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Abstract

In this paper, a new smoothing approximation to the k-th power
nonlinear penalty function for constrained optimization problems is pre-
sented. We prove that this type of the smoothing penalty functions has
good properties in solving constrained optimization problems. Further-
more, based on the smoothed penalty problem, an algorithm is presented
to solve the constrained optimization problems, with its convergence
under some conditions proved. Some numerical examples are given to
illustrate the applicability of the present smoothing method, which show
that the algorithm seems efficient.
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1 Introduction

We consider the following constrained optimization problem:

(P)

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . , m,

x ∈ Rn,

where f, gi : Rn → R, i ∈ I = {1, 2, . . . , m} are continuously differentiable

functions and F0 = {x ∈ Rn | gi(x) ≤ 0, i = 1, 2, . . . , m} is the feasible set

to (P). The penalty function methods based on various penalty functions have

been proposed to solve problem (P) in literatures. The classic l1 exact penalty

function [18] for problem (P) is first proposed by Zangwill as follows:

F1(x, ρ) = f(x) + ρ

m∑
i=1

max{gi(x), 0}, (1)

where ρ > 0 is a penalty parameter.

In many studies, one of the popular penalty functions is the twice penalty

function, which has the following form:

F2(x, ρ) = f(x) + ρ

m∑
i=1

max{gi(x), 0}2, (2)

where ρ > 0 is a penalty parameter. It is called an l2 penalty function. This

penalty function is smooth, it is not necessarily exact penalty function. Re-

cently, Meng et al. [8] and Wu et al. [13] discussed a lower-order penalty

function of the following form:

F k(x, ρ) = f(x) + ρ

m∑
i=1

[max{gi(x), 0}]k, (3)

where k ∈ (0, 1), which is not smooth either. Huang and Yang et al. [15, 16, 17]

and Rubinov et al. [11] discussed a nonlinear Lagrangian penalty function,

Fk(x, ρ) =

[
f(x)k + ρ

m∑
i=1

(max{gi(x), 0})k

] 1
k

, (4)
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for some k ∈ (0, +∞), which is called a k-th power penalty function in [15, 17].

A promising feature of the k-th power nonlinear penalty function is that a

smaller exact penalty parameter than that of the classical penalty function (i.e.,

k = 1) can be guaranted when k is sufficiently small. Obviously, when k = 1,

the k-th power penalty function is reduced to the classical l1 exact penalty

function. This penalty function is smooth for k > 1 while it is not smooth for

0 < k ≤ 1. Thus the minimization of the k-th power nonlinear penalty func-

tion is not an easy job. However, smoothing methods have been investigated

for minimizing nonsmooth penalty function in e.g., [6, 7, 8, 9, 13, 14, 15, 17].

Lian [6] and Wu et al. [14] proposed a smoothing approximation to the clas-

sical l1 exact penalty function and an ε-optimal minimum can be obtained by

solving the smoothed penalty problem. Meng et al. [8] introduced a smooth-

ing method of lower order penalty function and gave a robust SQP method for

nonlinear programming problem by integrating the smoothed penalty function

with the SQP method. Wu et al. [13] considered the ε-smoothing of lower order

penalty function and got a modified exact penalty function under some mild

assumptions. Yang et al. [15, 17] developed some smoothing approximations

to k-th power penalty function. Pinar et al. [9] proposed a smoothing method

of penalty functions for solving convex network optimization problems. Error

estimates of the optimal value of the original penalty function and that of the

smoothed penalty function are obtained.

In this paper, we first construct a new smoothing function pk
ε (t) as follows:

pk
ε (t) =





0 if t ≤ 0,(
1 +

1

kεk−1

)
t2k

2εk
if 0 ≤ t ≤ ε,

tk + ε ln t− 1

2

(
1− 1

kεk−1
+

2 ln ε

εk−1

)
εk if t ≥ ε,

where 0 < k < +∞ and ε > 0. It is easy to prove that pk
ε (t) is C1 at any t ∈ R1

for k >
1

2
and ε > 0. Using pk

ε (t) as the smoothing function, a new nonlinear

penalty function is obtained, based on which an algorithm for solving (P) is

proposed herein.

The rest of this article is organized as follows. In Section 2, we introduce

a smoothing approximation to the k-th power nonlinear penalty function and

the smoothing technique. In Section 3, the algorithm based on the smoothed

nonlinear penalty problem is proposed and the convergence of the algorithm
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is proved. In Section 4, we give some numerical examples and compare the

efficiency of the proposed method with other methods. Finally, conclusions

are given in Section 5.

