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2 Second-order smoothing approximation

1 Introduction

Consider the nonlinear inequality constrained optimization problem:

(P) min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . , m,

where f, gi : Rn → R, i ∈ I = {1, 2, . . . , m} are twice continuously differen-

tiable functions and X0 = {x ∈ Rn | gi(x) ≤ 0, i = 1, 2, . . . , m} is the feasible

set to (P).

To solve (P), many exact penalty function methods have been introduced

in literatures, see, [1, 3, 4, 5, 7, 13, 24]. In 1967, Zangwill [24] first the classical

l1 exact penalty function as follows:

F (x, ρ) = f(x) + ρ

m∑
i=1

max{gi(x), 0}, (1)

where ρ > 0 is a penalty parameter.

Note that penalty function (1) is not a smooth function. The obvious dif-

ficulty with the exact penalty function is that it is non-differentiable, which

prevents the use of efficient minimization algorithms and may cause some nu-

merical instability problems in its implementation. In order to avoid the draw-

back related to the nondifferentiability, the smoothing methods of the exact

penalty functions attracts much attention, see, [2, 8, 9, 10, 11, 12, 17, 18, 19, 20,

21, 23, 25]. Chen et al. [2] introduced a smooth function to approximate the

classical l1 penalty function by integrating the sigmoid function 1/(1 + e−αt).

Lian [8] and Wu et al. [18] proposed a smoothing approximation to l1 exact

penalty function for inequality constrained optimization. Pinar et al. [12] also

proposed a smoothing approximation to l1 exact penalty function and an ε-

optimal minimum can be obtained by solving the smoothed penalty problem.

Xu et al. [20] discussed a second-order differentiability smoothing to the clas-

sical l1 exact penalty function for constrained optimization problems. Meng et

al. [10] introduced a smoothing of the square-root exact penalty function for

inequality constrained optimization. However, little attention has been paid

to smoothing the exact penalty function in terms of second-order differentia-

bility. So, here we present a second-order smoothing approximation to the l1

exact penalty function (1), and based on the smoothed penalty function ob-
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tained thereafter an algorithm for solving nonlinear constrained optimization

problems is given in this paper.

The rest of this paper is organized as follows. In Section 2, we introduce

a smoothing function for the classical l1 exact penalty function and some fun-

damental properties of the smoothing function. In Section 2, the algorithm

based on the smoothed penalty function is proposed and its global conver-

gence is presented, with some numerical examples given. Finally, conclusions

are given in Section 3.

2 Second-order smoothing penalty function

Let q(t) = max{t, 0}. Then, the penalty function (1) is turned into

G(x, ρ) = f(x) + ρ

m∑
i=1

q (gi(x)) , (2)

where ρ > 0. The corresponding penalty optimization problem to G(x, ρ) is

defined as

(Pρ) min G(x, ρ), s.t. x ∈ Rn.

In order to q(t), we define function qε(t) : R1 → R1 as

qε(t) =





0 if t < 0,
t3

9ε2
if 0 ≤ t < ε,

t +
2

3
εe−

t
ε
+1 − 14ε

9
if t ≥ ε,

where ε > 0 is a smoothing parameter.

Remark 1. Obviously, qε(t) has the following attractive properties:

(i) For any ε > 0, qε(t) is twice continuously differentiable on R, where

q′ε(t) =





0 if t < 0,
t2

3ε2
if 0 ≤ t < ε,

1− 2

3
e−

t
ε
+1 if t ≥ ε,
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and

q′′ε(t) =





0 if t < 0,
2t

3ε2
if 0 ≤ t < ε,

2

3ε
e−

t
ε
+1 if t ≥ ε.

(ii) lim
ε→0

qε(t) = q(t).

(iii) qε(t) is convex and monotonically increasing in t for any given ε > 0.

Property (iii) follow from (i) immediately.

Suppose that f and gi(i = 1, 2, . . . , m) are second-order continuously dif-

ferentiable. Consider the penalty function for (P) given by

Gε(x, ρ) = f(x) + ρ

m∑
i=1

qε (gi(x)) . (3)

Clearly, Gε(x, ρ) is second-order continuously differentiable on Rn. Applying

(3), the following penalty problem for (P) is obtained

(SPρ,ε) min Gε(x, ρ), s.t. x ∈ Rn.

