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Abstract 

The maximum entropy principle finds its applications in a variety of disciplines 

related with Operations Research. The use of the principle can be extended to 

obtain the solution of a mathematical programming problem. In the present 

communication, an algorithm has been developed for solving constrained 

non-linear programming problem through the equivalent surrogate problem. In the 

solution process of so formed surrogate problem, the surrogate multipliers need to 

be updated and therefore, maximum entropy formulation has been used for the 

update of the multipliers. For the implementation and well understanding of the 

algorithm, an example has been discussed which confirms that entropy based 

updates for the surrogate multipliers lead to a fast and accurate solution to the 

problem. 
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1  Introduction  

Information theory provides a constructive role for setting up probability 

distributions when partial information is available and leads to a type of statistical 

inference which is called the maximum-entropy estimate. This estimate is least 

biased as it is maximally noncommittal with regard to missing information. The 

principle of maximum entropy introduced by Jaynes [1] provides a unique 

solution for the posterior probability distribution based on the intuition that the 

information gain consistent with assumptions and evidence should be minimal. 

In real life situations as well as in several disciplinary pursuits, we are very 

frequently concerned with constrained optimization. For such pursuits, Kapur [2] 

explained the principle of maximum entropy with the view that at any stage, we 

may have infinity of probability distributions consistent with the given constraints, 

such as, 

1
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  Out of these distributions, one has maximum uncertainty 
maxH and the 

uncertainty H of any other distribution is less than
maxH and if we desire to reduce 

uncertainty, then can be done only with the help of some additional information. 

Thus, the use of any distribution other than the maximum uncertainty distribution 

implies the use of some information in addition to that given by equation (1.1). 

Now, according to Jaynes [1] maximum entropy principle which is nothing but the 

principle of scientific objectivity and it implies that we should use all the 

information given to us and avoid using any information not given to us.  
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    For the deeper study of maximum entropy principle to a variety of disciplines, 

Kapur [2] provided the applications of Shannon’s entropy [3], given by 

)(PH = 
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log
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− ∑                                            (1.2) 

But there exist a variety of information theoretic entropies-parametric as well 

non-parametric investigated by various researchers. To cite a few, we have 
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which is Renyi’s entropy [4]. 

Following this development, Havrada-Charvat [5] introduced a non-additive 

entropy, given by 

1
1

1

( ) , 1, 0
2 1

n

i
i

p
H P

α

α
α α α=
−

 
− 

  = ≠ >
−

∑
                                 (1.4) 

Parkash and Mukesh [6, 7] investigated and introduced new generalized 

parametric measures of entropy for the real parameters, given by the following 

expressions 
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Furthermore, Parkash and Mukesh [8] provided the applications of these 

generalized measures to the fields of Statistics for the development of 

interrelationships between information measures and Chi-square variate. 

Moreover, Parkash and Mukesh [7] investigated the study of maximum entropy 

principle to the field of queueing theory. 

Fang, Rajasekera and Tsao [9] remarked that entropy optimization is a 

useful combination of classical entropy theory with mathematical optimization. 

The resulting entropy optimization models have proved their usefulness with 
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successful applications in a variety of mathematical areas. Greenberg and 

Pierskalla [10] presented an approach for solving arbitrary mathematical programs. 

The authors observed that the surrogate mathematical program is a lesser 

constrained problem that, in some cases, may be solved with dynamic 

programming. A similar study of the surrogate mathematical program has been 

made by Glover [11]. 

Erlander [12] provided a treatment of entropy constrained linear programs 

from modelling as well as computational aspects. Some other contributors, due to 

Templeman and Xingsi [13], Das, Mazumder and Kajal [14] and Yin-Xing [15], 

concerned the development of many information-theoretic algorithms for solving 

constrained linear and non-linear programming problems based upon the principle 

of minimum cross-entropy and surrogate mathematical programming.  

 In the present communication, a solution of general constrained non-linear 

programming problem has been provided by formulating it into an equivalent 

surrogate problem which reached the solution point iteratively by using the 

maximum entropy formulation. Further a numerical example is given for solving a 

simple convex non-linear programming problem which ensures the advantage of 

using maximum entropy technique for solving the problem. 