2 Smoothing nonlinear penalty function

Let pk(t) : R1 → R1 :

pk(t) =

{
0 if t ≤ 0,

tk if t ≥ 0,
(5)

where 0 < k < +∞. Obviously, pk(t) is not C1 on R1 for 0 < k ≤ 1, but it is

C1 for k > 1. The function pk(t) is useful in defining exact penalty function

for nonlinear programming, see, [1, 9, 17]. In order to smooth the function

pk(t), we define function pk
ε (t) : R1 → R1 as

pk
ε (t) =





0 if t ≤ 0,(
1 +

1

kεk−1

)
t2k

2εk
if 0 ≤ t ≤ ε,

tk + ε ln t− 1

2

(
1− 1

kεk−1
+

2 ln ε

εk−1

)
εk if t ≥ ε,

(6)

where 0 < k < +∞ and ε > 0.

Lemma 2.1. For any ε > 0, 0 < k < +∞, we have lim
ε→0

pk
ε (t) = pk(t).

Proof. For any ε > 0, 0 < k < +∞, by the definition of pk(t) and pk
ε (t), we

have

pk(t)− pk
ε (t) =





0 if t ≤ 0,

tk −
(

1 +
1

kεk−1

)
t2k

2εk
if 0 ≤ t ≤ ε,

1

2

(
1− 1

kεk−1
+

2 ln ε

εk−1

)
εk − ε ln t if t ≥ ε.

When 0 ≤ t ≤ ε, we obtain

tk −
(

1 +
1

kεk−1

)
t2k

2εk
≤ tk ≤ εk.
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On the other hand, when t ≥ ε, we have

1

2

(
1− 1

kεk−1
+

2 ln ε

εk−1

)
εk − ε ln t

≤ 1

2

(
1− 1

kεk−1
+

2 ln ε

εk−1

)
εk − ε ln ε

=
1

2
εk − 1

2k
ε ≤ 1

2
εk.

So, we have

0 ≤ pk(t)− pk
ε (t) ≤

1

2
εk.

That is

lim
ε→0

pk
ε (t) = pk(t).

This completes the proof.

Lemma 2.2. Let
1

2
< k < +∞ and ε > 0. Then pk

ε (t) is C1.

Proof. Let p1(t) = 0 if t ≤ 0, p2(t) =

(
1 +

1

kεk−1

)
t2k

2εk
if 0 ≤ t ≤ ε and

p3(t) = tk + ε ln t− 1

2

(
1− 1

kεk−1
+

2 ln ε

εk−1

)
εk if t ≥ ε.

We have

pk
ε (t) =





p1(t) if t ≤ 0,

p2(t) if 0 ≤ t ≤ ε,

p3(t) if t ≥ ε.

Then, for
1

2
< k < +∞ we have

∇pk
ε (t) =





∇p1(t) = 0 if t ≤ 0,

∇p2(t) =
k

εk

(
1 +

1

kεk−1

)
t2k−1 if 0 ≤ t ≤ ε,

∇p3(t) = ktk−1 +
ε

t
if t ≥ ε.

(7)

In particular, ∇p1(0) = 0 = ∇p2(0) and ∇p2(ε) = kεk−1 + 1 = ∇p3(ε).

Therefore, pk
ε (t) is C1 at any t ∈ R1 by (7). This completes the proof.

Remark 1. If 0 < k <
1

2
, pk

ε (t) is differentiable when t 6= 0.

Suppose that f and gi, i ∈ I are C1, by Lemma 2.2, pk
ε (t) is C1 for

1

2
< k < +∞. In this paper, we always assume that f(x) ≥ 0 (x ∈ Rn).
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Consider the following optimization problem:

(P) : min f(x) s.t. x ∈ Rn,

and the nonlinear penalty functions for (P):

F (x, ρ) = fk(x) + ρ

m∑
i=1

pk(gi(x)),

Fε(x, ρ) = fk(x) + ρ

m∑
i=1

pk
ε (gi(x)),

where ρ > 0 and 0 < k < +∞. Hence, the following two penalty problems can

be denoted as:

(Pρ) : min F (x, ρ) s.t. x ∈ Rn,

(NPρ,ε) : min Fε(x, ρ) s.t. x ∈ Rn.