Now, the relationship between (Pρ) and (SPρ,ε) is studied.

Lemma 2.1. For any given x ∈ Rn, ε > 0 and ρ > 0, we have

0 ≤ G(x, ρ)−Gε(x, ρ) ≤ 14mρε

9
. (4)

Proof. For x ∈ Rn and i ∈ I, by the definition of qε(t), we have

q (gi(x))− qε (gi(x)) =





0 if gi(x) < 0,

gi(x)− gi(x)3

9ε2
if 0 ≤ gi(x) < ε,

14ε

9
− 2

3
εe−

gi(x)

ε
+1 if gi(x) ≥ ε.

That is,

0 ≤ q (gi(x))− qε (gi(x)) ≤ 14ε

9
, i = 1, 2, . . . , m.

Thus,

0 ≤
m∑

i=1

q (gi(x))−
m∑

i=1

qε (gi(x)) ≤ 14mε

9
,
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which implies

0 ≤ ρ

m∑
i=1

q (gi(x))− ρ

m∑
i=1

qε (gi(x)) ≤ 14mρε

9
.

Therefore,

0 ≤
{

f(x) + ρ

m∑
i=1

q (gi(x))

}
−

{
f(x) + ρ

m∑
i=1

qε (gi(x))

}
≤ 14mρε

9
,

that is,

0 ≤ G(x, ρ)−Gε(x, ρ) ≤ 14mρε

9
.

The proof completes.

A direct result of Lemma 2.1 is given as follows.

Corollary 2.2. Let {εj} → 0 be a sequence of positive numbers and assume

xj is a solution to (SPρ,ε) for some given ρ > 0. Let x′ be an accumulation

point of the sequence {xj}. Then x′ is an optimal solution to (Pρ).

Definition 2.3. For ε > 0, a point xε ∈ Rn is called ε-feasible solution to

(P) if gi(xε) ≤ ε, ∀i ∈ I.

Definition 2.4. For ε > 0, a point xε ∈ X0 is called ε-approximate optimal

solution to (P) if

|f ∗ − f(xε)| ≤ ε,

where f ∗ is the optimal objective value of (P).

Theorem 2.5. Let x∗ be an optimal solution of problem (Pρ) and x′ be an

optimal solution to (SPρ,ε) for some ρ > 0 and ε > 0. Then,

0 ≤ G(x∗, ρ)−Gε(x
′, ρ) ≤ 14mρε

9
. (5)

Proof. From Lemma 2.1, for ρ > 0, we have that

0 ≤ G(x∗, ρ)−Gε(x
∗, ρ) ≤ 14mρε

9
,

0 ≤ G(x′, ρ)−Gε(x
′, ρ) ≤ 14mρε

9
.
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Under the assumption that x∗ is an optimal solution to (Pρ) and x′ is an

optimal solution to (SPρ,ε), we get

G(x∗, ρ) ≤ G(x′, ρ),

Gε(x
′, ρ) ≤ Gε(x

∗, ρ).

Therefore, we obtain that

0 ≤ G(x∗, ρ)−Gε(x
∗, ρ) ≤ G(x∗, ρ)−Gε(x

′, ρ)

≤ G(x′, ρ)−Gε(x
′, ρ) ≤ 14mρε

9
.

That is,

0 ≤ G(x∗, ρ)−Gε(x
′, ρ) ≤ 14mρε

9
.

This completes the proof.

Lemma 2.6 ([19]). Suppose that x∗ is an optimal solution to (Pρ). If x∗

is feasible to (P), then it is an optimal solution to (P).

Theorem 2.7. Suppose that x∗ satisfies the conditions in Lemma 2.6 and

x′ be an optimal solution to (SPρ,ε) for some ρ > 0 and ε > 0. If x′ is ε-feasible

to (P). Then,

0 ≤ f(x∗)− f(x′) ≤ 5mρε

3
, (6)

that is, x′ is an approximate optimal solution to (P).

