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Abstract 

Rank correlations currently in use have a resistance-to-change which appears to be 

of limited value for the purposes of ranking comparisons. It is plain that a given 

value of a rank correlation does not define a specific pair of permutations, except 

perhaps for the extreme values. Nevertheless, a coefficient that condenses 

comparison of rankings into too few values renders difficulty the assessment of the 

strength of their association. Recently, a new statistic of rank correlation, called r4, 

has been proposed to exploit the intuitive appeal of quotients. Coefficient r4 

achieves greater sensitivity to changes in rankings than any other known rank 

correlation without causing additional difficulty in interpretation or affecting the 

implementation in hypothesis testing. In the present paper we show that the exact 

distribution of r4 under the hypothesis of independent rankings is well 

approximated by the t-Student and that, its asymptotic distribution, is a standard 

Gaussian distribution. Computational results for empirical and simulated data sets 

reveal that r4 is very efficient in evaluating strength and pattern of an agreement 

between pairs of rankings. 
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1 Introduction  

Dependence between rankings is a topic that persistently occurs throughout 

statistical practice and it is the subject of the present paper. Our point of departure 

is the fact that, though the Pearson’s product-moment correlation coefficient (here 

denoted as r0) is widely used to measure the linear relationship between two 

variables, it can perform poorly when the relationship is thought to be non-linear 

and/or the data are affected by errors of measurement and outliers. For example, it 

needs only one abnormal value to shift r0 to any value in the interval [−1,1]. For 

this and many other reasons, we may turn to more resistant, albeit less efficient 

non-parametric measure of association. Consider n independent pairs of scores 

(xi,yi),i = 1,2,···,n. The pairs are sorted into ascending in terms of their first 

coordinate and then transformed into the ranks π ={π1,π2,··· ,πn }. Likewise, the yi, i 

= 1,2,···,n are placed in correspondence with the ranks η = {η1,η2,··· ,ηn }. Both π 

and η are elements of Sn, the set of all n! permutations of the integers {1,2,··· ,n}. 

With no essential loss of generality we assume that πi is the rank of xi after η has 

been arranged in its natural order, that is ηi = i, i = 1,2,··· ,n. Note, also, that we 

assume there are no ties throughout. A rank correlation r(η,π) is a statistic which 

summarizes the degree of agreement between η and π. Three of the more popular 

rank correlation coefficients are: 

𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛   𝑟1 (𝜋, η) =  
12

𝑛3 − 𝑛   
  �𝑖𝜋𝑖 − 3 �

𝑛 + 1
𝑛 − 1

�
𝑛

𝑖=1

 

𝐾𝑒𝑛𝑑𝑎𝑙𝑙   𝑟2(𝜋, η) =
2 ∑ ∑ 𝑠𝑔𝑛(𝜋𝑗 −  𝜋𝑖)𝑛

𝑗=𝑖+1
𝑛−1
𝑖=1

𝑛(𝑛 − 1)
                                                  (1) 
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𝐺𝑖𝑛𝑖   𝑟3(𝜋, η) =
4�∑ [𝜋𝑖 − (𝑛 + 1 − 𝑖)] −  ∑ (𝜋𝑖 − 𝑖)𝑖≤𝜋𝑖𝑛+1−𝑖≤𝜋𝑖 �

𝑛2 − 𝑘𝑛
  

with kn = n mod2 and sgn(.) equals to −1,0 or 1 according to whether the argument 

is negative, zero or positive. We note that r1 may take, at most, (n3 –n)/6 + 1 

distinct values. The sum ∑ 𝑖𝜋𝑖𝑛
𝑖=1   in the first term of r1 covers all the integers 

between n(n+1)(n+2)/6 and n(n+1)(2n+1)/6. When n > 3, r1 can be zero if, and only 

if, n is not of the form n = 4 ∗ m + 2 where m is a positive integer (see Marshall, 

1994). The possible values of r2 are (n2 –n)/2 + 1. The coefficient is zero or even if, 

and only if, n = 4 ∗ m or n = m∗4+1 where m is any positive integer; r2 only takes 

on odd values if n is not in that form. When n > 3, zero is always a value of Gini’s 

coefficient r3, which can assume another 2(n2/4+kn) distinct values. In each case, 

the expression within square brackets in r3 only takes on even values. According to 

Kendall [1938], the disparity in the potential number of values between rank 

correlations is not a great disadvantage to their sensitivity. Nonetheless, Kendall & 

Gibbons [1990][p. 37-38] used this argument to dismiss Spearman’s footrule as a 

feasible measure of association. 

The choice of a rank correlation is fundamentally based on two antithetical 

requirements: resistance and sensitivity. Resistance refers to the ability of a 

coefficient to remain constant when data are changed slightly. However, since 

stability is achieved at the cost of a loss in precision, it may become a problem if 

the same value is applied to describe very different patterns. Sensitive coefficients 

offer a richer source of information regarding the association structure, but 

sensitivity is a drawback when substantially similar rankings are mapped onto 

distant coefficient values. A reasonable compromise may be achieved by 

considering that, since ranks rely on the relative ordering of elements, they are, by 

construction, very tolerant of noise and disturbances that do not affect the actual 

order. Thus, particular consideration should be given to the discriminatory power of 

a coefficient rather than to its resistance. From this point of view, many robust rank 

correlations such those proposed by Dallal &Hartigan [1980], Blomqvist [1950] or 
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Gideon & Hollister [1987] are largely insufficient for ranking comparisons when 

the range of possible relationships between the underlying variables is wide. 