Now, the relationship between (Pρ) and (NPρ,ε) is studied.

Lemma 2.3. For any given x ∈ Rn, ε > 0 and ρ > 0, we have

lim
ε→0

Fε(x, ρ) = F (x, ρ).

Proof. For any x ∈ Rn, by the definition of pk(t) and pk
ε (t), we have

pk (gi(x))−pk
ε (gi(x)) =





0 if gi(x) ≤ 0,

gi(x)k −
(

1 +
1

kεk−1

)
gi(x)2k

2εk
if 0 ≤ gi(x) ≤ ε,

1

2

(
1− 1

kεk−1
+

2 ln ε

εk−1

)
εk − ε ln(gi(x)) if gi(x) ≥ ε.

That is

0 ≤ pk(gi(x))− pk
ε (gi(x)) ≤ 1

2
εk, i = 1, 2, . . . , m.

Adding up for all i, we obtain

0 ≤
m∑

i=1

pk(gi(x))−
m∑

i=1

pk
ε (gi(x)) ≤ 1

2
mεk.

Therefore,

0 ≤ F (x, ρ)− Fε(x, ρ) ≤ 1

2
mρεk,
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which implies

F (x, ρ)− 1

2
mρεk ≤ Fε(x, ρ) ≤ F (x, ρ).

That is

lim
ε→0

Fε(x, ρ) = F (x, ρ).

This completes the proof.

A direct result of Lemma 2.3 is given as follows.

Corollary 2.4. Let {εj} → 0 be a sequence of positive numbers and assume

xj is a solution to (NPρ,ε) for some given ρ > 0. Let x be an accumulation

point of the sequence {xj}. Then x is an optimal solution to (Pρ).

Theorem 2.5. Let x∗ be an optimal solution of (Pρ) and x ∈ Rn an optimal

solution of (NPρ,ε) for some ρ > 0 and ε > 0. Then,

lim
ε→0

Fε(x, ρ) = F (x∗, ρ).

Proof. From Lemma 2.3, for ρ > 0, we have that

0 ≤ F (x∗, ρ)− Fε(x
∗, ρ) ≤ 1

2
mρεk,

0 ≤ F (x, ρ)− Fε(x, ρ) ≤ 1

2
mρεk, 0 < k < +∞.

From the assumption that x∗ and x are optimal solution of (Pρ) and (NPρ,ε),

respectively, we get

Fε(x, ρ) ≤ Fε(x
∗, ρ),

F (x∗, ρ) ≤ F (x, ρ).

Therefore, we obtain that

0 ≤ F (x∗, ρ)− Fε(x
∗, ρ) ≤ F (x∗, ρ)− Fε(x, ρ)

≤ F (x, ρ)− Fε(x, ρ) ≤ 1

2
mρεk.

It follows

F (x∗, ρ)− 1

2
mρεk ≤ Fε(x, ρ) ≤ F (x∗, ρ).

That is

lim
ε→0

Fε(x, ρ) = F (x∗, ρ).

This completes the proof.
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Theorem 2.5 show that an approximate solution to (NPρ,ε) is also an ap-

proximate solution to (Pρ) when the error ε is sufficiently small.

Definition 2.6. For ε > 0, a point xε ∈ Rn is an ε-feasible solution or an

ε-solution of problem (P), if

gi(xε) ≤ ε, i = 1, 2, . . . , m.

Under this definition, we get the following result.

Theorem 2.7. Let x∗ be an optimal solution of (Pρ) and x ∈ Rn an optimal

solution of (NPρ,ε) for some ρ > 0 and ε > 0. Furthermore, let x∗ be feasible

to (P) and x be ε-feasible to (P). Then,

0 ≤ f(x∗)k − f(x)k ≤
(

1 +
1

2kεk−1

)
mρεk, 0 < k < +∞. (8)

Proof. Since x is ε-feasible to (P), hence

∑
i∈I

pk
ε (gi(x)) ≤

(
1

2
+

1

2kεk−1

)
mεk, 0 < k < +∞.

Because x∗ is an optimal solution to (P), we have

∑
i∈I

pk(gi(x
∗)) = 0.