Proof. Since x′ is ε-feasible to (P), it follows that

m∑
i=1

qε (gi(x
′)) ≤ mε

9
.

As x∗ is a feasible solution to (P), we have

m∑
i=1

q (gi(x
∗)) = 0.

By Theorem 2.5, we get

0 ≤
{

f(x∗) + ρ
m∑

i=1

q (gi(x
∗))

}
−

{
f(x′) + ρ

m∑
i=1

qε (gi(x
′))

}
≤ 14mρε

9
.
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Thus,

ρ

m∑
i=1

qε (gi(x
′)) ≤ f(x∗)− f(x′) ≤ ρ

m∑
i=1

qε (gi(x
′)) +

14mρε

9
.

That is,

0 ≤ f(x∗)− f(x′) ≤ 5mρε

3
.

By Lemma 2.6, x∗ is actually an optimal solution to (P). Thus x′ is an approx-

imate optimal solution to (P). This completes the proof.

Theorem 2.5 show that an approximate solution to (SPρ,ε) is also an ap-

proximate solution to (Pρ) when the error ε is sufficiently small. By Theorem

2.7, an optimal solution to (SPρ,ε) is an approximate optimal solution to (P)

if it is ε-feasible to (P).

Definition 2.8. For x∗ ∈ Rn, we call y∗ ∈ Rm a Lagrange multiplier vector

corresponding to x∗ if and only if x∗ and y∗ satisfy that

∇f(x∗) +
m∑

i=1

y∗i∇gi(x
∗) = 0, (7)

y∗i gi(x
∗) = 0, gi(x

∗) ≤ 0, y∗i ≥ 0, i ∈ I. (8)

Theorem 2.9. Let f and gi, i ∈ I in (P) are convex. Let x∗ be an optimal

solution of (P) and y∗ ∈ Rm a Lagrange multiplier vector corresponding to x∗.

Then for some ε > 0,

G(x∗, ρ)−Gε(x, ρ) ≤ 14mρε

9
, ∀x ∈ Rn, (9)

provided that ρ ≥ y∗i , i = 1, 2, . . . , m.

Proof. By the convexity of f and gi, i = 1, 2, . . . ,m, we have

f(x) ≥ f(x∗) +∇f(x∗)T (x− x∗), ∀x ∈ Rn,

gi(x) ≥ gi(x
∗) +∇gi(x

∗)T (x− x∗), ∀x ∈ Rn. (10)
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Since x∗ is an optimal solution of (P) and y∗ is a Lagrange multiplier vector

corresponding to x∗, by (7), (8), (9) and (10), we have

f(x) ≥ f(x∗) +∇f(x∗)T (x− x∗)

= f(x∗)−
m∑

i=1

y∗i∇gi(x
∗)T (x− x∗)

≥ f(x∗)−
m∑

i=1

y∗i (gi(x)− gi(x
∗))

= f(x∗)−
m∑

i=1

y∗i gi(x).

Since gi(x) ≤ g+
i (x) (g+

i (x) = max{0, gi(x)}, i ∈ I), we have

G(x, ρ) = f(x) + ρ

m∑
i=1

g+
i (x) ≥ f(x∗)−

m∑
i=1

y∗i gi(x) + ρ

m∑
i=1

g+
i (x)

≥ f(x∗) +
m∑

i=1

(ρ− y∗i )g
+
i (x).

Thus, for ρ ≥ y∗i , i = 1, 2, . . . , m, we get G(x, ρ) ≥ f(x∗). Since x∗ is feasible,

then f(x∗) = G(x∗, ρ) and by Lemma 2.1, we have

G(x∗, ρ)−Gε(x, ρ) = G(x∗, ρ)−G(x, ρ) + G(x, ρ)−Gε(x, ρ)

= f(x∗)−G(x, ρ) + G(x, ρ)−Gε(x, ρ)

≤ G(x, ρ)−Gε(x, ρ) ≤ 14mρε

9
.

This completes the proof.

