with closed-form 

joint cgf, called hereafter Wang variance-gamma (WVG) process. 

The modelling idea consists to decompose each marginal VG process  

,,...,1),,(~, 11)()()()(
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k
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k

t k
t

    into two independent VG 

components such that 
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   (3.4) 

 

where  
)()()( ,, i

t

j

t

i

t AYY   are independent for  jinji  ,,...,1, , and the conditional 

random vector process  ),...,( )()1(

t

n

tt GAA   is multivariate Gaussian with mean vector  

tA    and variance-covariance matrix  tA    given by 
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
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
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jin 

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


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

000

1 ,,...,1                               (3.5) 

 

The parameters of the VG margins can be arbitrary, but the parameters, which drive the 

dependence structure, must satisfy the constraint  ).,...,max( 10 n   
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The decomposition of the marginal processes into two components is motivated by the 

following economic background. The dependent component or systematic part  

),...,( )()1( n

ttt AAA    is interpreted as a systematic factor, which governs the big co-

movements of individual assets, while the independent part  ),...,( )()1( n

ttt YYY    

represents the individual factors of each asset. 

Since the margins are sums of independent processes with known cgf’s, the joint cgf 

of this process can be expressed in closed-form (the case  2n  is Proposition 2.2 in 

Wang (2009)). 

 

Theorem 3.1 (cgf of the multivariate WVG process). The joint cgf of the multivariate WVG 

process ),...,( )()1( n

ttt XXX   with parameters ,,...,1,,,,...,1,,, njink ijkkk    

),,...,max( 10 n   is determined by  


n

k
kYAX uCuCuC k

ttt
1

)()()( )(   with 
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and    jiijjiAnnAnuuu   01101 ,,...,),,...,( . 

 

Proof. The dependence assumptions and (2.2) implies first that 
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Therefore, it suffices to verify the formula for the cgf of the systematic part. Conditionally 

on the common gamma subordinator  tG   and using the fact that the conditional margins 

are normally distributed as 
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one obtains the representation (3.6) from the following calculation 

 





)].[exp(Eln

]])exp([E[Eln])exp([ln)(

2
1

G

G

t

t

t

T

t

T

tt

T

t

T

A

uGuuG

GAuAuEuC
t


 

 

Using a general result about subordination of a Lévy process (e.g. Cont and Tankov [11], 

Theorem 4.2), it is possible to obtain the Lévy measure of the multivariate WVG process 

(see Wang [66], Section 2.2). The pairwise linear correlation between the margins  
)(i

tX   
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and  
)( j

tX   is time-independent and given by 
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A derivation of (3.7) is found in Wang [6], Proposition 2.3. The following facts point out 

the flexibility of the dependence structure: 

 

(i)   0,lim )()(

0




j

t

i

t XX


  (asymptotically independent marginal VG processes) 

(ii) 1),,max(, 0  ijjiji    (maximum dependence between 
)(i

tX   and  

)( j

tX ) 

(iii)  1,0  ijji    (full comonotone dependence between  
)(i

tX   and  

)( j

tX ) 

 

 

4  The Multivariate Wang Variance-gamma Deflator 

Consider the class of exponential WVG processes. Given the current prices of  1n   

risky assets at initial time 0 their future prices at time  0t   are described by 

exponential VG processes 

 

nkXtSS k

tkk

kk

t ,...,1),)exp(( )()(

0

)(   ,                           (4.1) 

 

where  k   represents the mean logarithmic rate of return of the k -th risky asset per 

time unit, and the random vector  ),...,( )()1( n

ttt XXX    follows a multivariate WVG 

process. Using the defining relationship  )exp(][ )(

0

)( tSSE k

kk

t    at unit time, one 

sees that  nkC kXk ,...,1,)1()(  , where one assumes that the cgf of  

)(

1

)( kk XX    exists over some open interval, which contains one. Suppose that the 

multivariate WVG deflator of dimension  n   has the same form as the price processes in 

(4.1). For some parameter     and vector  ),...,( 1 n   (both to be determined) 

one sets for it (an Esscher transformed measure) 

 

.0),exp(  tXtD t

T

t                                           (4.2) 

 

A simple cgf calculation shows that the defining martingale conditions 

 

,0,][,][ )(
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t
                                 (4.3) 

 

are equivalent with the system of   1n   equations in the  12 n   unknowns  
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kk  ,,  (use that  tX   is a Lévy process, hence  )()( uCtuC XX t
 ): 
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Inserting the first equation into the second ones yields the necessary relationships 

 

.,...,1,0)()( )( nkCCr X

k

Xkk                           (4.5) 

 

By Theorem 3.1 these equations are equivalent with 
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Since the system (4.4) has  n   degrees of freedom, the unknown  k   can be chosen 

arbitrarily, say 

 

nkCCCr kkk XkYkYkk ,...,1),1()()1( )()()(   ,             (4.7) 

 

which is interpreted as the (time-independent) WVG market price of the k -th risky asset. 

