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Abstract 

In practice it is often of interest to compare the medians or means of several 

populations that are not assumed to have equal variances. A method is proposed 

that depends on the over-mean-rank function that is defined as the percentage of 

the ranks over the global mean rank in each group. Chi-square distribution is 

found to give a very good fit for this function. The main advantages for the 

proposed method are: stable in terms of Type I error; less affected by ties and can 

be shown graphically. Comparison with Kruskal-Wallis, Welch and ANOVA 

methods are given for unbalanced designs and not equal variances from normal 

and non-normal populations in terms of Type I error. The simulation results are 

shown that the proposed method improves the Type I error and its performance 

exhibits superior robustness over the studied methods.  
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1  Introduction  
The work by [1] provided us a rank-based test for comparison of several 

medians or means, complementing the parametric approaches. [2], [3] and [4] 

among others (see [5] and [6]) have presented approximate test statistics for 

testing for mean equality when there are more than two groups and when 

population variances are not presumed to be equal. Unfortunately, these 

procedures have not proven to be uniformly successful in controlling test size 

when the data are heterogeneous as well as non-normal, particularly in unbalanced 

designs. Although there are parametric solutions have been presented by [7] and 

[8], it will be only focused on the nonparametric approach especially 

rank-approach. 

Kruskal and Wallis [1] said that “...One of the most important applications of 

the test is in detecting differences among the population means”(p.584). Also they 

suggested that “… in practice the H test may be fairly insensitive to differences in 

variability, and so may be useful in the important ‘Behrens-Fisher problem’ of 

comparing means without assuming equality of variances” (p.599). Furthermore, 

Iman [9] formulated the null hypothesis of Kurskal-Wallis test in terms of the 

expected values (p. 726). 

To compare for means under heterogeneity using nonparametric approach a 

method is derived based on over-mean-rank function that is defined as the 

percentage of the ranks more than the global mean rank in each group. Chi-square 

distribution is found to give a very good fit for this function until for small sample 

sizes. This method does not require normality and equal variance assumptions, 

stables in terms of Type I error, less affected by ties and is shown graphically. 

Comparison with Kruskal-Wallis, Welch and ANOVA methods are given for 
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unbalanced designs and not equal variances from symmetric and asymmetric 

populations in terms of Type I error. The simulation results are shown that the 

proposed method improves the Type I error and its performance exhibits superior 

robustness over the studied methods. 

Over-mean-rank function and over-mean-rank plot are introduced in Section 2. 

The simulation results are presented in Section 3. An application is given in 

Section 4. Section 5 is devoted for conclusion. 

 

 

2  Comparison of several medians or means 

2.1. Over-mean-rank function approach 

Suppose independent random observations  𝑌𝑔𝑖(𝑔 = 1, … ,𝐺, 𝑖 = 1, … ,𝑛𝑔,  

and 𝑛1 + ⋯+ 𝑛𝑔 = 𝑛 )are obtained from a continuous population with mean 𝜇𝑔 

and variance 𝜎𝑔2. 𝐺 is the number of groups or treatments and 𝑛𝑔 is the sample 

size in each group.  

Thus the null hypothesis can be expressed as 

𝐻0:𝜃1 = 𝜃2 = ⋯ = 𝜃𝐺 = 𝜃 

versus at least two means or medians are not equal.  

The rank function can be defined as  

𝑅 = 𝑅𝑔𝑖 = rank(𝑌𝑔𝑖),   𝑔 = 1, … ,𝐺,    𝑖 = 1,2, … ,𝑛𝑔 

and the ranks in each group is 

𝑅𝑔 = 𝑅𝑔𝑖,   for each 𝑔 = 1, … ,𝐺  

The 𝑅𝑔𝑖 has a discrete uniform distribution with probability mass function  

𝑓�𝑅𝑔𝑖 = 𝑟� =
1
𝑛

,       𝑟 = 1,2, … . . ,𝑛 

with 

𝐸(𝑅) = (𝑛 + 1)/2 

If all means or medians are equal, 𝑅 will have average equals to the average for 
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each group. On the other hand, if the means or medians are not equal the averages 

of at least two groups are not equals.  