By Theorem 2.9, when the parameter ρ is sufficiently large, an approximate

optimal solution to (SPρ,ε) is an approximate optimal solution to (P), where

(P) is a convex problem. Therefore, we may obtain an approximate optimal

solution to (P) by computing an approximate optimal solution to (SPρ,ε).

sectionAlgorithm and numerical examples

In this section, using the smoothed penalty function Gε(x, ρ), we propose

an algorithm to solve nonlinear constrained optimization problems, defined as

Algorithm I
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Algorithm I

Step 1: Choose x0, ε > 0, ε0 > 0, ρ0 > 0, 0 < η < 1 and N > 1, let j = 0

and go to Step 2.

Step 2: Use xj as the starting point to solve

(SPρj ,εj
) min

x∈Rn
Gεj

(x, ρj) = f(x) + ρj

m∑
i=1

qεj
(gi(x)) .

Let xj+1 be the optimal solution obtained (xj+1 is obtained by a quasi

-Newton method).

Step 3: If xj+1 is ε-feasible to (P), then stop and we have obtained an

approximate solution xj+1 of (P). Otherwise, let ρj+1 = Nρj,

εj+1 = ηεj and j = j + 1, then go to Step 2.

Remark 2. In this Algorithm I, as N > 1 and 0 < η < 1, the sequence

{εj} → 0 (j → +∞) and the sequence {ρj} → +∞ (j → +∞).

In practice, it is difficult to compute xj+1 ∈ arg min
x∈Rn

Gεj
(x, ρj). We gener-

ally look for the local minimizer or stationary point of Gεj
(x, ρj) by computing

xj+1 such that ∇Gεj
(x, ρj) = 0.

For x ∈ Rn, we define

I0(x) = {i | gi(x) < 0, i ∈ I},
I+
ε (x) = {i | gi(x) ≥ ε, i ∈ I},

I−ε (x) = {i | 0 ≤ gi(x) < ε, i ∈ I}.

Then, the following result is obtained.

Theorem 2.10. Assume that lim
‖x‖→+∞

f(x) = +∞. Let {xj} be the sequence

generated by Algorithm I. Suppose that the sequence {Gεj
(xj, ρj)} is bounded.

Then {xj} is bounded and any limit point x∗ of {xj} is feasible to (P), and

satisfies

λ∇f(x∗) +
∑
i∈I

µi∇gi(x
∗) = 0, (11)

where λ ≥ 0 and µi ≥ 0, i = 1, 2, . . . ,m.

Proof. First, we will prove that {xj} is bounded. Note that

Gεj
(xj, ρj) = f(xj) + ρj

m∑
i=1

qεj

(
gi(x

j)
)
, j = 0, 1, 2, . . . , (12)
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and by the definition of qε(t), we have

m∑
i=1

qεj

(
gi(x

j)
) ≥ 0. (13)

Suppose to the contrary that {xj} is unbounded. Without loss of generality,

we assume that ‖xj‖ → +∞ as j → +∞. Then, lim
j→+∞

f(xj) = +∞ and from

(12) and (13), we have

Gεj
(xj, ρj) ≥ f(xj) → +∞, ρj > 0, j = 0, 1, 2, . . . ,

which results in a contradiction since the sequence {Gεj
(xj, ρj)} is bounded.

Thus {xj} is bounded.

We show next that any limit point x∗ of {xj} is feasible to (P). Without

loss of generality, we assume that lim
j→+∞

xj = x∗. Suppose that x∗ is not feasible

to (P). Then there exits some i ∈ I such that gi(x
∗) ≥ α > 0. Note that

Gεj
(xj, ρj) = f(xj) + ρj

∑

i∈I+
εj

(xj)

(
gi(x

j) +
2

3
εje

− gi(x
j)

εj
+1 − 14εj

9

)

+ ρj

∑

i∈I−εj
(xj)

gi(x
j)3

9ε2
j

. (14)

If j → +∞, then for any sufficiently large j, the set {i | gi(x
j) ≥ α} is not

empty. Because I is finite, then there exists an i0 ∈ I that satisfies gi0(x
j) ≥ α.

If j → +∞, ρj → +∞, εj → 0, it follows from (14) that Gεj
(xj, ρj) → +∞,

which contradicts the assumption that {Gεj
(xj, ρj)} is bounded. Therefore, x∗

is feasible to (P).