Apparently, coefficients in (1) have the right characteristics to act as valid 

substitutes for Pearson’s correlation whenever it is necessary. Nonetheless, the 

spectrum of their values is still relatively small and concentrated on a reduced set 

of points. In this regard, Tarsitano & Lombardo [2013], proposed a new rank 

correlation coefficient based on the intuitive appeal of quotients 

𝑟4(𝜋, η) =
(𝐛η,𝜋∗)𝒕 𝐛η∗,𝜋 − (𝐛𝜂∗,𝜋∗)𝒕 𝐛𝜂,𝜋

𝑀𝑛
,

𝑀𝑛 = [𝑘𝑛 + 2 � (𝑛 + 1 − 𝑖)/𝑖
⌊𝑛/2⌋

𝑖=1

]2 − 𝑛2                                  (2)  

where ⌊𝑥⌋ denotes the largest integer not greater than x. The symbols π∗=n+1−π 

and η∗=n+1−η are the reverse permutations of π and η, respectively. The n×1 vector 

𝐛𝜂,𝜋 is formed with the components of the matrix A occupying the positions 

identified by the elements in η as first index and those in π as second index. The 

generic element of A is aij =max(i,j)/min(i,j), i,j = 1,2,··· ,n. The coefficient r4 can 

assume a number of distinct values of the 0.25n! order more or less uniformly 

spaced from each other. 

Coefficients rh (η,π), h = 1,··· ,4 share several properties, notably 

monotonicity, symmetry, right-invariance and antisymmetry under reversal (see 

Gideon &Hollister [1987] and Brown & Eagleson [1984]). All the coefficients vary 

within the range: [−1,1]. The extremes are achieved if and only if there is perfect 

association for all pairs: rh (η,η)=rh (π,π)=1, rh (η,η∗) = rh (π,π∗)= −1. The closer rh 

(for brevity, the π,η arguments are dropped unless ambiguity occurs) is to one, 

ignoring the sign, the stronger the relationship between rankings is. At the other 

extreme, rh = 0 or near-zero implies that the two rankings are not related according 

to the association concept embodied in rh. 

In Figure 1 the exact null distributions of r1,··· ,r4 are shown as frequency 

polygons for n = 10. The profiles show some resemblances to and some differences 
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from one another. The frequency polygons of r2 and r3 exhibit high levels of 

irregularity. We attribute this to the lattice of values available for these coefficients, 

which is much sparser than that of r1 or r4. Indeed, the space between possible 

values of r2 and r3 decreases monotonically, but slowly as n increases. A good sign, 

however, is that the serration is more noticeable in the middle of the range [−1,1] 

than near the extremes where it has a greater importance for hypothesis testing. The 

varying size of serrations in the frequency polygon of r1 is less intense than those in 

r2 and r3, but much sharper than that of r4. The profile of r4 shows the slightest 

degree of fluctuation and the tails of its null distribution smoothen out before and 

more than any of the other coefficients. 

 

 

Figure 1: Frequency polygons (based on binned counts) for n=10. 
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The structure of the paper is as follows. In the next section we review the 

exact distribution of the r4 coefficient under the hypothesis of independence with a 

particular focus on the t-Student approximation for finite sample. Section 3 outlines 

the large sample distribution theory for r4. In section 4 we analyze some real data 

sets to compare the behavior of independence tests based on r4 to the same tests 

based on other rank correlation coefficients. Further insights are gained through 

Monte Carlo experiments. The final section summarizes the paper contributions 

and presents some conclusions. 

 

 

2  Sampling distribution of r4 under independence 

In this section, we are concerned with the distribution of r4 when all rankings 

are equally probable with a probability of 1/n!. Firstly, the denominator of r4 is 

unaffected by any permutation of the ranks so that it is sufficient to consider the 

random variable Mnr4 =bt
η,π∗ bη∗,π − bt 

η∗,π∗ bη,π , which has support in [−Mn,Mn]. 

The properties of r4 ensure that, for each pair of permutations such that bt
η,π∗ bη∗,π = 

x, there must be another pair of permutations for which bt 
η∗,π∗ bη,π = x also and, 

consequently, bt
η,π∗ bη∗,π and bt 

η∗,π∗ bη,π share the same codomain. If follows that E 

(bt
η,π∗ bη∗,π) = E (bt 

η∗,π∗ bη,π) which, in turn, implies that E (r4) = 0. Hence, under 

the null hypothesis of independent rankings, the distributions of r4 are symmetrical 

around zero and have support in [−1,1]. All the odd moments are zero because of 

the symmetry. The calculation of the variance is more difficult than that of the 

mean. We have  

𝑀𝑛
2𝑉(𝑟4) = 𝑉 (𝐛η,𝜋∗

𝑡 𝐛η∗,𝜋 −  𝐛η∗,𝜋∗
𝑡 𝐛η,π)  