Therefore, under 𝐻0 the average of ranks in each group equal to the overall 

average as  

𝐸�𝑅𝑔� = 𝐸(𝑅) = 0.5(𝑛 + 1),       𝑔 = 1, … ,𝐺 

The over-mean-rank functions can be defined as   

𝜋 = 𝑝(𝑅 > 𝐸(𝑅)) 

and 

𝜋𝑔 = 𝑝�𝑅𝑔𝑖 > 𝐸(𝑅)�, 𝑖 = 1,2, … ,𝑛𝑔 

It is clearly that under 𝐻0 

𝜋1 = 𝜋2 = ⋯ = 𝜋𝐺 = 𝜋 = 0.5 

Note that 

 

𝜋 = �

#(𝑅 > 0.5(𝑛 + 1))
𝑛

=
1
2

,       if 𝑛 is even

#(𝑅 > 0.5(𝑛 + 1))
𝑛 − 1

=
1
2

,       if 𝑛 is odd

� 

Therefore the null hypothesis  

𝐻0:𝜃1 = 𝜃2 = ⋯ = 𝜃𝐺 = 𝜃 

is equivalent to 

𝐻0:𝜋1 = 𝜋2 = ⋯ = 𝜋𝐺 = 𝜋 = 0.5 

Consequently, the proposed test for equal medians or means is 

Ε2 = ��
𝜋�𝑔 − 0.5

�0.25/𝑛𝑔
�
2𝐺

𝑔=1

 

Since 𝜋�𝑔 is a sample mean, if 𝑛𝑔 is large, the central limit theorem allows to 

approximate  

Ε =
𝜋�𝑔 − 0.5

�0.25/𝑛𝑔
≈ 𝑁(0,1) 

Consequently, Ε2 can be approximated by chi-square distribution with 𝐺 − 1 
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degrees of freedom, therefore, 

Ε2 ≈ 𝜒2(𝐺 − 1) 

The approximate size 𝛼 rejection is Ε2 ≥ 𝜒𝛼,𝐺−1
2 . 

To prove this under 𝐻0 let 

𝐻 = ��
𝜋�𝑔 − 𝜋
𝜎𝜋�𝑔

�
2𝐺

𝑔=1

= ��
𝜋�𝑔 − 𝜋�𝑔��� + 𝜋�𝑔��� − 𝜋

𝜎𝜋�𝑔
�
2

≈
𝐺

𝑔=1

𝜒2(𝐺) 

Since  

�(𝜋�𝑔 − 𝜋�𝑔���)
𝐺

𝑔=1

= 0 

Then 

��
𝜋�𝑔 − 𝜋
𝜎𝜋�𝑔

�
2𝐺

𝑔=1

= ��
𝜋�𝑔 − 𝜋�𝑔���

𝜎𝜋�𝑔
�
2

+ 𝐺 �
𝜋�𝑔��� − 𝜋
𝜎𝜋�𝑔

�
2𝐺

𝑔=1

 

Hence, 

��
𝜋�𝑔 − 𝜋�𝑔���

𝜎𝜋�𝑔
�
2𝐺

𝑔=1

= 𝜒2(𝐺 − 1) 

Under 𝐻0 

��
𝜋�𝑔 − 0.5

0.25/�𝑛𝑔
�
2𝐺

𝑔=1

≈ 𝜒2(𝐺 − 1) 

The estimated over-mean-rank function for each group can be obtained as 

𝜋�𝑔 =
#�𝑅𝑔𝑖 > 0.5(𝑛 + 1�)

𝑛𝑔
, 𝑖 = 1,2, … , 𝑛𝑔 

For 𝑔 = 1,2, … ,𝐺.  Note that, when 𝑛 is even, it can use 𝑛𝑔 − 1 instead of 𝑛𝑔 

in a group that contains rank  (𝑛 + 1)/2. Also if there are ties only equal to 

0.5(𝑛 + 1), it can make half of them less than 0.5(𝑛 + 1) and the other half 

more than 0.5(𝑛 + 1).    