With the made restriction on the cgf, this value is always finite. Inserted into (4.6) shows 

that the parameter vector     is determined by the equations 

 

.,...,1),()( )( nkCC A

k

A                                           (4.8) 

 

We are ready to show the following WVG deflator representation. 

 

Theorem 4.1 (WVG deflator of dimension  n ). Given are  1n   risky assets with 

exponential VG real-world prices (4.1), where the random vector process  

),...,( )()1( n

ttt XXX    follows a multivariate WVG process. Then, the WVG deflator (4.2) 

is determined by 
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Moreover, in the univariate case  1n   one has  01  . 

 

Proof. The first equation in (4.4) yields . Since  }1ln{)(
2
11

0 uuuuC TT
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by Theorem 3.1, it follows that the conditions (4.8) are equivalent with the equations 
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nkTTkTkkT ,...,1,0
2
1)()(

2
1)(   . 

 

A calculation shows that the latter is equivalent with the stated conditions for  

nkk ,..,1,  , where in case  1n   one has  01    (empty sum).  ◊ 

 

 

5 The Normal Variance-gamma Process and its Multivariate Wang 

Version 

Recall the embedding of the VG process into the bilateral gamma (BG) process defined by 

(e.g. Küchler and Tappe [43], Section 6) 

 

,0,,,),,,,(~)2(1)1(1    ttBGGGX ttdt
           (5.1) 

 

where  )1,(~)1( tGt    and  )1,(~)2( tGt    are independent standardized gamma 

processes with scale parameter 1 and shape parameters  t   respectively  t . 

Clearly, the VG process (2.3) is the special case      of (5.1). For even greater 

flexibility it is natural to embed the BG process into the six parameter normal bilateral 

gamma (NBG) process defined by 

 

,,0,,,,0),,,,,,(~ 2
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GGWtX tttdt
        (5.2) 

 

with  ),0(~ tNWt   a standard Wiener process, 
)2()1( , tt GG   as above and independent 

of  tW . The cgf of the NBG process is determined by 
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          (5.3) 

 

A few words about this rich class of Lévy processes are in order. The distribution of the 

NBG random variable  ),,,,,(~ 2

1 NBGXX   includes a number of 

important and increasingly discussed families of distributions (see Hürlimann [31] for a 

discussion with many references). Especially, it is worthwhile to mention that the 

Brownian-Laplace motion considered in Reed [58] is a re-parameterization of the normal 

variance-gamma (NVG) process obtained from (5.2) by setting   . In fact, the 

independent and stationary increments  ,0, tsXXX sstd    of this process 

follow a generalized normal Laplace (GNL) distribution introduced in Reed (2006) and 

defined by 
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),,,,,(),,,,(~ 22
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where  
)2()1( ,, GGZ   are independent with  )1,0(~ NZ , and  

)2()1( , GG  are 

standardized gamma with scale parameter 1 and shape parameter   . From now on, the 

focus will be restricted to the NVG process and its multivariate version. 

The multivariate Wang normal variance-gamma (WNVG) process is obtained from 

the WVG process as the univariate NVG is obtained from the univariate VG process. For 

convenience, the VG margins are described in terms of the original parameter set  

),,( kkk    instead of  nkkkk ,...,1),,,(   (parameter transformation (2.5)). 

The one-dimensional incremental margins of the WNVG process are described by 

convolutions  
)()()( k

t

k

t

k

t ZYX    with VG processes  
)(k

tY   and independent 

Wiener processes 
)(k

tZ   such that 

 

,,...,1,
~

, )()()()()(
)( nkWtZWGY k

tkk

k

t

k

Gk

k

tk

k

t k
t

                  (5.5) 

 

with  ),0(~
~ )( tNW k

t   a standard Wiener process. The dependence structure of the 

WNVG process is inherited from the multivariate WVG process  ),...,( )()1( n

ttt YYY    

defined in Section 3 and the multivariate Wiener process  ),...,( )()1( n

ttt ZZZ    with 

mean vector  ),...,( 1 n    and covariance matrix  ji

N

ij  . The joint cgf 

can be expressed in closed-form. 