 

 

2  General Non-linear Programming Problem 

Many problems in engineering sciences involve the optimization of 

non-linear functions f and/or g and almost invariably active constraints. Consider 

such a problem of a generalized constrained non-linear programming problem 

given by 

 

Problem-I:  

Minimize ( )xf                                                  (2.1) 
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subject to the constraints 

( ) 0≤xg j , mj ,,2,1 =                                           (2.2) 

where x denotes the vector of real valued variable ( )nixi ,,2,1 =  and the 

constraint functions ( )mjg j ,,2,1 =  represent the constraint vector g . 

 There are widespread applications of the Problem-I and plenty of techniques 

for the solution of this problem. The numerical solutions of this type of problems 

are of great importance for engineering design, synthesis and analysis. Thus, 

Problem-I has an equivalent surrogate form expressed in the following. 

 

Problem-II: 

Minimize ( )xf  

subject to a single constraint 

( ) 0
1

=∑
=

m

j
jj xgµ                                                   (2.3) 

where ( )mjj ,,2,1 =µ  are non-negative surrogate multipliers termed as 

surrogate multipliers. Without any loss of generality, the surrogate multipliers 

µ may be assumed to be normalized to unity, that is, 

1
1

=∑
=

m

j
jµ                                                       (2.4) 

 The solution process is set in a probabilistic context by considering the 

Problem-I with estimating the probability of assigning the event that each 

constraint is active at the optimum. Denoting these probabilities 

by ( )mjj ,,2,1 =µ , it is obvious that at least one of the constraints must be active 

so that the condition (2.4) must hold. We reach the solution ∗x of the Problem-I 

indirectly through a sequence of solutions of the Problem-II. Thus, the problems I 

and II are equivalent at the solution point. 

The Lagrange’s function of the Problem-II is given by 
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( ) ( )∑
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m
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jj xgxf
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whereλ is the Lagrange multiplier associated with the constraint (2.3) in the 

Problem-II. An essential condition to be satisfied is that ( )∗∗∗ λµ ,,x  should be a 

saddle point of the Lagrange’s functionΩ  of the Problem-II, that is, 

( ) ( ) ( )λµλµλµ ,,,,,, ∗∗∗∗∗∗ Ω≥Ω≥Ω xxx                               (2.6) 

The left hand inequality of (2.6) gives the minimization over variables x  for 

specified µ  and λ  whereas the right hand inequality implies the maximization 

over µ  and λ  for specified x . In fact x , µ  and λ  are related through the 

stationarity of the Lagrange’s function Ω  with respect to x as shown in the 

following expression 
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The saddle point condition (2.6), which is written in terms of Lagrange’s 

functionΩ , may however be satisfied by iterative means using Problem-II itself, 

with alternative iterations in x -space and µ -space. The algorithm is as follows: 

 Choose the initial set of the surrogate multipliers 0µ and solve the 

Problem-II to obtain the values of 0x (by minimization, corresponding to the left 

hand inequality in (2.6)). The surrogate multipliers are then updated to 1µ (by 

maximization for fixed 0x , corresponding to the left hand inequality in (2.6)) and 

the Problem-II is solved again to give 1x . The process is repeated until the 

sequence ( ) ( ) ( )kk xxx ,,,,,, 1100 µµµ  , converges to the solution of the Problem-II 

and hence of the Problem-I, at ( )∗∗ x,µ . It is evident that the updated surrogate 

multipliers 1+kµ  must satisfy the normality condition and the surrogate constraint 

of the Problem-II. Thus 

1
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and 

( ) 0
1

11 =∑
=

++
m

j

k
j

k
j xgµ                                               (2.9) 