Then, by Theorem 2.5, we have

0 ≤ F (x∗, ρ)− Fε(x, ρ) =

{
f(x∗)k + ρ

∑
i∈I

pk(gi(x
∗))

}

−
{

f(x)k + ρ
∑
i∈I

pk
ε (gi(x))

}
≤ 1

2
mρεk.

Thus,

ρ
∑
i∈I

pk
ε (gi(x)) ≤ f(x∗)k − f(x)k ≤ ρ

∑
i∈I

pk
ε (gi(x)) +

1

2
mρεk.

Therefore,

0 ≤ f(x∗)k − f(x)k ≤
(

1 +
1

2kεk−1

)
mρεk.

This completes the proof.
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By Theorem 2.7, an approximate optimal solution to (NPρ,ε) becomes an

approximate optimal solution to (P) if the solution to (NPρ,ε) is ε-feasible

to (P). Therefore, we can obtain an approximate optimal solution to (P) by

solving (NPρ,ε) under some mild conditions.

3 A smoothing nonlinear penalty function al-

gorithm

In this section, we give a nonlinear penalty function algorithm for the

problem (P). In order to solve (P), we attempt to solve its smoothed penalty

problem given by min
x∈Rn

Fε(x, ρ).

Algorithm 3.1

Step 1: Given x0, ε > 0, ε0 > 0, ρ0 > 0, 0 < η < 1, k > 0 and N > 1, let

j = 0 and go to Step 2.

Step 2: Use xj as the starting point to solve

(NPρj ,εj
) min

x∈Rn
Fεj

(x, ρj) = f(x)k + ρj

m∑
i=1

pk
εj

(gi(x)).

Let xj+1 be the optimal solution obtained (xj+1 is obtained by a quasi

-Newton method).

Step 3: If xj+1 is ε-feasible to (P), then stop and we have obtained an

approximate solution xj+1 of (P). Otherwise, let ρj+1 = Nρj,

εj+1 = ηεj and j = j + 1, then go to Step 2.

Remark 2. By Theorem 2.7 and Step 3 of Algorithm 3.1, xj+1 is an

approximate optimal solution to (P).

In practice, it is difficult to compute xj+1 ∈ arg min
x∈Rn

Fεj
(x, ρj). We gener-

ally look for the local minimizer or stationary point of Fεj
(x, ρj) by computing

xj+1 such that ∇Fεj
(x, ρj) = 0.
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For x ∈ Rn, ε > 0, let us define

I0(x) = {i | gi(x) = 0, i ∈ I},
I−(x) = {i | gi(x) < 0, i ∈ I},
I−ε (x) = {i | 0 ≤ gi(x) < ε, i ∈ I},
I+
ε (x) = {i | gi(x) ≥ ε, i ∈ I}.

The convergence of the Algorithm 3.1 is proved in the following theorem.

Theorem 3.1. Let k >
1

2
. Assume that lim

‖x‖→+∞, x∈Rn
f(x) = +∞. Let

{xj} be the sequence generated by Algorithm 3.1. Suppose that the sequence

{Fεj
(xj, ρj)} is bounded. Then, {xj} is bounded and any limit point x∗ of {xj}

is feasible to (P), and there exists λ ≥ 0 and µi ≥ 0, i = 1, 2, . . . ,m, such

that

λ∇f(x∗) +
∑

i∈I0(x∗)

µi∇gi(x
∗) = 0. (9)

Proof. First, we will prove that {xj} is bounded. Note that

Fεj
(xj, ρj) = f(xj)k + ρj

m∑
i=1

pk
εj

(
gi(x

j)
)
, j = 0, 1, 2, . . . , (10)

From (6), we have
m∑

i=1

pk
εj

(
gi(x

j)
) ≥ 0. (11)

Suppose to the contrary that {xj} is unbounded. Without loss of generality,

we assume that ‖xj‖ → +∞ as j → +∞. Then lim
j→+∞

fk(xj) = +∞ for k >
1

2
and from (10) and (11), we have

Fεj
(xj, ρj) ≥ fk(xj) → +∞, ρj > 0, j = 0, 1, 2, . . . ,

which results in a contradiction since the sequence {Fεj
(xj, ρj)} is bounded.

Thus {xj} is bounded.