 

Theorem 5.1 (cgf of the multivariate WNVG process). The joint cgf of the multivariate 

WNVG process ),...,( )()1( n

ttt XXX  with parameters:  

,,...,1,,,,...,1,,,,, njink VG

ij

N

ijkkkkk    ),,...,max( 10 n   is 

determined by  


n

k
kYA

TT

X uCuCtuutuuC k
ttt

1
2
1 )()()()( )(   with 

 

)},(1ln{)()(

},1ln{)(

22

2
11

0

1

2
11

0

)( kkkkkkkY

TT

A

uutuC

uuutuC

k
t

t













                      (5.6) 

 

with       ji

VG

ijjinnji

N

ijn   ,,...,,),,...,( 111
. 

 

Proof. Since tX  is the convolution of  tY  and tZ , the representation (5.6) is the sum 

of the joint cgf’s of a multivariate Wiener process and the WVG process given in Theorem 

3.1.  ◊ 
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Important special cases of the WNVG process are the multivariate normal generalized 

asymmetric Laplace (NGAL) process (case nkk ,...,1,0  ) and the multivariate 

normal asymmetric Laplace (NAL) process (case nkk ,...,1,10  ). The naming 

of the latter stems from the fact that the VG margins, in this case equal to  

nktExpEWEY k

t

k

Ek

k

tk

k

t k
t

,...,1),(~, )()()()(
)(   , reduce to asymmetric or skew 

Laplace processes. Therefore, the incremental margins  
)()()( k

s

k

std

k XXX     follow a 

normal asymmetric Laplace (NAL) distribution, also called normal Laplace (NL) 

distribution by Reed (2006) and Reed and Jorgensen (2004), of the form 

 

 kkkkkkkk

k NALEEZX  ,,,~2

1

1

1)(  
,               (5.7) 

 

with )1,0(~ NZ ,   1~, 21 ExpEE ,  21,, EEZ   independent, and  

nkkkkkkkkk ,...,1),2(),2( 22

2
1122

2
11     (cf. (2.5)). 

Since the Laplace and normal distributions constitute Laplace’s first and second law of 

errors (e.g. Kotz et al. [36], Chap. 1), it is worthy to consider convolutions of the two error 

distributions for modelling purposes. A probabilistic genesis of (5.7) is found in Reed and 

Jorgensen [59]. This distribution arises naturally if a Brownian motion  

dWdtdX     with initial state   2)(

0 ,~ kk

k NX    is observed at an 

exponentially distributed random time T . If the logarithmic price of a financial asset is 

assumed to follow a Brownian motion, then its logarithmic price at the time of the first trade 

on a fixed future date could be expected to follow a distribution close to a normal Laplace 

(e.g. Reed [57], p. 5). Similarly, a standardized gamma time changed Brownian motion 

with initial random normal state leads to a normal variance gamma distribution. The 

empirical fitting capabilities of the normal Laplace have been tested in several case studies. 

For example, Hürlimann [27] shows that an AR(1) process with NL noise achieves a best 

goodness-of-fit for the Swiss consumer price index among various competing non-

Gaussian noise specifications. 

The joint cgf of the multivariate NAL process is determined as follows. 

 

Corollary 5.1 (cgf of the multivariate NAL process). The joint cgf of the multivariate NAL 

process ),...,( )()1( n

ttt XXX   with parameters:  

,,...,1,,,,...,1,,,, njink AL

ij

N

ijkkkk    is determined by 

 

)1ln()()(
2
1

2
1 uuuttuutuuC TTTT

X t
  ,                     (5.8) 

 

with       ji

AL

ijnji

N

ijn   ,,...,,),,...,( 11 . 

 

Proof. This follows from Theorem 5.1 setting  nkk ,...,1,10  . ◊ 

 

The vector of increments  ),,,(~),...,( )()1(  NALXXX n
  is the convolution 
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of a normal vector  ),(~),...,( )()1(  NZZZ n
  and an asymmetric Laplace  

),(~),...,( )()1(  ALYYY n
. The distribution of the latter vector has been introduced 

by Kozubowski and Podgorski [40] while its characteristic function appears in Kozubowski 

[38] and Kozubowski and Panorska [39]. It is studied in the book by Kotz et al. [36] (see 

also Kotz et al. [37] and Kozubowski et al. [41]). Parameter estimation of the multivariate 

shifted asymmetric Laplace (SAL) distribution  ),,(~   SALY  is discussed in 

Visk [65] and Hürlimann [30]. 