= 𝑉 �𝐛η,𝜋∗
𝑡 𝐛η∗,𝜋� + 𝑉 (𝐛η∗,𝜋∗

𝑡 𝐛η,π) − 2𝐶𝑜𝑣(𝐛η,𝜋∗
𝑡 𝐛η∗,𝜋 −  𝐛η∗,𝜋∗

𝑡 𝐛η,π)        (3)        

    By virtue of the same reasoning as used above for the derivation of the 

expected value, we obtain 𝑉 �𝐛η,𝜋∗
𝑡 𝐛η∗,𝜋� = 𝑉 (𝐛η∗,𝜋∗

𝑡 𝐛η,π). Therefore, expression 

(3) specifies to  
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𝑉(𝑟4) =  
2[𝑉 �𝐛η,𝜋∗

𝑡 𝐛η∗,𝜋�−𝐶𝑜𝑣 �𝐛η,𝜋∗
𝑡 𝐛η∗,𝜋− 𝐛η∗,𝜋∗

𝑡 𝐛η,π�]

𝑀𝑛
2                            (4) 

We have empirically explored (4) by evaluating it over all possible pairs of 

permutations, with n up to 15 and found that, under independence, the Pearson 

correlation coefficient 𝑐𝑜𝑟 (𝐛η,𝜋∗
𝑡 𝐛η∗,𝜋 −  𝐛η∗,𝜋∗

𝑡 𝐛η,π) converges towards −1 as n 

increases. Based on this premise, (4) can be reasonably approximated by  

𝜎𝑛2(𝑟4) ≈
4�𝑉 �𝐛η,𝜋∗

𝑡 𝐛η∗,𝜋��
𝑀𝑛
2                                                                                             (5) 

It remains necessary to evaluate the variance of the dot-product 𝑉 �𝐛η,𝜋∗
𝑡 𝐛η∗,𝜋�. 

One limitation of our paper is that we were not able to write (5) in a simplified 

manner, even by exploiting the relationships developed by Bohrnstedt & 

Goldberger [1969] and Brown & Eagleson [1984] on the exact variance and 

covariance of a product of random variables. To circumvent this problem, we apply 

a simply linear regression model  

𝜎𝑛2(𝑟4) =  
𝛽

𝑛 − 1
+  𝜀                                                                                                        (6) 

The regression function has no intercept to allow the variance to reach zero as n 

goes to infinity. In passing we note that (6) coincides with the asymptotic variance 

of Spearman’s coefficient r1 when β = 1. The true values of 𝜎𝑛2(𝑟4) are determined 

by complete enumeration of all rankings. The unknown parameter β is estimated by 

the linear least squares method applied to the 11 points [𝜎𝑛2(𝑟4),𝑛], n = 5,··· ,15. 

The resulting estimate is 𝜎𝑛2(𝑟4) ≈ 1.00762/(n−1) with an adjusted R2 of 0.9994. 

This approximation is quite good even for small values of n as it is shown in the 

first two rows of Table 1. 

In the last three rows Table 1 we report the variances of the Spearman, 

Kendall and Gini coefficients, which show that the distribution of r4 is relatively 

more disperse than that of the other rank correlations. 

The coefficient of kurtosis of r4 can also be obtained through the same 

regression strategy. The corresponding least squares estimate is 
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𝛾�𝑛(𝑟4) ≈ 2.929894 −  
5.889006

𝑛
+  

8.559322
𝑛2

−  
11.617287

𝑛3
                              (7) 

with an adjusted R2 virtually equal to one and a residual standard error of 0.000116. 

 
 

Table 1: Exact and approximate values of 𝜎𝑛2(𝑟4) 
n 7 8 9 10 11 12 13 14 15 

𝜎𝑛2(𝑟4) 0.1677  0.1423 0.1275 0.1131 0.1037 0.0945 0.0879 0.0815 0.0766 

𝜎�𝑛2(𝑟4) 0.1679  0.1439 0.1260 0.1120 0.1008 0.0916 0.0840 0.0775 0.0720 

𝜎𝑛2(𝑟4) 0.1667  0.1429 0.1250 0.1111 0.1000 0.0909 0.0833 0.0769 0.0714 

𝜎𝑛2(𝑟4) 0.1005  0.0833 0.0710 0.0617 0.0545 0.0488 0.0442 0.0403 0.0370 

𝜎𝑛2(𝑟4) 0.1204  0.0982 0.0875 0.0756 0.0689 0.0614 0.0569 0.0518 0.0485 

 

 

Thus, 𝛾𝑛(𝑟4) converges to a limit value near three (the value of kurtosis for a 

Gaussian distribution) as n goes to infinity. We show the results of the fitting 

procedure in Table 2. The interpolation of 𝛾𝑛(𝑟4) is excellent and would be quite 

satisfactory in practice. This result is particularly important in the present work, 

since there does not appear to be any simple way in which either moments or 

cumulants of r4 can be determined. The last three rows in Table 2 reports the 

kurtosis values of r1, r2 and r3, which confirm that r4 is slightly more platykurtic 

than the other coefficients.  