Table 1 gives the empirical four moments of Ε2 using data simulated from 
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normal and exponential distributions with different sample sizes and variances 

along with the first theoretical four moments of chi square distribution. Actually, 

the chi square distribution gives a very good fit to Ε2. 

 

 

Table 1: Empirical averages, variance, skewness and kurtosis fo Ε2 using data  

        simulated from normal and exponential distributions with different  

        ample sizes and variances. 
    𝐺 = 4     

 Parameters   Normal   |Exponential  

𝑛𝑔 𝑛 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑎𝑣. 𝑣𝑎𝑟. 𝑠𝑘. 𝑘𝑢.  𝑎𝑣. 𝑣𝑎𝑟. 𝑠𝑘. 𝑘𝑢. 

(5,7,9,10) 31 (25,49,64,144) 3.21 6.02 1.26 5.10  3.20 6.05 1.27 5.08 

(10,15,17,20) 62 (25,49,64,144) 3.11 6.17 1.59 6.82  3.17 6.55 1.50 6.17 

(20,26,29,30) 105 (25,49,64,144) 3.09 6.08 1.60 6.85  3.16 6.50 1.58 6.53 

            

(5,7,9,10) 31 (144,64,49,25) 3.19 5.97 1.38 5.36  3.22 6.11 1.36 5.50 

(10,15,17,20) 62 (144,64,49,25) 3.10 6.13 1.62 7.33  3.20 6.60 1.51 6.15 

(20,26,29,30) 105 (144,64,49,25) 3.07 6.10 1.59 6.82  3.19 6.55 1.57 6.34 

   First four  𝜒32 moments    

   3 6 1.63 7      

 

 

2.2. Graphical display  

This is a graph for each group and consists of:  

1. X-axis represents the index for group size.  

2. Y-axis represents the ranks in each group. 

3. The middle line at 0.5(𝑛 + 1) 

This graph should reflect the following information 



Elsayed A. H. Elamir 113  

1. 𝜋�𝑔 the percentage of ranks above the middle line in each group. If this 

value is more than 0.5 that is indication of the shifting up in mean or 

median of this group and vice versa.  

2. The 𝜒2 value that gives the contribution of each group in the test.  

3. Patterns among the groups. 

 

 

 
Figure 1: Over-mean-rank plot with the over-mean line using simulated data from normal  

        distribution with mean (0,0,0,0) and variances (9,49,64,100) and the sample  

         sizes are (15,17,20,23). 
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Figure 1 shows over-mean-rank plot for simulated data from normal 

distribution with four groups, same means (0,0,0,0) and different variances:  

1. Values of 𝜋�𝑔 are near from each other. 

2.  The 𝜒2 values are very small and group 2 has the most contribution in the 

test 0.06. 

3. The four groups have almost the same patterns. It might conclude that 

there are no significance differences among groups. 

While Figure 2 shows over-mean-rank plot for simulated data from normal 

distribution with four groups, means (0,0,5,0) and different variances:  

 

 

 
Figure 2: Over-mean-rank plot using simulated data from normal distribution with mean 

          (0,0,5,0) and variances (9,49,64,100) and the sample sizes are (15,17,20,23). 
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1. The highest value of 𝜋�𝑔 is 0.8 for group 3 and the lowest value is 0.35 for 

group 4. 

2.  The 𝜒2 value for group 3 has the highest contribution in the test followed 

by group 4. 

3. Groups 1 and 2 similar in patterns while groups 3 and 4 are in reverse 

pattern. 