 

 

6  The Multivariate Wang Normal Variance-gamma Deflator 

Consider now  1n   risky assets, whose real-world prices are described by exponential 

normal VG processes of the type 

 

nkXtSS k

tkk

kk

t ,...,1),)exp(( )()(

0

)(   ,                           (6.1) 

 

where  k   represents the mean logarithmic rate of return of the k -th risky asset per 

time unit, and the random vector  ),...,( )()1( n

ttt XXX    follows a multivariate WNVG 

process with cgf (5.6). Clearly, one must have  nkC kXk ,...,1,)1()(  , where one 

assumes that the cgf of  
)(

1

)( kk XX    exists over some open interval, which contains 

one. Suppose that the WNVG deflator of dimension  n   has the same form as the price 

processes in (6.1). For some parameter     and vector  ),...,( 1 n   (both to be 

determined) it is defined by the Esscher transform 

 

.0),exp(  tXtD t

T

t                                           (6.2) 

 

The martingale conditions (4.3) lead to the same system of   1n   equations (4.4) in 

the  12 n   unknowns  kk  ,, , and (4.5) holds. By Theorem 5.1 the latter equations 

are equivalent with 

 

.,...,1,0)()1()(

)(

)()(2
1

)()()(

2
1)(

nkCCC

Cr

kYkYA

TT

k

A

kTkkT

kk

kk 






     (6.3) 

 

Again, the unknown  k   can be chosen arbitrarily. A convenient appropriate choice, 

which leads to a simple solution of the system (6.3), consists to set for  nk ,...,1 : 

),1()()1(

)21(

)()()(

,1

2
1

kkk XkYkY

n

kii
iki

kkkkkk

CCC

r

 









                         (6.4) 
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which is interpreted as the (time-independent) WNVG market price of the k -th risky asset. 

With the made restriction on the cgf, this value is always finite. Inserted into (6.3) one sees 

that the parameter vector     is determined by the equations 

 

.,...,1),()( )( nkCC A

k

A                                           (6.5) 

 

To show this, one uses the relationships 

 

.,...,1,)21(,
,1

2
1

2
1)()(

2
1)( nk

n

kii
ikikkk

TkTk

k

TkT  


  

We are ready to show the following WNVG deflator representations. 

 

Theorem 6.1 (WNVG deflator of dimension  n ). Given are  1n   risky assets with 

exponential normal VG real-world prices (6.1), where the random vector process  

),...,( )()1( n

ttt XXX    follows a multivariate WNVG process. Then, the WNVG deflator 

(6.2) is determined by 

 

,0),exp( )(

1




tXtD k

t

n

k
kt     with                               (6.6) 

.,...,1,,)(),( 2

2
12 nkCr

kj

VG

ijkkkkkkX k

j

k

j 









  (6.7) 

 

Moreover, in the univariate case  1n   one has  01  . 

 

Proof. The proof of Theorem 4.1 applies. ◊ 

 

Corollary 6.1 (NAL deflator of dimension  n ). Given are  1n   risky assets with 

exponential normal asymmetric Laplace real-world prices (6.1), where the random vector 

process  ),...,( )()1( n

ttt XXX    follows a multivariate NAL process with cgf (5.8). The 

NAL deflator is determined by  

 

,0),exp( )(

1




tXtD k

t

n

k
kt     with                                (6.8) 

.,...,1,,)(),( 2

2
12 nkCr

kj

AL

ijkkkkkkX k

j

k

j 









  (6.9) 

 

Proof. This follows from Theorem 6.1 replacing  
VG

ij   by  
AL

ij . ◊ 
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7  Pricing Geometric Basket Options with State-price Deflators 
In the literature one distinguishes between two types of basket options. The arithmetic 

basket option is defined on the weighted arithmetic average of asset prices such that 

 




n

k

k

tkt ScS
1

)(
,                                                        (7.1) 

 

where the weights  )( kc   can be negative, and in this situation it includes spread options. 

The geometric basket option is defined on the weighted geometric average of asset prices 

 

1,0,][
11

c)( k 


n

k
kk

n

k

k

tt ccSS .                                     (7.2) 

 

Since distribution functions of weighted sums of correlated asset prices can usually not be 

written in explicit closed form, the pricing of arithmetic basket options is rather challenging. 

Different and mostly approximate methods to price them have been developed so far by 

many authors including Turnbull and Wakeman [63], Milevsky and Posner [52], Krekel et 

al. [42], Carmona and Durrleman [8], Borovka et al. [6], Wu et al. [67], Venkatramanan 

and Alexander [64], Alexander and Venkatramanan [1], Brigo et al. [7]. The pricing of the 

geometric basket option is more straightforward. 