We now show that any limit point of {xj} belongs to F0. Without loss of

generality, we assume lim
j→+∞

xj = x∗. Suppose to the contrary that x∗ /∈ F0,

then there exits some i ∈ I such that gi(x
∗) > α > 0. As gi (i ∈ I) are
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continuous, so Fεj
(xj, ρj) (j = 1, 2, . . .) are continuous. Note that

Fεj
(xj, ρj) = f(xj)k + ρj

∑

i∈I−εj
(xj)

(
1 +

1

kεk−1
j

)
gi(x

j)2k

2εk
j

(12)

+ ρj

∑

i∈I+
εj

(xj)

(
gi(x

j)k + εj ln(gi(x
j))− 1

2

(
1− 1

kεk−1
j

+
2 ln εj

εk−1
j

)
εk
j

)
.

Then, ρj → +∞ and εj → 0 as j → +∞, Fεj
(xj, ρj) → +∞, which contradicts

the assumption that {Fεj
(xj, ρj)} is bounded. Therefore, x∗ is feasible to (P).

Finally, we show that (9) holds. By Lemma 2.3 and Step 2 in Algorithm

3.1, we have ∇Fεj
(xj, ρj) = 0, that is

kf(xj)k−1∇f(xj) + ρj

∑

i∈I+
εj

(xj)

(
kgi(x

j)k−1 +
εj

gi(xj)

)
∇gi(x

j)

+ ρj

∑

i∈I−εj
(xj)

k

εk
j

(
1 +

1

kεk−1
j

)
gi(x

j)2k−1∇gi(x
j) = 0. (13)

For j = 1, 2, . . . , let

γj = kf(xj)k−1 +
∑

i∈I+
εj

(xj)

ρj

(
kgi(x

j)k−1 +
εj

gi(xj)

)

+
∑

i∈I−εj
(xj)

ρjk

εk
j

(
1 +

1

kεk−1
j

)
gi(x

j)2k−1.

Then γj > 0, j = 1, 2, . . .. From (13), we have

kf(xj)k−1

γj

∇f(xj) +
∑

i∈I+
εj

(xj)

ρj

(
kgi(x

j)k−1 +
εj

gi(xj)

)

γj

∇gi(x
j)

+
∑

i∈I−εj
(xj)

ρjk

εk
j

(
1 +

1

kεk−1
j

)
gi(x

j)2k−1

γj

∇gi(x
j) = 0. (14)
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Let

λj =
kf(xj)k−1

γj

,

µj
i =

ρj

(
kgi(x

j)k−1 +
εj

gi(xj)

)

γj

, i ∈ I+
εj

(xj),

µj
i =

ρjk

εk
j

(
1 +

1

kεk−1
j

)
gi(x

j)2k−1

γj

, i ∈ I−εj
(xj),

µj
i = 0, i ∈ I \

(
I+
εj

(xj) ∪ I−εj
(xj)

)
.

Then we have

λj +
∑
i∈I

µj
i = 1, ∀j, (15)

µj
i ≥ 0, i ∈ I, ∀j.

Obviously, we can assume without loss of generality that λj → λ ≥ 0, µj
i →

µi ≥ 0, ∀i ∈ I. By (14) and (15), as j → +∞, we have

λ∇f(x∗) +
∑
i∈I

µi∇gi(x
∗) = 0,

λ +
∑
i∈I

µi = 1.

For i ∈ I−(x∗), as j →∞, we get µj
i → 0. Therefore, µi = 0, ∀i ∈ I−(x∗), so,

(9) holds, and this completes the proof.

The speed of convergence of Algorithm 3.1 depends on the speed of con-

vergence of the algorithm employed in Step 2 to solve the unconstrained opti-

mization problem min
x∈Rn

Fεj
(x, ρj).

4 Numerical examples

In this section, we solve some constrained optimization problems with Algo-

rithm 3.1 on MATLAB. In each of the following examples, the MATLAB 7.12

subroutine fmincon is used to obtain the local minima of problem (NPρj ,εj
).
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Table 1: Results for Example 4.1 with k = 2/3, x0 = (−1, 1), ρ0 = 1, N = 3

j ρj εj f(xj) g1(xj) g2(xj) xj

1 1 0.01 3.517837 8.117813 -2.498812 (-1.078642,1.095343)

2 3 0.0005 2.859830 1.084860 -3.381246 (0.417153,1.067453)

3 9 0.000025 1.837548 -0.775885 -0.000000 (0.725360,0.399259)

The numerical results of each example are presented in the following tables.

It is shown that Algorithm 3.1 yield some approximate solutions that have a

better objective function value in comparison with some other algorithms.