 

Table 2: Exact and approximate values of 𝛾𝑛(𝑟4) 

n 7 8 9 10 11 12 13 14 15 

𝛾𝑛(𝑟4) 2.2292  2.3049 2.3653 2.4150 2.4565 2.4918 2.5222 2.5487 2.5719 

𝛾�𝑛(𝑟4) 2.2294   2.3048 2.3653 2.4150 2.4565 2.4919 2.5223 2.5487 2.5719 

𝛾𝑛(𝑟4) 2.3357  2.4190 2.4840 2.5360 2.5785 2.6140 2.6440 2.6696 2.6919 

𝛾𝑛(𝑟4) 2.6833  2.7262 2.7586 2.7839 2.8043 2.8211 2.8351 2.8471 2.8574 

𝛾𝑛(𝑟4) 2.5238 2.5310 2.6213 2.6078 2.6869 2.6615 2.7335 2.7007 2.7682 
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3  t-Student approximation 

In consideration of the affinities between r4 and r1, at least for the first three 

moments, we suggest a procedure similar to that used by Zar [1972] and Landenna 

et al.[1989]. Let r be a random variable with a Pearson type II density.  

𝑓(𝑟, λ) =  (1−𝑟2)(λ−1)

𝐵(0.5,λ)
  𝑤𝑖𝑡ℎ |𝑟| ≤ 1;  λ > 0.                              (8) 

where B is the well-known beta function and λ is a parameter positively related to 

the number of ranks n. The variance and kurtosis of r are 

𝜎2(λ) = 1 2λ + 1⁄ ,       γ(λ) = −6/(2λ + 3)                             (9) 

The variance decreases monotonically as λ, and hence n, increases. The 

kurtosis is negative denoting that (8) is less peaked and has thinner tails than the 

Gaussian distribution. 

For λ → ∞, the Pearson type II density is quite close to the standardized Gaussian 

density. 

See Devroye [1986][p. 433]. On the other hand, for λ →0+, the general lower 

bound on symmetrical densities: γ (λ) > −2 is verified. See Devroye [1986] [p. 688]. 

As a summary, curve (8) is symmetrical, unimodal with mode at zero, supported 

within interval [−1,1] and has a tendency towards the Gaussian distribution. If we 

set 𝜎2(𝑟) = 1.00762/(𝑛 − 1) and solve the first equation in (9) for λ then r has 

approximately the same variance as r4 and a kurtosis roughly equal to 

γ(r)=−6.04572/(n+2.01524). The difference between the kurtosis of r4 and that of r 

becomes negligible as n → ∞. 

One key factor behind the wide diffusion of (8) is its strict relationship with 

the Student’s t density function, which allows for the use of easy tables and hence 

ensures computational convenience and simple checking of results. In particular, 

the following statistic  

𝑟4′ = 𝑟4�2𝑚/(1 − 𝑟42)~𝑡⌊2𝑚⌋ 
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with m=(n−1.00762)/2.01524 can be used to test the significance of r4 (see, for 

example, Willink [2009]). The quality of the approximations is illustrated in Table 

3. For the given α, we report the exact conservative critical value, the approximated 

critical value and their absolute difference. 

 

Table 3: Comparison of t-Student approximation to the exact distribution of r4. 

n    α    Exact  Approx.  Abs.Dif.    α  Exact  Approx. Abs.Dif. 

12 0.0001 0.8815 0.8947 0.0133 0.0100 0.6647 0.6851 0.0204 

 

0.0005 0.8295 0.8470 0.0175 0.0250 0.5833 0.6021 0.0188 

 

0.0010 0.8009 0.8199 0.0190 0.0500 0.5053 0.5214 0.0161 

 

0.0025 0.7556 0.7759 0.0203 0.1000 0.4065 0.4187 0.0122 

 

0.0050 0.7142 0.7348 0.0206 0.2500 0.2229 0.2281 0.0052 

13 0.0001 0.8649 0.8742 0.0093 0.0100 0.6448 0.6581 0.0132 

 

0.0005 0.8111 0.8233 0.0122 0.0250 0.5643 0.5760 0.0117 

 

0.0010 0.7819 0.7950 0.0130 0.0500 0.4877 0.4973 0.0096 

 

0.0025 0.7360 0.7496 0.0136 0.1000 0.3913 0.3981 0.0067 

 

0.0050 0.6943 0.7079 0.0136 0.2500 0.2138 0.2161 0.0023 

14 0.0001 0.8451 0.8544 0.0092 0.0100 0.6239 0.6339 0.0100 

 

0.0005 0.7902 0.8010 0.0108 0.0250 0.5446 0.5529 0.0083 

 

0.0010 0.7607 0.7717 0.0110 0.0500 0.4697 0.4762 0.0065 

 

0.0025 0.7145 0.7255 0.0110 0.1000 0.3761 0.3802 0.0041 

 

0.0050 0.6729 0.6835 0.0107 0.2500 0.2048 0.2058 0.0009 

15 0.0001 0.8302 0.8353 0.0051 0.0100 0.6076 0.6120 0.0045 

 

0.0005 0.7743 0.7800 0.0057 0.0250 0.5293 0.5324 0.0032 

 

0.0010 0.7444 0.7501 0.0058 0.0500 0.4557 0.4575 0.0018 

 

0.0025 0.6979 0.7034 0.0055 0.1000 0.3642 0.3646 0.0003 

  0.0050 0.6563 0.6614 0.0051 0.2500 0.1979 0.1968 0.0010 
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From Table 3, it can be seen that the accuracy of approximation tends to be 

lower for smaller α. When n increases, the general quality of approximation 

improves and becomes higher where it is most needed, that is, in the tails of the 

distribution. 