 

 

3  Simulation results  

The Welch-statistic can be defined as   

𝐹𝑊 =
∑ 𝑤𝑔�𝑋�𝑔 − 𝑋��

2
/(𝑔 − 1)𝐺

𝑔=1

1 + 2(𝑔 − 2)
(𝑔2 − 1) ∑

�1 − 𝑤𝑗/𝑊�
2

𝑛𝑔 − 1
𝐺
𝑔=1

 

where 𝑤𝑗 = 𝑛𝑔/𝑠𝑔2, 𝑋� = ∑ 𝑤𝑔𝑋�𝑔𝐺
𝑔=1 /𝑊, 𝑊 = ∑ 𝑤𝑔𝐺

𝑔=1 . 

The test statistic is approximately distributed as an F variate and is referred to the 

critical value 𝐹[(1 − 𝛼); (𝑔 − 1), 𝜈] 

𝜈 =
(𝑔2 − 1)

3∑
�1 −𝑤𝑗/𝑊�

2

𝑛𝑔 − 1
𝐺
𝑔=1

 

See; for example, [10] and [11]. 

It is well known that the test statistic for one-way fixed effect ANOVA is 

𝐹 =
𝑆𝑆𝐵/(𝐺 − 1)
𝑆𝑆𝑊/(𝑛 − 𝐺)

=
𝑀𝑆𝐵
𝑀𝑆𝑊

 

Where SSB is sum of squares between groups, SSW is the sum of squares within 

treatments, (𝐺 − 1) and (𝑛 − 𝐺) are the degrees of freedom, between and within 

treatments, respectively; see, [12]. 

The Kruskal-Wallis test is defined as 
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𝐾𝑊 =
(𝑛 − 1)∑ 𝑛𝑔�𝑟̅𝑔 − 𝑟̅�

2𝐺
𝑔=1

∑ ∑ �𝑟𝑔𝑖 − 𝑟̅�
2𝑛𝑔

𝑖=1
𝐺
𝑔=1

=
12

𝑛(𝑛 + 1)
�𝑛𝑔

𝐺

𝑔=1

�𝑟̅𝑔 −
𝑛 + 1

2
�

2

 

where 𝑟̅𝑔 =
∑ 𝑟𝑔𝑖
𝑛𝑔
𝑔=1

𝑛𝑔
 and 𝑟̅ = 0.5(𝑛 + 1). 

This is distributed as 𝜒2(𝐺 − 1); See, [13] and [1]. 

The random variable 𝑌 is said to have Variance-Gamma (VG) with parameters 

𝑐,𝜃 ∈ 𝑅, 𝜈,𝜎 > 0, if it has probability density function given by   

𝑓(𝑦; 𝑐,𝜎,𝜃, 𝜈) =
2𝑒

𝜃(𝑦−𝑐)
𝜎2

σ√2πν
1
νΓ �1

𝑣� ⎣
⎢
⎢
⎡ |𝑦 − 𝑐|

�2𝜎2
𝜈 + 𝜃2⎦

⎥
⎥
⎤
1
𝜈−1

𝐾1
𝜈−

1
2
⎣
⎢
⎢
⎡|𝑦 − 𝑐|�2𝜎2

𝜈 + 𝜃2

𝜎2
⎦
⎥
⎥
⎤

,

𝑦 ∈ 𝑅 

where 𝐾𝜈(𝑥) is a modified Bessel function of the third kind; see, for example, 

[14] and [15].  

Note that there are other versions of this distribution available but this 

version is chosen because there is a software package in R called gamma-variance 

based on this version that be used to obtain all the simulations. The moments of 

this distribution are 

                                                            𝐸(𝑌) = 𝑐 + 𝜃, 

                          𝑉(𝑌) = 𝜎2 + 𝜈𝜃2, 

                                                            𝑠𝑘 =
2𝜃3𝜈2 + 3𝜎2𝜃𝜈

�(𝜃2𝜈 + 𝜎2)3
, 

and 

𝑘𝑢 = 3 +
3𝜎4𝜈 + 12𝜎2𝜃2𝜈2 + 6𝜃4𝜈3

(𝜃2𝜈 + 𝜎2)2  

This distribution is defined over the real line and has many distributions as 

special cases or limiting distributions such as Gamma distribution in the limit 

𝜎 ↓ 0  and 𝑐 = 0 , Laplace distribution as 𝜃 = 0  and 𝜐 = 2  and normal 

distribution as 𝜃 = 0, 𝜈 = 1/𝑟 and 𝑟 → ∞.  
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All the simulation results use the variance gamma distribution with different 