Example 4.1. Consider the example in [6],

(P4.1) min f(x) = x2
1 + x2

2 − cos(17x1)− cos(17x2) + 3

s.t. g1(x) = (x1 − 2)2 + x2
2 − 1.62 ≤ 0,

g2(x) = x2
1 + (x2 − 3)2 − 2.72 ≤ 0,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2.

Let k = 2/3, x0 = (−1, 1), ε0 = 0.01, η = 0.05, ρ0 = 1, N = 3 and

ε = 10−6. Numerical results of Algorithm 3.1 for solving (P4.1) are given in

Table 1.

Therefore, we get an approximate solution

x3 = (0.725360, 0.399259)

at the 3’th iteration. The objective function value is given by f(x3) = 1.837548.

One can easily check that x3 is a feasible solution since the constraints of (P4.1)

at x3 are as follows:

g1(x
3) = (0.725360− 2)2 + 0.3992592 − 1.62 = −0.775885121319001,

g2(x
3) = 0.7253602 + (0.399259− 3)2 − 2.72 = −0.000000878680999,

0 ≤ x1 = 0.725360 ≤ 2, 0 ≤ x2 = 0.399259 ≤ 2.

The solution we obtained is slightly better than the solution obtained in the

3’th iteration by method in [6] (the objective function value f(x∗) = 1.837623)

for this example.

Note: j is the number of iteration in the Algorithm 3.1.

ρj is constrain penalty parameter at the j′th iteration.
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xj is a solution at the j′th iteration in the Algorithm 3.1.

f(xj) is an objective value at xj.

gi(xj) (i = 1, . . . , m) is a constrain value at xj.

Example 4.2. Consider the example in [7],

(P4.2) min f(x) =10x2 + 2x3 + x4 + 3x5 + 4x6

s.t. g1(x) =x1 + x2 − 10 = 0,

g2(x) =− x1 + x3 + x4 + x5 = 0,

g3(x) =− x2 − x3 + x5 + x6 = 0,

g4(x) =10x1 − 2x3 + 3x4 − 2x5 − 16 ≤ 0,

g5(x) =x1 + 4x3 + x5 − 10 ≤ 0,

0 ≤x1 ≤ 12,

0 ≤x2 ≤ 18,

0 ≤x3 ≤ 5,

0 ≤x4 ≤ 12,

0 ≤x5 ≤ 1,

0 ≤x6 ≤ 16.

Let k = 2, x0 = (0, 0, 0, 0, 0, 0), ε0 = 0.1, η = 0.05, ρ0 = 1000, N = 10

and ε = 10−6. Numerical results of Algorithm 3.1 for solving (P4.2) are given

in Table 2 and Table 3.

From Tables 2 and 3, it is said that an approximate ε-feasible solution to

(P4.2) is obtained at the 3’th iteration, that is

x3 = (1.665206, 8.318518, 0.138232, 0.527605, 0.994833, 7.456874)

with corresponding objective function value f(x3) = 116.801239. It is easy to

check that the x3 is feasible solution to (P3.1). The solution we obtained is

slightly better than the solution obtained in the 3’th iteration by method in

[7] (the objective function value f(x∗) = 117.010399) for this example.
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Table 2: Results for Example 4.2 with k = 2, x0 = (0, 0, 0, 0, 0, 0), ρ0 = 1000 and N = 10

j ρj f(xj) xj

1 1000 92.073639 (1.916631,6.794338,-0.002734,-0.003214,1.554299,4.869011)

2 10000 114.371962 (1.658223,8.181657,0.080941,0.528827,1.002706,7.214142)

3 100000 116.801239 (1.665206,8.318518,0.138232,0.527605,0.994833,7.456874)

Table 3: Results for Example 4.2 with k = 2, x0 = (0, 0, 0, 0, 0, 0), ρ0 = 1000 and
N = 10 (Continued)

j εj g1(xj) g2(xj) g3(xj) g4(xj) g5(xj)

1 0.1 -1.289031 -0.368279 -0.368295 0.053538 -6.540004

2 0.005 -0.160121 -0.045749 -0.045749 0.001415 -7.015308

3 0.00025 -0.016276 -0.004536 -0.005043 -0.031255 -6.787033

Example 4.3. Consider the example in [7],

(P4.3) min f(x) =1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

s.t. g1(x) =x2
1 + x2

2 + x2
3 − 25 = 0,

g2(x) =(x1 − 5)2 + x2
2 + x2

3 − 25 = 0,

g3(x) =(x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2 − 25 ≤ 0.