 

 

4  Large-sample distribution of r4 

In case n is too large for complete enumeration to be feasible, the distribution 

of r4 can be approximate by using a continuous curve such as the t-Student density. 

If, however, there is no special reason (other than a good fit) to use a particular 

probability density, we can resort to the Gaussian density and rely on some form of 

the central limit theorem. 

Let us define ζ(ηi,ηj,πi,πj)=g(ηi, πi
*) g(n+1− ηj, πj) −g(n+1− ηj, πi

*) g(ηj, πj) 

where the quantity gi (π,η)=exp{|log(πi)−log(ηj)|}, i = 1,2,··· ,n expresses the 

disagreement between two rankings due to the distance from πi to ηi. By 

construction, E (Gn) = 0. It is important to notice that Gn clearly falls within the 

class of double-indexed permutation statistics studied by Zhao et al.[1997] (see 

also Barbour & Chen, 2005). The crucial result, for our purposes, is Theorem 2 in 

Zhao et al.[1997] in which the authors, by using the Stein’s method, prove that 

there is a constant K > 0 such that for n ≥ 2 

sup𝑥 |𝑃(𝐺𝑛 ≤ 𝜎 (𝐺𝑛)𝑥) −  Φ(𝑥)|  ≤
𝐾

𝜎(𝐺𝑛)3  �𝑛−1  ∑ �𝑎𝑖,𝑘∗ �
3

+ ∑ �𝜁𝑖,𝑗,𝑘,𝑙
∗ �

3
𝑖,𝑗,𝑘,𝑙𝑖,𝑘 �                                                            (10)  

where Φ(x) is the standard Gaussian distribution and 

𝑎𝑖,𝑘 =  ζ𝑖,𝑖,𝑘,𝑘
∗ + 𝑛−1 ∑ 𝜁𝑖,𝑗,𝑘,𝑙 + 𝑛−1 ∑ 𝜁𝑗,𝑖,𝑙,𝑘𝑗,𝑙𝑗,𝑙    

𝑎𝑖,𝑘∗ =  𝑎𝑖,𝑘 −  ∑ 𝑎𝑖,𝑘𝑛
𝑘=1 −  ∑ 𝑎𝑖,𝑘 +  ∑ ∑ 𝑎𝑖,𝑘𝑛

𝑖=1
𝑛
𝑘=1

𝑛
𝑖=1                   (11)           

with 
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ζ𝑖,𝑗,𝑘,𝑙
∗ =  ζ𝑖,𝑗,𝑘,𝑙 −  𝑛−1 ��𝜁𝑖,𝑗,𝑘,𝑙 +  �𝜁𝑖,𝑗,𝑘,𝑙 + 

𝑘𝑙

�𝜁𝑖,𝑗,𝑘,𝑙 +  �𝜁𝑖,𝑗,𝑘,𝑙 
𝑖𝑗

�

+ 𝑛−2 ��𝜁𝑖,𝑗,𝑘,𝑙 
𝑘,𝑙

+ �𝜁𝑖,𝑗,𝑘,𝑙 + �𝜁𝑖,𝑗,𝑘,𝑙 +  �𝜁𝑖,𝑗,𝑘,𝑙 
𝑖,𝑙

+  �𝜁𝑖,𝑗,𝑘,𝑙 + �𝜁𝑖,𝑗,𝑘,𝑙 
𝑖,𝑗𝑖,𝑘

 
𝑗,𝑘𝑗,𝑙

�

− 𝑛−3 ��𝜁𝑖,𝑗,𝑘,𝑙 + �𝜁𝑖,𝑗,𝑘,𝑙 + �𝜁𝑖,𝑗,𝑘,𝑙 + �𝜁𝑖,𝑗,𝑘,𝑙 
𝑖,𝑘,𝑗𝑖,𝑗,𝑙

 
𝑖,𝑘,𝑙𝑘,𝑗,𝑙

� .          (12) 

The condition to be satisfied for the validity of (10) is  

𝑀𝑛𝜎2(𝐺𝑛) =  � � (𝑎𝑖,𝑘∗ )2
𝑛

𝑖=1

𝑛

𝑘=1
> 0.  

This is simply an estimate of the variance of 𝐺𝑛, which, as we have argued, can be 

asymptotically approximated by 𝜎2(𝐺𝑛) ≈𝑀𝑛(𝑛 − 1)−1. By applying (10), we can 

conclude that the null distribution of 𝑟4∗ =  𝑟4/𝜎𝑛(𝑟4) converges to Φ(x) with the 

rate O(1/√n). 

The point that we want to emphasize is that the large-sample approximation to 

the exact null distribution of r4, suitably standardized, may be based on the 

Gaussian distribution. For this standardization, it is necessary to know the expected 

value and variance of r4 when the hypothesis of independence is true. We showed 

in the previous section that, under such hypothesis, E(r4) = 0 and 𝜎2(𝑟4)  ≈ 

1.00762(n−1)−1. It follows that 𝑟4∗= 1.003803r4√𝑛 − 1 has an asymptotic Gaussian 

distribution for n tending to infinity. 