Finally, we show that (11) holds. By Step 2 in Algorithm I, ∇Gεj
(xj, ρj) =

0, that is

∇f(xj) + ρj

∑

i∈I+
εj

(xj)

(
1− 2

3
e
− gi(x

j)

εj
+1

)
∇gi(x

j)

+ ρj

∑

i∈I−εj
(xj)

1

3ε2
j

gi(x
j)2∇gi(x

j) = 0. (15)

For j = 1, 2, . . . , let

γj = 1 +
∑

i∈I+
εj

(xj)

ρj

(
1− 2

3
e
− gi(x

j)

εj
+1

)
+

∑

i∈I−εj
(xj)

ρj

3ε2
j

gi(x
j)2. (16)
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Then γj > 1. From (15), we have

1

γj

∇f(xj) +
∑

i∈I+
εj

(xj)

ρj

(
1− 2

3
e
− gi(x

j)

εj
+1

)

γj

∇gi(x
j)

+
∑

i∈I−εj
(xj)

ρjε
−2
j

3γj

gi(x
j)2∇gi(x

j) = 0. (17)

Let

λj =
1

γj

,

µj
i =

ρj

(
1− 2

3
e
− gi(x

j)

εj
+1

)

γj

, i ∈ I+
εj

(xj),

µj
i =

ρjε
−2
j

3γj

gi(x
j)2, i ∈ I−εj

(xj),

µj
i = 0, i ∈ I \

(
I+
εj

(xj) ∪ I−εj
(xj)

)
.

Then we have

λj +
∑
i∈I

µj
i = 1, ∀j, (18)

µj
i ≥ 0, i ∈ I, ∀j.

When j → ∞, we have that λj → λ ≥ 0, µj
i → µi ≥ 0, ∀i ∈ I. By (17) and

(18), as j → +∞, we have

λ∇f(x∗) +
∑
i∈I

µi∇gi(x
∗) = 0,

λ +
∑
i∈I

µi = 1.

For i ∈ I0(x∗), as j → +∞, we get µj
i → 0. Therefore, µi = 0, ∀i ∈ I0(x∗).

So, (11) holds, and this completes the proof.

Now, we will solve some nonlinear constrained optimization problems with

Algorithm I on MATLAB. In each of the following examples, the MATLAB

7.12 subroutine fmincon is used to obtain the local minima of problem (SPρj ,εj
).
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The numerical results of each example are presented in the following tables. It

is shown that Algorithm I yield some approximate solutions that have a better

objective function value in comparison with some other algorithms.

Example 1. Consider the example in [8],

(P3.1) min f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 ≤ 0,

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0,

g3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0.

Let x0 = (0, 0, 0, 0), ρ0 = 10, N = 4, ε0 = 0.02, η = 0.01 and ε = 10−6.

Numerical results of Algorithm I for solving (P3.1) are given in Table 1.

From Table 1, it is said that an approximate ε-feasible solution to (P3.1)

is obtained at the 3’th iteration, that is

x3 = (0.168232, 0.834156, 2.010050,−0.963345)

with corresponding objective function value f(x3) = −44.233662. It is easy to

check that the x3 is feasible solution to (P3.1). The solution we obtained is

slightly better than the solution obtained in the 4’th iteration by method in [8]

(the objective function value f(x∗) = −44.23040) for this example. Further,

with the same parameters ρ0, N, ε0, η as above, we change the starting point

to x0 = (1, 1, 1, 1) or x0 = (6, 6, 6, 6). New numerical results by Algorithm I

are given in Table 2 and Table 3.

It is easy to see from Tables 2 and 3 that the convergence of Algorithm I

is the same and the objective function values are almost the same. That is to

say, the efficiency of Algorithm I does not completely depend on the starting

point x0. Then, we can choose any starting point for Algorithm I.

Note: j is the number of iteration in the Algorithm I.