We illustrate usefulness of the multivariate WVG and WNVG deflators by pricing the 

geometric basket options. The obtained explicit analytical pricing formulas can be viewed 

as multivariate generalizations of the Black-Scholes formula. 

Consider an European geometric basket call option with maturity date  T   and exercise 

price  K   in the multivariate WVG market with  1n   risky assets that follow the 

price process (4.1) and is subject to the WVG deflator (4.9)-(4.10). Its price at initial time 

0 is given by 

 

])([  KSDEC TT .                                                 (7.3) 

 

A straightforward calculation, which takes into account the normalizing choice (4.7), shows 

that 

 

}.)(exp{

),1()(

},)()(exp{

1

)(

1

)(

1
0

)()(





 







n

k

k

TkX

rT

T

kYkYk

n

k

k

Tkk

n

k
kkXTT

XTCKeKD

CCd

XcTdcTCSSD

kk







                (7.4) 

 

By the representation (3.4) one has 

 

)()()()(
)(

0000
1)1( k

Hk

k

Tk

k

GkTk

k

T k
T

kk

T

kk WHWGX















  , 
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with independent distributed gamma random variables   00 ,~  TGT    and 

  1

0

11

00

)( ,,,(~    kkkk

k

T TH . To evaluate (7.3) we condition (7.4) on 

the random vector  ),...,,( )()1( n

TTTT HHGU    whose density function is the product of 

gamma densities of the form 

 

 






n

k

xT

kkk

n

k
kHGnU

kkk
k

TTT
exxfxfxxxf

0

1

k
1

010 )()](/[)()(),...,,( )(

 . 

 

Proceeding this way rewrite (7.3) as multiple integral  




dwwfwCeC
T

X

U

TC
)()(

)( 
  with 

 

].)}exp{

})(exp{[()(

1

)(

1

)(

1
0

wUXKe

XcTdcSEwC

T

n

k

k

Tk

rT

n

k

k

Tkk

n

k
kk



 












                          (7.5) 

 

Each of the two conditional correlated normally distributed sums in (7.5) is normally 

distributed, and their joint distribution is bivariate normal. Therefore, the distribution of the 

conditional random couple 

 

),)((
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)(
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k

Tkk

n

k
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

 , with  ),...,,( 10 nwwww  , 

 

is determined by the conditional means 
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    (7.6) 

 

the conditional variances 
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         (7.7) 

and the conditional covariance 
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          (7.8) 

 

Now, let  )(x   denotes the standard normal distribution, )(1)( xx    its 

survival function, and  )(')( xx    its density. The bivariate standard normal density 

is defined and denoted by 
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From (7.5) and the definitions (7.6)-(7.8) one obtains 

 

  
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 .      (7.9) 

 

The expression in the bracket of (7.9) is non-negative provided  )(yxx   with 
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Since  
22

2 1/)1/)(()();,(   yxyyx   a separation of the double 

integral yields  




dyywyJwC )(),()(    with the inner integral 
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A straightforward application of Lemma A1.1 in the Appendix 1 yields 

 

).(

))(1(),(

2

)2()2(

2

)1(2

2

1)1()1(

1

)(

)1(2

1

)()1(

0






















yxyyswmwrT

TyxyswyswmwTdc

TT

TTTT

Ke

sweSwyJ

 

 

To simplify notation rewrite the arguments within the normal distribution functions as 
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Now, using twice the Lemma A1.2 of the Appendix 1 one obtains 
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Based on the above expressions for the coefficients  eba ,,   one obtains further 

 

.)()()(

,2,1,)(

),(

)()(

2

2

2

1

)2()1()(2

)(

)()()/ln()()(

)(

)()()/ln()()(

0

2
2

)2()1(
0

)2(

2

1)2(

2
1

)2()1(
0

)1(

2

1)1(

www

kswswsww

Ke

eSwC

TTkT

k

w

wmmwSKTdcrsmwrT

w

wmmwSKTdcrsmwTdc

TTT

TTTT



















               (7.11) 

 

Summarizing, we have shown the following main result. 

 

Theorem 7.1 (Geometric basket multivariate WVG market call option formula). Given is 

the multivariate exponential WVG process (4.1) subject to the WVG deflator (4.9)-(4.10). 