To illustrate that the limiting distribution can be applied to the null, we 

investigate r4 together with Spearman’s r1. Coefficient r1 is taken as the benchmark 

reference because it is very widely known, but above all, because an important aim 

of our article is to understand whether there is any evidence that a large number of 

potential values give an advantage to the discriminatory power of a rank correlation. 
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In this sense, the variety of values of r1 is the richest among the statistics 

commonly in use at the present time. 

 

Table 4: Proportion of frequencies of the distribution of r4 and r1 falling in certain  

       ranges 

n Coefficient ± 𝜎 ± 1.25𝜎 ± 2𝜎 ± 2.5𝜎 ± 3𝜎 

 

Gaussian 0.6827 0.8944 0.9545 0.9876 0.9973 

11 r4 0.6419 0.7589 0.9598 0.9955 1.0000 

 

r1 0.6585 0.7750 0.9598 0.9945 1.0000 

12 r4 0.6440 0.7599 0.9583 0.9946 0.9999 

 

r1 0.6690 0.7724 0.9601 0.9938 0.9999 

13 r4 0.6423 0.7574 0.9555 0.9933 0.9998 

 

r1 0.6658 0.7760 0.9598 0.9933 0.9997 

14 r4 0.6431 0.7575 0.9542 0.9925 0.9997 

 

r1 0.6668 0.7790 0.9581 0.9928 0.9996 

15 r4 0.6415 0.7553 0.9519 0.9914 0.9995 

  r1 0.6665 0.7788 0.9578 0.9924 0.9995 

 

 

From Figure 2 we see that, while the agreement between the frequency 

polygon of r4 and the Gaussian curve is not adequate in the middle, it is satisfactory 

in the wings i.e. precisely where it is more useful for testing independence. 

However, since the frequency polygon of r4 is shorter in the tails than the 

corresponding Gaussian curve, using this as an approximation can lead to a test that 

is more liberal than necessary; in other words, the null hypothesis of independence 

will tend to be rejected more frequently than it should be. 

Further insights can be gained by Table 4 in which the proportions of total  

falling outside the ranges [−a,a] for a = 1,1.25,2,2.5,3 predicted by the Gaussian 

model are compared with those observed in the exact null distribution of r4 and r1. 
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 Figure 2: Comparison of the Gaussian approximation (thick line) with the exact  

         null distribution of r4 (dashed lines) and r1 (dotted line) for n = 12. 

 

The Gaussian density yields liberal results especially for high values (in 

absolute terms) of the transformed rank correlations and it is conservative within 

intervals roughly from ± − 0.75 to ± − 2.25. The frequency polygons of 𝑟4∗and 𝑟1∗ 

deviate quite considerably from Gaussianity in the [−1.25,1.25] interval implying 

that significance levels at around 20 percent are largely overestimated. The 

approximation is acceptably accurate for significance levels that are barely above 

5%, but fails, although not spectacularly so, for smaller levels. 

 

 

5 Experimental results 

In the preceding sections, we have discussed the exact null distribution of r4 
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and the new rank correlation proposed by Tarsitano & Lombardo [2013], as well as 

the Gaussian and t-Student approximations. The aim of the present section is to 

provide a guide to the correct use of r4 in empirical research and to highlight some 

potential misuse through applying it to real and simulated data sets. The algorithms 

described in this section are implemented in a package pvrank in the R system (R 

Development Core Team [2013]). 

 

 

5.1. Real data examples 

We have selected four data sets that are briefly described below. For each of 

these, we provide the scatter plot with a vertical and horizontal line drawn at the 

mean values of the variables. In addition, we create a summary table of the test: H0 : 

rh = 0 against the two-sided alternative H0 : rh ≠ 0, h = 0,1,··· ,4. It should be 

recalled that, as was correctly observed by Iman & Conover [1978], the 

discreteness of rank correlations often leads us into situations where no critical 

region has the size α exactly. Instead, there will be a choice of using the next 

smaller exact size called the conservative p-value (denoted by Cα) or the next larger 

exact size called the liberal p-value (Lα). Clearly, this consideration does not apply 

when the null distribution is approximated by a continuous distribution. 

Example 1. Hollander & Wolfe [1999, p.39]. These data are Hamilton depression 

scale factor measurements in n = 9 patients with mixed anxiety and depression, 

taken at the first and second visit after initiation of a therapy. See graph a) in Figure 

3. Apparently, there are no outliers, so that rank correlations and significance levels 

should not fall too far from the values obtained for r0. The results in Table 5 

confirm that this is the case for r4 and only partially for r1. What is more serious 

still is that the p-values associated with r2 are doubtful at α = 0.05 (those of r3 are 

doubtful at α = 0.10). 
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Table 5: Measure of correlation/association and p-values 

Index Symbol obs. Cα Lα obs. Cα Lα 

  

Hamilton data CWD data 

Pearson r0 0.84790 0.00388 0.00388 -0.52560 0.06507 0.06507 

Spearman r1 0.65000 0.06656 0.07604 -0.64840 0.01816 0.01941 

Kendall r2 0.50000 0.04462 0.07518 -0.48720 0.01495 0.02158 

Gini r3 0.52500 0.07447 0.11079 -0.52380 0.02062 0.02801 

 

r4 0.69180 0.03923 0.03925 -0.57820 0.04335 0.04335 

  