choices of parameters where it can control the skewness and kurtosis by different 

choices of its parameters. Table 2 gives the parameters of the variance-gamma 

distribution used in this study.  

  

Table 2: variance-gamma distribution parameters used in the study 

  Parameters    

𝑐 𝜃 𝜎2 𝜈 skewness Kurtosis 

0 0 Variances 0.001 0 3 

0 0 Variances 4 0 15 

0 0 Variances 6 0 21 

0 3 Variances 0.90 1 6 

0 2 Variances 12 6 12 

 

 

Four variables were manipulated in the study: (a) number of groups (4 and 5), 

(b) sample size (small-medium- large), (c) population distribution 

(variance-gamma distribution), and (d) degree/pattern of variance heterogeneity 

(moderate and large/all (mostly) unequal). Variances and group sizes were both 

positively and negatively paired. For each design size, three sample size cases 

were investigated. In our unbalanced designs, the smaller of the three cases 

investigated for each design has an average group size of less than 10, the middle 

has an average group size less than 20 while the larger case in each design had an 

average group size less than 30. With respect to the effects of distributional shape 

on Type I error, we chose to investigate conditions in which the statistics were 

likely to be prone to an excessive number of Type I errors as well as a normally 

distributed case. For positive (negative) pairings, the group having the smallest 

number of observations was associated with the population having the smallest 

(largest) variance, while the group having the greatest number of observations was 

associated with the population having the greatest (smallest) variance. These  



118                       Comparison of Several Means under Heterogeneity…  

Table 3: Empirical rates of type I error (𝐺 = 4), 𝐸𝐸 for Ε2 test, 𝐾𝑊 for  

        Kurskal-Wallis test, 𝑊 for Welch test and ANOVA for analysis of  

        variance test and the number of replication is 10000. 

  𝐺 = 4      

Sample sizes 𝑛 Group variances (𝑆𝑘. ,𝐾𝑢.) 𝐸𝐸 𝐾𝑊 Welch ANOVA 

   Symmetric    
(5,7,10,13) 35 (100,324,400,625) (0,3) 0.052 0.030 0.046 0.030 

(5,7,10,13) 35 (625,400,324,100)  (0,3) 0.054 0.077 0.057 0.118 

(15,17,20,23) 75 (100,324,400,625)  (0,3) 0.053 0.042 0.047 0.041 

(15,17,20,23) 75 (625,400,324,100)  (0,3) 0.054 0.065 0.051 0.078 

(25,27,31,34) 117 (100,324,400,625) (0,3) 0.053 0.055 0.052 0.051 

(25,27,31,34) 117 (625,400,324,100)  (0,3) 0.057 0.059 0.049 0.056 

        