For the condition (2.9) to be satisfied we require the values for ( )1+k
j xg , 

mj ,,2,1 =  which are not known yet. Therefore, we assume that the best 

estimates for ( )1+k
j xg  are the values ( )k

j xg  to be used in the equation (2.9), 

which is modified to the following equation 

( ) εµ =∑
=

+
m

j

k
j

k
j xg

1

1                                               (2.10) 

where ε is the unknown error introduced due to the replacement of the 

values ( )1+k
j xg  by the values ( )k

j xg , mj ,,2,1 = . Furthermore, we would 

expect ε to approach zero as the sequence of the iterations ,, 1+kk xx  

approaches to ∗x . Therefore, we reached the following assignment problem 

Assign 1+k
jµ , mj ,,2,1 = subject to the conditions 

1
1

1 =∑
=

+
m

j

k
jµ and ( ) εµ =∑

=

+
m

j

k
j

k
j xg

1

1 with +→ 0ε  

Since the surrogating has no meaning for a single constraint, that is, 1=m , 

therefore the cases for 2≥m are of interest. For the special case 2=m , the 

equations (2.8) and (2.10) give a unique assignment 

( )[ ]
( ) ( )[ ]kk

k
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xgxg
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21

21
1 −

−
=+ εµ                                           (2.11) 

and 

( )[ ]
( ) ( )[ ]kk

k
k

xgxg
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21

11
2 −

−
=+ εµ                                           (2.12) 

which depends upon the unknown error term ε . For the general case 2>m , the 

equations (2.8) and (2.10) are insufficient to yield a unique assignment 1+kµ . In 

the absence of any explicit criterion of µ -maximization (necessary to satisfy the 
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saddle point condition (2.6)) which would lead to a unique assignment, an 

artificial criterion must be imposed. However, on the basis of the information 

available, there is no logical justification for a criterion which favours one specific 

assignment rather than another. The artificial criterion should correspond to a 

maximization process in µ -space with the conditions (2.8) and (2.10) satisfied 

alongside, otherwise the criterion should introduce minimize bias into the 

assignment of 1+kµ . Hence, it is logical to maximize the entropy of the multipliers 
1+kµ by using the maximum entropy formulation. Thus, the unsolvable assignment 

problem is replaced by the following solvable problem in the context of 

Havrada-Charvat’s entropy [5]. 

 

Problem-III: 

Maximize ( ) ( ) 
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subject to the constraints 
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The Lagrange’s function of the Problem-III is given by 
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where υ  and η  are the Lagrange’s multipliers associated with the constraints. 

Differentiating equation (2.14) with respect to 1+k
jµ and setting equal to zero, we 

get 
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j

k
j xgηυ

α
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11 21                                     (2.15) 

Now, taking in particular 2=α , the equation (2.15) becomes 
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( )[ ]k
j
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j xgηυµ +=+
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In view of the equations (2.8), (2.10) and (2.16), we eliminate the Lagrange’s 

multipliers υ  and η  to get the updated surrogate multipliers (See Appendix A), 

given by 
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The equation (2.17) is proposed to be a relationship for updating the surrogate 

multipliers in the iterative algorithm described above. The error term ε  is 

unknown but should approach zero from positive side as iterations approach the 

optimum. Thus ε  may be considered as a control parameter whose value should 

be chosen at each iteration with the desired behaviour. 

 In the special case of Problem-I with two constraints ( 2=m ), equations (2.11) 

and (2.12) represent a unique updating formula for 1µ  and 2µ  quite 

independently of the maximum entropy formulation. It may be noted that 

for 2=m , the entropy based update formula (2.17) yields the same results as the 

update in the   equations (2.11) and (2.12). This is not surprising, but it does 

permit the µ  update formula (2.17) to be viewed as a least biased extension of 

the unique result represented by the set of the equations (2.11) and (2.12) for 

2=m  in the more general realm of 2>m . This concludes the derivation of an 

entropy based update formula for the surrogate multipliers. 