ρj is constrain penalty parameter at the j′th iteration.

xj is a solution at the j′th iteration in the Algorithm I.

f(xj) is an objective value at xj.

gi(xj) (i = 1, . . . , m) is a constrain value at xj.
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Table 1: Numerical results of Algorithm I with x0 = (0, 0, 0, 0), ρ0 = 10, N = 4

j ρj εj f(xj) g1(xj) g2(xj) g3(xj) xj

1 10 0.02 -44.271512 0.009467 0.001542 -1.866763 (0.170216,0.836027,

2.010594,-0.966369)

2 40 0.0002 -44.234025 0.000047 0.000077 -1.883044 (0.169563,0.835533,

2.008644,-0.964884)

3 160 0.000002 -44.233662 -0.000000 -0.000072 -1.888579 (0.168232,0.834156,

2.010050,-0.963345)

Table 2: Numerical results of Algorithm I with x0 = (1, 1, 1, 1), ρ0 = 10, N = 4

j ρj εj f(xj) g1(xj) g2(xj) g3(xj) xj

1 10 0.02 -44.271512 0.009467 0.001542 -1.866763 (0.170216,0.836027,

2.010594,-0.966369)

2 40 0.0002 -44.234025 0.000047 0.000077 -1.883044 (0.169563,0.835533,

2.008644,-0.964884)

3 160 0.000002 -44.233355 -0.000113 -0.000079 -1.900244 (0.166329,0.831255,

2.012529,-0.960615)

Example 2. Consider the example in [18],

(P3.2) min f(x) = −2x1 − 6x2 + x2
1 − 2x1x2 + 2x2

2

s.t. x1 + x2 ≤ 2,

− x1 + 2x2 ≤ 2,

x1, x2 ≥ 0.

Let g1(x) = x1+x2−2, g2(x) = −x1+2x2−2, g3(x) = −x1, g4(x) = −x2.

Thus problem (P3.2) is equivalent to the following problem:

(P3.2’) min f(x) = −2x1 − 6x2 + x2
1 − 2x1x2 + 2x2

2

s.t. g1(x) = x1 + x2 − 2 ≤ 0,

g2(x) = −x1 + 2x2 − 2 ≤ 0,

g3(x) = −x1 ≤ 0,

g4(x) = −x2 ≤ 0.
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Table 3: Numerical results of Algorithm I with x0 = (6, 6, 6, 6), ρ0 = 10, N = 4

j ρj εj f(xj) g1(xj) g2(xj) g3(xj) xj

1 10 0.02 -44.271512 0.009467 0.001542 -1.866763 (0.170216,0.836027,

2.010594,-0.966369)

2 40 0.0002 -44.234025 0.000047 0.000077 -1.883044 (0.169563,0.835533,

2.008644,-0.964884)

3 160 0.000002 -44.232449 -0.000613 -0.000188 -1.856917 (0.159767,0.840231,

2.011450,-0.963346)

Let x0 = (0, 0), ρ0 = 8, N = 10, ε0 = 0.01, η = 0.01 and ε = 10−6.

Numerical results of Algorithm I for solving (P3.2’) are given in Table 4.

By Table 4, an approximate optimal solution to (P3.2’) is obtained at the

3’th iteration, that is x∗ = (0.800000, 1.200000) with corresponding objective

function value f(x∗) = −7.200000. The solution we obtained is similar with

the solution obtained in the 4’th iteration by method in [18] (the objective

function value f(x∗) = −7.2000) for this example.

Table 4: Numerical results of Algorithm I with x0 = (0, 0), ρ0 = 8, N = 10

j ρj εj f(xj) g1(xj) g2(xj) xj

1 8 0.01 -7.228666 0.010245 -0.397951 (0.806147,1.204098)

2 80 0.0001 -7.200091 0.000032 -0.399994 (0.800019,1.200013)

3 800 0.000001 -7.200000 0.000000 -0.400000 (0.800000,1.200000)

3 Conclusions

This paper has presented a second-order smoothing approximation to the l1

exact penalty function and an algorithm based on this smoothed penalty prob-

lem. It is shown that the optimal solution to the (SPρ,ε) is an approximate

optimal solution to the original optimization problem under some mild condi-

tions. Numerical results show that the Algorithm I has a better convergence

for a global approximate solution.
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