Let k = 1, x0 = (1, 1, 1), ε0 = 0.01, η = 0.02, ρ0 = 10, N = 1.4 and

ε = 10−6. Numerical results of Algorithm 3.1 for solving (P4.3) are given in

Table 4 and Table 5.

By Tables 4 and 5, an approximate optimal solution to (P4.3) is obtained at

the 4’th iteration, that is x∗ = (2.500000, 4.221237, 0.964966) with correspond-

ing objective function value f(x∗) = 944.215652. The solution we obtained is

slightly better than the solution obtained in the 4’th iteration by method in

[7] (the objective function value f(x∗) = 944.215662) for this example.

Now we change the initial parameters. Let k = 1, x0 = (1, 1, 1), ε0 =

0.01, η = 0.01, ρ0 = 10, N = 1.5 and ε = 10−6. Numerical results of

Algorithm 3.1 for solving (P4.3) are given in Table 6 and Table 7. Further,

with the same parameters k, ρ0, N, ε0,

η as above, we change the starting point to x0 = (2, 4, 1). New numerical

results are given in Table 8 and Table 9.
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Table 4: Results for Example 4.3 with k = 1, x0 = (1, 1, 1), ρ0 = 10, N = 1.4

j εj f(xj) xj

1 0.01 944.213296 (2.500102,4.221422,0.964456)

2 0.0002 944.215618 (2.500001,4.221362,0.964423)

3 0.000004 944.215655 (2.500000,4.220569,0.967885)

4 0.00000008 944.215652 (2.500000,4.221237,0.964966)

Table 5: Results for Example 4.3 with k = 1, x0 = (1, 1, 1) (Continued)

j ρj g1(xj) g2(xj) g3(xj)

1 10 0.001083 0.000065 -1.858705

2 14 0.000015 0.000001 -1.857845

3 19.6 0.000005 0.000005 -1.884536

4 27.44 -0.000000 -0.000000 -1.862025

It is easy to see from Tables 6-9 that the convergence of Algorithm 3.1 is

the same and the objective function values are almost the same. That is to say,

the efficiency of Algorithm 3.1 does not completely depend on how to choose

a starting point in this example.

5 Conclusions

This paper has presented a smoothing approximation to the k-th power

nonlinear penalty function and an algorithm based on this smoothed nonlin-

ear penalty problem. It is shown that an optimal solution to the (NPρ,ε) is

Table 6: Results for Example 4.3 with k = 1, x0 = (1, 1, 1), ρ0 = 10, N = 1.5

j εj f(xj) xj

1 0.01 944.213296 (2.500102,4.221422,0.964456)

2 0.0001 944.215636 (2.500001,4.221362,0.964422)

3 0.000001 944.215649 (2.500000,4.221301,0.964684)

4 0.00000001 944.215691 (2.500000,4.222596,0.959002)
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Table 7: Results for Example 4.3 with k = 1, x0 = (1, 1, 1) (Continued)

j ρj g1(xj) g2(xj) g3(xj)

1 10 0.001083 0.000065 -1.858705

2 15 0.000007 0.000004 -1.857838

3 22.5 0.000001 0.000001 -1.859853

4 33.75 -0.000000 -0.000002 -1.815976

Table 8: Results for Example 4.3 with k = 1, x0 = (2, 4, 1), ρ0 = 10, N = 1.5

j εj f(xj) xj

1 0.01 944.213296 (2.500102,4.221422,0.964456)

2 0.0001 944.215636 (2.500001,4.221362,0.964422)

3 0.000001 944.215650 (2.500000,4.221422,0.964155)

4 0.00000001 944.215692 (2.500000,4.222568,0.959122)

Table 9: Results for Example 4.3 with k = 1, x0 = (2, 4, 1) (Continued)

j ρj g1(xj) g2(xj) g3(xj)

1 10 0.001083 0.000065 -1.858705

2 15 0.000007 0.000004 -1.857838

3 22.5 0.000001 0.000001 -1.855774

4 33.75 -0.000002 -0.000002 -1.816903
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an approximate optimal solution to the original optimization problem under

some mild conditions. Numerical experiments show that the Algorithm 3.1

has a good convergence for a global approximate solution.
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