Then, in the above notations, one has 
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Remarks 7.1. A similar option pricing formula can be derived for the multivariate WNVG 

market with  1n   risky assets defined in Section 6 with WNVG deflator (6.6)-(6.7). 

The cgf in (7.12) must be replaced by the cgf (5.8). Since (4.7) is replaced by (6.4) the 

quantities kd  in (7.4) must be replaced by 

 


n

kii
ikikkkkkYkYk kk CCd

,1
2
1 )21()1()( )()(  . Moreover, 

)(k

TX   is 

replaced by the equation (5.5), that is  
)()( ~ k

tkk

k

T WtX   , so that (7.6)-(7.8) must be 

replaced accordingly (details are left to the reader). In the univariate case  1n   the 

WVG process reduces to the VG process, and the multidimensional pricing formulas 

(7.12)-(7.13) reduce to the one-dimensional formulas (4.12)-(4.15) in Hürlimann [32]. The 

numerical evaluation of the multiple integrals of the form (7.13) can be performed using 

number theoretic methods (e.g. Niederreiter [56], Foglia [19], Fang and Wang [17], etc.). 

Another possibility is the use of the fast Fourier transform (FFT) to evaluate densities with 

known characteristic functions (e.g. Hürlimann [31], Appendix 1). The standard FFT of  

TUf   as a product of  1n   gamma densities results in a grid of  
qnnN )1(1 2     

points, where  
qN 2   is the number of points required for the FFT of each gamma 

density. This approach has the advantage to be applied for other subordinators than the 

gamma distribution like an inverse Gaussian or a classical tempered stable distribution. 

When compared to the simpler multivariate NVM mixture models proposed in Hürlimann 

[32], which result in a one-dimensional geometric basket option pricing formula, the 

present multivariate extension is computationally more complex. For example, choosing  

10q   in FFT calculation results in more than 1 billion points for evaluation of the 

pricing formula for a bivariate model. 

At this point some important connections with the standard no-arbitrage framework of 

Mathematical Finance must be mentioned (e.g. Wüthrich et al. [68], Section 2.5, and 

Wüthrich and Merz [69], Chap. 2). By the Fundamental Theorem of Asset Pricing, the 

assumption of no-arbitrage (weak form of efficient market hypothesis) is equivalent with 

the existence of an equivalent martingale measure for deflated price processes. In complete 

markets, the equivalent martingale measure is unique, perfect replication of contingent 

claims holds, and straightforward pricing applies. In incomplete markets, an economic 

model is required to decide upon which equivalent martingale measure is appropriate. Now, 

let  P   denotes the real-world measure and  
*P   an equivalent martingale measure. 

Then, one can either work under P , where the prices processes are deflated with a state-

price deflator. Alternatively, one can work under  
*P   by discounting the prices 
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processes with the bank account numeraire. Working with financial instruments only, one 

often works under  
*P . But, if additionally insurance liabilities are considered, one works 

under  P  (see Wüthrich et al. [68], Remark 2.13). A recent non-trivial example is pricing 

of the “guaranteed maximum inflation death benefit (GMIDB) option” (equation (5.4) in 

Hürlimann [26]). Theorem 7.1 demonstrates the practicability of the state-price deflator 

approach for exponential WVG price processes as applied to the European geometric basket 

call option. The conditions under which the WVG and WNVG multivariate markets are 

complete and arbitrage-free, that is there exists a unique equivalent martingale measure and 

prices are uniquely defined (whether under  
*P  or under  P   with state-price deflator), 

remain to be found. This is a non-trivial problem that has been tackled so far only for the 

multivariate Black-Scholes model (see Dhaene et al. [13]). 

Finally, as a mode of conclusion, let us mention that other multivariate versions of the VG 

process and generalizations can be found in the recent literature (e.g. Ishwaran and 

Zarepour [33], Kaishev [35], Guillaume [22]-[23] and Marfè [51]). The construction of 

state-price deflators and their use in actuarial science and finance for these and other 

multivariate processes is an interesting topic for future research. 
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Appendix 

 

Integral identities of normal type 

 

The crucial identities used in the derivation of Theorem 7.1 are stated and proved. 

 

Lemma A1.1.  For any real numbers    and    one has the identity 

 

.                   (A1.1) 

 

Proof.  Consider first the case  . From the relation  

 one gets 

 

. 

 

Using this one obtains by a change of variables 
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Lemma A1.2.  For any real numbers    and    one has the identity 

.                      (A1.2) 

 

Proof.  Consider the functions  

. One notes that  

  and  , from which 

it follows that . On the other hand, one has 
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