(5,7,10,13) 35 (100,324,400,625) (0,15) 0.051 0.035 0.019 0.021 

(5,7,10,13) 35 (625,400,324,100)  (0,15) 0.049 0.055 0.017 0.090 

(15,17,20,23) 75 (100,324,400,625)  (0,15) 0.053 0.043 0.030 0.036 

(15,17,20,23) 75 (625,400,324,100)  (0,15) 0.047 0.056 0.028 0.069 

(25,27,31,34) 117 (100,324,400,625) (0,15) 0.055 0.046 0.037 0.041 

(25,27,31,34) 117 (625,400,324,100)  (0,15) 0.050 0.052 0.036 0.064 

   Asymmetric    

(5,7,10,13) 35 (150,75,60,50)  (1,6) 0.054 0.064 0.043 0.091 

(5,7,10,13) 35 (50,60,75,150)  (1,6) 0.051 0.035 0.035 0.030 

(15,17,20,23) 75 (150,75,60,50) (1,6) 0.048 0.054 0.043 0.072 

(15,17,20,23) 75 (50,60,75,150) (1,6) 0.052 0.045 0.042 0.041 

(25,27,31,34) 117 (150,75,60,50) (1,6) 0.055 0.054 0.045 0.066 

(25,27,31,34) 117 (50,60,75,150) (1,6) 0.052 0.047 0.045 0.045 

(5,7,10,13) 35 (150,75,60,50)  (6,60) 0.049 0.058 0.008 0.057 

(5,7,10,13) 35 (50,60,75,150)  (6,60) 0.057 0.041 0.009 0.025 

(15,17,20,23) 75 (150,75,60,50) (6,60) 0.055 0.065 0.025 0.049 

(15,17,20,23) 75 (50,60,75,150) (6,60) 0.057 0.056 0.021 0.035 

(25,27,31,34) 117 (150,75,60,50) (6,60) 0.058 0.069 0.044 0.055 

(25,27,31,34) 117 (50,60,75,150) (6,60) 0.056 0.064 0.039 0.042 
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conditions were chosen since they typically produce distrorted Type I error rates; 

see, [10].  

To evaluate the particular conditions under which a test was insensitive to 

assumption violations, the idea of [16] robustness criterion was employed. 

According to this criterion, in order for a test to be considered robust, its empirical 

rate of Type I error 𝛼 must be contained in the interval 𝛼 ± 𝜀. The choice of 

Bradley is 𝜀 = 0.025 and this makes the interval is liberal. Therefore, in this 

study the choice of 𝜀 = 0.015 . Therefore, for the five percent level of 

significance used in this study, a test was considered robust in a particular 

condition if its empirical rate of Type I error fell within the interval 0.035 ≤ 𝛼� ≤

0.065. Correspondingly, a test was considered to be nonrobust if, for a particular 

condition, its Type I error rate was not contained in this interval. Nonetheless, 

there is no one universal standard by which tests are judged to be robust, so 

different interpretations of the results are possible. In the tables, boldfaced entries 

are used to denote these latter values.  

Tables 3 and 4 contain empirical rates of Type I error for a design containing 

four and five groups, respectively. The tabled data indicates that  

1. When the observations were obtained from normal distributions (Table 3, 

𝑠𝑘 = 0 and 𝑘𝑢 = 3), rates of Type I error were controlled by EE, KW and 

W methods while were not controlled by ANOVA  where the variances 

were not equals. 

2. When the observations were obtained from symmetric distributions with 

kurtosis more than 3 (Table 3 and Table 4, 𝑠𝑘 = 0 and 𝑘𝑢 = 15), rates of 

Type I error were controlled by EE and KW methods while were not 

controlled by W and ANOVA methods. 

3. When the observations were obtained from non-normal distributions (Table 

3 and Table 4, 𝑠𝑘 = 1 and 6 and 𝑘𝑢.=6 and 60), rates of Type I error were 

controlled by EE, KW while were not controlled by W and ANOVA 

methods.  