Births  and deaths by the hour Outliers removed 

Pearson r0 0.68020 0.00135 0.00135 0.15560 0.55100 0.55100 

Spearman r1 0.38770 0.10190 0.10356 0.14460 0.57886 0.58544 

Kendall r2 0.28650 0.08007 0.09330 0.10290 0.54233 0.59764 

Gini r3 0.27780 0.14596 0.16301 0.06940 0.71715 0.76700 

 

r4 0.53190 0.02026 0.02026 0.22690 0.38020 0.38020 

  

Urban percentage Outliers removed 

Pearson r0 -0.62120 0.01774 0.01774 -0.78820 0.00137 0.00137 

Spearman r1 -0.53850 0.04786 0.04996 -0.74180 0.00461 0.00508 

Kendall r2 -0.38460 0.04718 0.06166 -0.53850 0.00668 0.01012 

Gini r3 -0.48980 0.02438 0.03174 -0.61900 0.00475 0.00716 

  r4 -0.52310 0.06191 0.06191 -0.72070 0.00654 0.00654 

 

 

Example 2. In this case, we use the data set CWD (Hothorn et al., 2013), where an 

infrared gas analyzer and a clear chamber sealed to the wood surface were used to 

measure the flux of carbon out of the wood. Measurements were repeated n = 13 

times. Although not necessarily linear, there is a general decrease in Y as X 

increases. See graph b). The findings reported in Table 5 send contradictory signals 

as to the strength of the association. To be precise, r1, r2 and r3 suggest that there is 

a more significant relationship between the ranks of X and Y than what is suggested 

by r4. On the other hand, coefficient r4 gives the most similar results to those of 

Pearson’s r4. 
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Example 3. Here, we consider the data set in Berk [1990] including data on the 

average number of births and deaths by the time of the day for a particular hospital 

in Brussels. We have discarded pairs in which at least one element is repeated and 

are left with n = 19 valid data points. As is evident from the graphs c) and d), 

seventeen observations are clustered and show little association. Two observations 

(for noon and midnight) are dramatically smaller in both the y-direction and 

x-direction. With these two included, there is obviously a positive correlation in the 

data. However, a direct association between the two variables is questionable, for if 

the outliers are removed then all correlations decrease and the associated p-values 

increase up to the point where the hypothesis of independence cannot be rejected at 

any reasonable level. Note that, r4 achieves the nearest proximity to r0 in both 

testing situations, while conserving a good degree of robustness against the effect 

of outliers. Furthermore, when the outliers are removed, r4 has the lowest (albeit 

non significant) p-value of all the statistics based on ranks, which is an indicator of 

its sensitivity to changes in rankings. 

Example 4. This example is taken from Birker & Dodge [1993]. The data set 

report birth rate and urban percentage for n = 14 countries in North and Central 

America. The data point 13 (corresponding to Trinidad-Tobago) stands far apart 

from the rest of the points. The possible effect on the measures of correlation and 

association is a low value of the statistics even though there is a clear association 

between variables. Indeed, once the outlier is excluded from the data set, the 

p-values of all the coefficients decrease by a factor of ten. Actually, if the outlier is 

included, only coefficient r4 is not significantly different from zero (at the 5% level 

or lower), whereas the p-values of the other statistics seem to be hardly affected by 

the outlier. Rather than a defect, we consider this low resistance to the impact of 

outliers as a virtue that adds flexibility to the use of r4. 

The findings in Table 5 suggest that r4 (based on ranks) is an admissible substitute 

for r0, (based on scores). A useful feature of r4 is that, because of its high resolution 

over the set of all permutations, conservative and liberal p-values almost coincide 
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and, therefore, the risk of doubtful testing is reduced with respect to the other three 

rank correlations. 

Furthermore, the richness of the range of values renders its intrinsic discrete nature 

so marginal that the effect of a continuity correction, whether beneficial or 

detrimental, is negligible. 

 

 

 

Figure 3: Type of association discussed in the examples. 
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5.2. Simulation 

In order to assess the power performance of the test corresponding to r4 we 

carried out the following experiments. First, we generate independent samples 

(xi,yi),i = 1,··· ,n of size n = 10 and n = 15 from bivariate Gaussian populations with 

means of zero, variances of one and zero correlation. The generation is repeated 

until N = 10,000 samples are formed. 

To avoid occasionally significant correlation, we have excluded samples with 

an r0 outside [−0.20,0.20]. Second, k outliers are introduced. Let (i1,··· ,ih) be the 

set of integers from 1,··· ,n such that xi1 yi1> 0,··· , xih yih> 0. If h < k, then the 

sample is discarded. The pairs (xij, yij), j = 1,··· ,h are sorted according to the 

descending order of their Euclidean distance from the origin. The first k pairs of 

observations are contaminated by displacing their values by m standard deviations 

in both the x- and y-direction. 

This induces spurious positive correlation, which tends to increase with the 

numbers of outliers and the amount of displacement. In Table 6 we compare the 

numbers of samples declared significant at the alpha level (one-tail) of 1%, 5% and 

10% by using the t-student distribution with (n−2) degrees of freedom in the case 

of r0 and the exact null distributions for rh, h = 1,··· ,4. 