 

 

3  Numerical Example 

We consider the following example in which an analytical solution for the 

x -phase minimization is available for any set of values of µ . Consequently, the 
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example focuses attention on the µ -phase iterations which are the centre of the 

present method. The example is as follows: 

Minimize ( )
321

1
xxx

xf =                                           (3.1) 

subject to the constraints 

( ) 0132 3211 ≤−++= xxxxg                                        (3.2) 

( ) 013212 ≤−++= xxxxg                                          (3.3) 

( ) 0123 3213 ≤−++= xxxxg                                       (3.4) 

0,, 321 >xxx  

The surrogate form of the given problem is 

Minimize ( )
321

1
xxx

xf = subject to 

( ) ( ) ( ) 01231132 321332123211 =−+++−+++−++ xxxxxxxxx µµµ  

which rearranges to 

( ) ( ) ( ) 012332 321332123211 =−++++++++ xxxxxxxxx µµµ            (3.5) 

The corresponding Lagrange’s function is given by 

( ) ( ) ( )[ ]123321
321332123211

321

−+++++++++=Ω xxxxxxxxx
xxx

µµµλ   (3.6) 

Now 0=
∂
Ω∂

ix
, 3,2,1=i  gives the following set of equations 

( )321
32

2
1

21 µµµλ ++=
xxx

                                        (3.7) 

( )321
3

2
21

31 µµµλ ++=
xxx

                                         (3.8) 

( )3212
321

231 µµµλ ++=
xxx

                                        (3.9) 

In view of the equations (3.5), (3.7), (3.8) and (3.9), we get the following values of 

1x , 2x  and 3x in terms of 1µ , 2µ  and 3µ . 
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( )321
1 23

1
µµµ ++

=x                                            (3.10) 

( )321
2 33

1
µµµ ++

=x                                             (3.11) 

( )321
3 233

1
µµµ ++

=x                                            (3.12) 

 

Table 1: Iterations with the updated iµ . 

k  ε  1µ  2µ  3µ  1x  2x  3x  1g  2g  3g  

0 -- 31  31  31  0.25 0.20 0.16667 0.20 -0.38333 0.18333 

1 0.09 0.41494 0.17691 0.40814 0.23558 0.18352 0.14894 0.10151 -0.43196 0.08403 

2 0.0008 0.41624 0.17540 0.40835 0.23536 0.18348 0.14875 0.10047 -0.43240 0.08332 

3 0.00004 0.41621 0.17533 0.40846 0.23537 0.18346 0.14875 0.10045 -0.43242 0.08325 

 

 

Now, we choose the initial set of the surrogate 

multipliers 1µ , 2µ and 3µ which would be used in the equations (3.10), (3.11) and 

(3.12) to obtain the values of 1x , 2x  and 3x . Jaynes maximum entropy 

formulation shows that in the absence of any extra information about the problem, 

the least-biased assumption one can choose is that all the constraints should be 

equally weighted. Thus we have taken 
3
1

321 === µµµ  for the initial iteration. 

The surrogate multipliers are then updated by using the relationship (2.17) for the 

repetition of the process till we reach the desired solution of the problem as shown 

in the Table 1. 
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 Table 1 gives the iterative result and is as exact as the four decimal places 

accuracy and therefore the minimum value of ( )xf is found to be 6858.155 . 

 

 

4  Conclusion 

The present work explores the use of information theory in the mathematical 

programming problem. An algorithm has been developed for solving constrained 

non-linear programming problem where the original problem is formulated into 

equivalent surrogate problem and surrogate multipliers are updated iteratively 

with the use of maximum entropy formulation. The illustrated example confirms 

that entropy based updates for the surrogate multipliers lead to a fast and accurate 

solution of the Problem-I. The example which have discussed above is relatively 

simple and convex problem in which the convergence rate is dependent upon the 

sequence of the decreasing values specified forε . Other sequences than that used 

above have been tested and confirmed for convergence. Thus, the entropy 

maximization appears to be quantitatively sound. With similar arguments, one can 

provide the applications of entropy measures either by using the standard 

measures of entropy or by developing new measures of entropy for the solutions 

of mathematical programming problems. Moreover, in the literature there exist a 

variety of methods for obtaining the solutions of linear and non-linear 

programming problems; we have provided the solution of non-linear programming 

problem only whereas the solutions for the linear programming problems can 

similarly be provided. 
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Appendix A.  

Calculation for 1+k
jµ . 

Using equation (2.16) in equations (2.8) and (2.10), we get 
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Solving equations (A1) and (A2), we get 
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Substituting the vales of υ  and η  in equation (2.16), we get 
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Therefore, we get 
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