120                       Comparison of Several Means under Heterogeneity…  

Table 4: Empirical rates of type I error (𝐺 = 5), 𝐸𝐸  for Ε2  test, 𝐾𝑊  for 

Kurskal-Wallis test, 𝑊 for Welch test and ANOVA for analysis of 

variance test and the number of replications is 10000. 
   𝐺 = 5     

Sample sizes 𝑛 Group variances (𝑆. ,𝐾.) 𝐸𝐸 KW W ANOVA 

   Symmetric    

(5,7,10,13,14) 49 (150,75,60,51,50)  (0,15) 0.044 0.048 0.018 0.086 

(5,7,10,13,14) 49 (50,51,60,75,150)  (0,15) 0.048 0.038 0.018 0.029 

(15,17,20,23,24) 99 (150,7 5,60,51,50)  (0,15) 0.052 0.057 0.030 0.068 

(15,17,20,23,24) 99 (50,51,60,75,150)  (0,15) 0.052 0.044 0.027 0.040 

(25,27,31,33,34) 150 (150,75,60,51,50)  (0,15) 0.049 0.052 0.042 0.056 

(25,27,31,33,34) 117 (50,51,60,75,150)  (0,15) 0.049 0.048 0.036 0.049 

   Asymmetric    

(5,7,10,13,14) 49 (150,75,60,51,50)  (6,60) 0.053 0.065 0.005 0.063 

(5,7,10,13,14) 49 (50,51,60,75,150)  (6,60) 0.054 0.045 0.007 0.029 

(15,17,20,23,24) 99 (150,75,60,51,50)  (6,60) 0.058 0.064 0.029 0.055 

(15,17,20,23,24) 99 (50,51,60,75,150)  (6,60) 0.057 0.059 0.024 0.038 

(25,27,31,33,34) 150 (150,75,60,51,50)  (6,60) 0.058 0.072 0.046 0.056 

(25,27,31,33,34) 117 (50,51,60,75,150)  (6,60) 0.059 0.067 0.038 0.043 

  Symmetric with very small sizes    

(5,6,7,8,9) 35 (225,144,25,9,4) (0,3) 0.066 0.101 0.056 0.121 

(5,6,7,8,9) 35 (4,9,25,144,225) (0,3) 0.075 0.044 0.051 0.051 

(5,6,7,8,9) 35 (1,2,3,4,5) (0,3) 0.052 0.033 0.052 0.037 

(5,6,7,8,9) 35 (5,4,3,2,1) (0,3) 0.049 0.063 0.056 0.091 

(5,6,7,8,9) 35 (225,144,81,49,36) (0,3) 0.052 0.071 0.060 0.121 

(5,6,7,8,9) 35 (225,144,81,49,36) (0,21) 0.046 0.045 0.011 0.060 

(5,6,7,8,9) 35 (5,4,3,2,1) (0,21) 0.048 0.044 0.009 0.052 

(5,5,5,5,5) 25 (10,10,10,10,10) (0,3) 0.055 0.038 0.047 0.052 

(5,5,5,5,5) 25 (10,10,10,10,10) (0,21) 0.056 0.037 0.008 0.025 
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4. When the observations were obtained from normal with equal variances and 

sample sizes are equal the rates of Type I error was controlled by ANOVA 

method (Table 4).  

5.  In small sample sizes, the EE method rates of Type I error were controlled 

by EE better than KW method, Table 4.  

6. Rates of Type I error were controlled by EE for all cases studied except two 

cases out of 45 cases, while rates were controlled by KW for all cases 

studied except seven cases out of 45.  

 

 

4  Application 

The RS company provides several services. It currently operates in four 

regions (M1, M2, M3 and M4) . recently, RW manager questioned whether the 

mean or the median billing amount for the services differed by region. Simple 

random samples of employees served in these regions have been selected. The 

data are given in Table 5 

Table 5 gives the data and its ranks. Figure 3 shows the over-mean-rank plot 

for the data and it can conclude the following: 

[1] The lowest value of 𝜋�𝑔 is 0.08 for group 4 that showing shifting down in this 

group and the heighst 𝜋�𝑔 is 0.80 for group 1 that showing up in this group. 

[2]  Group 4 has the highest contribution in the test where its 𝜒2 value 9.17, 

followed by group 1 that has 3.6. 

[3] Group 4 is different in patterns with groups 1, 2 and 3. Groups 2 and 3 are the 

nearest in patterns. 