The number of rejections of H0 : r0 = 0 against H1 : r0 > 0 at α level is greater 

with n = 10 than with n = 15. This result is to be expected because the exceptional 

nature of some observations is more perceivable when the same numbers of outliers 

occur in a wider and otherwise homogeneous sample. In addition, the numbers of 

samples producing a false positive correlation increase with the magnitude of the 

shift. This result too is not surprising given that a large displacement makes the 

artificial outliers manifestly inconsistent with the regression model (a line parallel 

to the x axis) that is implicitly called upon. Furthermore, in line with the 

expectations, the numbers of wrong claims become higher with a greater numbers 

of abnormal data points. 
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Table 6: Number of significant samples (over 10,000) for r0,… , r4. 

      Pearson r0 Spearman r1 Kendall r2 Gini r3 r4 

   

 α level α level α level α level α level 

n k m 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 

10 1 1 0 11 263 0 1 7 0 4 9 0 4 10 0 3 22 

  

2 148 2096 3843 0 1 13 0 7 13 0 4 13 0 6 50 

  

3 1921 5074 6353 0 3 21 0 7 16 0 8 20 0 8 69 

  

4 4243 6604 7410 0 5 29 0 10 28 0 11 24 0 12 91 

 

2 1 0 56 691 0 2 28 0 10 37 0 6 22 0 27 139 

  

2 346 2749 4626 0 8 93 1 27 74 0 14 48 1 71 401 

  

3 2036 5014 6479 0 16 151 1 42 113 0 27 71 1 118 635 

  

4 3491 6052 7242 0 27 199 2 55 138 0 39 89 6 159 789 

 

3 1 0 106 914 0 14 112 0 32 75 0 17 45 2 85 427 

  

2 355 2800 4883 2 63 405 7 96 243 0 52 134 8 372 1509 

  

3 1746 4858 6513 3 118 687 8 152 409 1 89 223 12 660 2394 

  

4 2849 5711 7104 4 178 897 8 212 538 1 121 296 19 892 3021 

15 1 1 0 153 1006 0 3 17 0 7 33 0 9 49 0 8 55 

  

2 1006 5402 8600 0 4 26 0 11 50 0 11 61 0 18 114 

  

3 5617 11035 13162 0 6 36 0 12 58 0 16 75 0 27 159 

  

4 9918 13720 15167 0 9 45 0 16 73 0 20 82 0 32 195 

 

2 1 2 636 2367 0 6 60 0 19 95 0 18 87 1 72 442 

  

2 1921 7097 10609 0 13 166 2 43 187 1 35 159 2 212 1094 

  

3 5976 11500 14152 0 22 257 2 62 268 1 50 214 2 335 1605 

  

4 8761 13428 15512 0 37 325 3 79 314 1 65 259 7 433 1943 

 

3 1 7 951 3170 0 24 210 0 51 211 0 35 171 5 285 1215 

  

2 2124 7600 11484 2 97 683 8 146 572 1 84 382 22 1053 3576 

  

3 5611 11518 14482 3 184 1097 9 257 871 2 153 561 41 1747 5347 

    4 7806 13119 15555 4 269 1408 10 336 1108 2 203 698 60 2265 6577 

 

The behavior described above is also exhibited by rank correlations, but with 

one fundamental difference: the number of wrong rejections is now much less than 

with Pearson’s correlation. In this sense, we observe a different behavior for mild 

contamination, i.e. m = 1,2, and wider contamination, i.e. m = 3,4. In the former 

case, the statistic that has the smallest number of improper rejections is most often 

r3. In the latter case, it is r2. 
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It may be helpful to note that r2 and r3 have the narrowest range of possible values. 

In general, the figures in Table 6 simply reaffirm, what is already well known, that 

the Pearson correlation coefficient can produce incorrect indications if outliers 

affect data. 

More importantly, in the presence of anomalies, rank correlations are more 

reliable in the assessment of evidence of a relationship between two variables. The 

r4 coefficient occupies an intermediate position between Pearson’s product-moment 

correlation and the standard statistics of rank-order association: 

Spearman, Kendall and Gini. On one hand, r4 may sporadically produce erroneous, 

significant associations as it is shown by the slightly inflated alpha level for the 

some combinations k and m. On the other hand, it is capable of capturing even 

weak relationships between the variables which are otherwise lost if other measures 

of association are applied. 

 

6 Conclusion 

The purpose of this paper is to explore fully the sampling behavior of r4, a 

rank correlation coefficient recently introduced in the literature by Tarsitano & 

Lombardo [2013]. The peculiar quality of this statistic is its high resolution across 

the [−1,1] interval, which renders it a more efficient measure of correlation, at very 

low number of ranks. Empirical results show that the new coefficient is a good 

substitute for the Pearson correlation coefficient when outliers and nonlinearity 

affect data. We have established that t-Student density provides an accurate 

estimation of the p-values of r4 in the case the number of ranks is larger than the 

threshold for which the exact null distribution is known (n = 15), but lower than the 

value for which the standardized Gaussian approximation becomes valid. Indeed, 

the most important result of our study is the proof that, as the number of ranks goes 

to infinity, the null distribution under independence converges to the Gaussian 

distribution. 
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