The  test is  

𝐻0:𝜋1 = 𝜋2 = 𝜋3 = 𝜋4 = 0.5 

Where Ε2 = 13.94 > 𝜒2(0.95,3) = 7.81,  therefore, 𝐻0 is rejectd. 
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Table 5: Billing amount for the services in four regions with ranks in brackets  

 M1 M2 M3 M4 

 102.3 (36) 95.5 (21) 103.5 (39) 70.6 (2) 

 101.5 (34) 99.3 (25) 103.1 (37) 69.7 (1) 

 100.7 (29) 101.5 (34) 117.6 (47) 83.8 (9) 

 98.1 (23) 100.3 (27) 87.9 (10) 91.9 (15) 

 101.4 (32) 101.5 (34) 100.4 (28) 109.8 (45) 

 100.9 (30) 93.1 (18) 104.7 (42) 88.6 (11) 

 92.9  (17) 92.7 (16) 83.4 (8) 98.6 (24) 

 101.3 (31) 94.4 (19) 91.7 (14) 74.4 (3) 

 100.2 (26) 109.9 (46) 88.9 (12) 94.6 (20) 

 104.7 (41) 96.6 (22) 103.2 (38) 75.9 (4) 

  104.3 (40) 108.3 (44) 83.1 (7) 

  105.5 (43)  81.3 (6) 

    89.2 (13) 

    80.1 (5) 

     

sizes 10 12 11 14 

Means 100.4 99.5 99.3 85.1 

Var. 9.6 28.5 104.2 126.9 
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Figure 3: Over-mean-rank plot for RW company data 

 

 

5  Conclusion 

Comparison of several medians or means under heterogeneity is studied using 

over-mean-rank approach. The sampling distribution for this function was 

obtained and found that the chi square distribution had given a very good fit for 

this function. 

Comparison with Kruskal-Wallis, Welch and ANOVA methods had been 

given for unbalanced designs and not equal variances from normal and 

non-normal populations in terms of Type I error and the simulation results were 
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shown that the proposed method improved the Type I error and its performance 

had better robustness than the studied methods.   

This approach might be extended to a multiple comparisons procedure. For 

example, the pair comparisons can be obtained as 

𝐻0:𝜋𝑔 = 𝜋𝑘 

The first approach is Behrens-Fisher approach. Following [17] procedures, 

the paired comparisons might be done using    

𝑊𝑟 = 𝜋�𝑔 − 𝜋�𝑘 = 𝑞1−𝛼(𝑟,𝑑𝑓1)�
𝜋�𝑔(1 − 𝜋�𝑔)

2𝑛𝑔
+
𝜋�𝑘(1 − 𝜋�𝑘)

2𝑛𝑘
 

where 

𝑑𝑓1 =
�
𝜋�𝑔(1 − 𝜋�𝑔)

𝑛𝑔
+ 𝜋�𝑘(1 − 𝜋�𝑘)

𝑛𝑘
�
2

�𝜋�𝑔(1 − 𝜋�𝑔)/𝑛𝑔�
2

𝑛𝑔 − 1 + (𝜋�𝑘(1 − 𝜋�𝑘)/𝑛𝑘)2
𝑛𝑘 − 1

 

where 𝑟 comparison and 𝑞1−𝛼(𝑟,𝑑𝑓1) is studentized range statistics; see, [18].   

Another approximation is a family wise error rate as 

𝑧𝑔𝑘 =
𝜋�𝑔 − 𝜋�𝑘

�
𝜋�𝑔(1 − 𝜋�𝑔)

𝑛𝑔
+ 𝜋�𝑘(1 − 𝜋�𝑘)

𝑛𝑘

 

and comparing it to 𝑧̈ = 𝑧[𝛼/𝑘(𝑘−1)] , the [𝛼/𝑘(𝑘 − 1)]upper standard normal 

quantile. The quantity [𝛼/𝑘(𝑘 − 1)] called the experiment wise error rate or the 

overall significant level, which is the probability of at least one erroneous 

rejection among the 𝑘(𝑘 − 1)/2 pairwise comparisons; see, [19], [20] and [21].     

These approaches need more study and comparisons with other methods and it 

will be left to another research. 
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