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1 Introduction

Let G be a connected semisimple Lie group with finite center, and de-

note the Harish-Chandra-type Schwartz spaces of functions on G by Cp(G),

0 < p ≤ 2. We know that Cp(G) ⊂ Lp(G) for every such p, and if K is a

maximal compact subgroup of G such that Cp(G//K) represents the subspace

of Cp(G) consisting of the K−bi-invariant functions, Trombi and Varadarajan

[11] have shown that the spherical Fourier transform f 7→ f̂ is a linear topolog-

ical isomorphism of Cp(G//K) onto the spaces Z̄(Fε), ε = (2/p)−1, consisting

of rapidly decreasing functions on certain sets Fε of elementary spherical func-

tions. It then follows that every positive-definite distribution on C∞
c (G) can

be uniquely extended to C1(G//K).

Using these, and improving on the results of Godement [6] on the Bochner

theorem, Barker [3] has shown that every positive-definite distribution, T, on

G extends uniquely to a continuous linear functional on C1(G) and that

T [f ] =

∫
P

f̂dµ

for a uniquely defined Borel measure, µ. Here f ∈ C1(G//K) and P is the space

of positive-definite spherical functions on G. This is his spherical Bochner

theorem which has been extended to all Cp(G//K), 1 ≤ p ≤ 2, with the

requirement that supp(µ) ⊂ Fε.

Now if f ∈ C∞
c (G) and ϕλ ∈ Cp(G//K) we define a function on G, termed

spherical convolutions and denoted Hx,λf, as

Hx,λf = (f ∗ ϕλ)(x).

We show, among other properties, that the map λ 7→ Hx,λf is well-defined on

P , Weyl group invariant, and that the integral over P of its spherical Fourier

transform is a non-zero constant multiple of T [ϕλ] for every f ∈ Cp(G//K)

whenever supp(µ) ⊂ Fε. This gives an expansion formula for this integral

when ϕλ ∈ C2
τ (SL(2, R)), where τ is a double representation on K = SO(2).

When considered as the function x 7→ Hx,λf on G, the behaviours of the

spherical convolutions at the identity element x = e and at λ = 0 show both its

generalization of the Harish-Chandra transforms and its relationship with the

elementary spherical function Ξ respectively. Its membership of the Schwartz

algebra C2(G//K), which leads to the consideration of its spherical Fourier
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transforms, results to the proof of a more inclusive Plancherel formula for

C2(G//K).

Details of these results are contained in §4. after giving a preliminary on

the structure theory of G in §2. and the spherical Bochner theorems in §3.

2 Preliminaries

For the connected semisimple Lie group G with finite center, we denote its

Lie algebra by g whose Cartan decomposition is given as g = t ⊕ p. Denote

by θ the Cartan involution on g whose collection of fixed points is t. We

also denote by K the analytic subgroup of G with Lie algebra t. K is then a

maximal compact subgroup of G. Choose a maximal abelian subspace a of p

with algebraic dual a∗ and set A = exp a. For every λ ∈ a∗ put

gλ = {X ∈ g : [H, X] = λ(H)X,∀H ∈ a},

and call λ a restricted root of (g, a) whenever gλ 6= {0}. Denote by a′ the

open subset of a where all restricted roots are 6= 0, and call its connected

components the Weyl chambers. Let a+ be one of the Weyl chambers, define

the restricted root λ positive whenever it is positive on a+ and denote by 4+

the set of all restricted positive roots. Members of 4+ which form a basis for

4 and can not be written as a linear combination of other members of 4+ are

called simple. We then have the Iwasawa decomposition G = KAN , where N

is the analytic subgroup of G corresponding to n =
∑

λ∈4+ gλ, and the polar

decomposition G = K · cl(A+) ·K, with A+ = exp a+, and cl(A+) denoting the

closure of A+.

If we set M = {k ∈ K : Ad(k)H = H, H ∈ a} and M ′ = {k ∈ K :

Ad(k)a ⊂ a} and call them the centralizer and normalizer of a in K, respec-

tively, then (see [7, p. 284]); (i) M and M ′ are compact and have the same Lie

algebra and (ii) the factor w = M ′/M is a finite group called the Weyl group.

w acts on a∗C as a group of linear transformations by the requirement

(sλ)(H) = λ(s−1H),

H ∈ a, s ∈ w, λ ∈ a∗C, the complexification of a∗. We then have the Bruhat
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decomposition

G =
⊔
s∈w

BmsB

where B = MAN is a closed subgroup of G and ms ∈ M ′ is the representative

of s (i.e., s = msM). The Weyl group invariant members of a space shall be

denoted by the superscript w.

Some of the most important functions on G are the spherical functions

which we now discuss as follows. A non-zero continuous function ϕ on G shall

be called a (zonal) spherical function whenever ϕ(e) = 1, ϕ ∈ C(G//K) :=

{g ∈ C(G): g(k1xk2) = g(x), k1, k2 ∈ K, x ∈ G} and f ∗ ϕ = (f ∗ ϕ)(e) · ϕ for

every f ∈ Cc(G//K), where (f ∗ g)(x) :=
∫

G
f(y)g(y−1x)dy. This leads to the

existence of a homomorphism λ : Cc(G//K) → C given as λ(f) = (f ∗ ϕ)(e).

This definition is equivalent to the satisfaction of the functional relation∫
K

ϕ(xky)dk = ϕ(x)ϕ(y), x, y ∈ G.

It has been shown by Harish-Chandra [8] that spherical functions on G can

be parametrized by members of a∗C. Indeed every spherical function on G is of

the form

ϕλ(x) =

∫
K

e(iλ−p)H(xk)dk, λ ∈ a∗C,

ρ = 1
2

∑
λ∈4+ mλ · λ, where mλ = dim(gλ), and that ϕλ = ϕµ iff λ = sµ

for some s ∈ w. Some of the well-known properties of spherical functions are

ϕ−λ(x
−1) = ϕλ(x), ϕ−λ(x) = ϕ̄λ̄(x), | ϕλ(x) |≤ ϕ<λ(x), | ϕλ(x) |≤ ϕi=λ(x),

ϕ−iρ(x) = 1, λ ∈ a∗C, while | ϕλ(x) |≤ ϕ0(x), λ ∈ ia∗, x ∈ G. Also if Ω is the

Casimir operator on G then

Ωϕλ = −(〈λ, λ〉+ 〈ρ, ρ〉)ϕλ,

where λ ∈ a∗C and 〈λ, µ〉 := tr(adHλ adHµ) for elements Hλ, Hµ ∈ a. The

elements Hλ, Hµ ∈ a are uniquely defined by the requirement that λ(H) =

tr(adH adHλ) and µ(H) = tr(adH adHµ) for every H ∈ a ([7, Theorem 4.2]).

Clearly Ωϕ0 = 0.

Due to a hint dropped by Dixmier [5] (cf. [10]) in his discussion of some

functional calculus, it is necessary to recall the notion of a ‘positive-definite’

function and then discuss the situation for positive-definite spherical functions.
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We call a continuous function f : G → C (algebraically) positive-definite

whenever, for all x1, . . . , xm in G and all α1, . . . , αm in C, we have

m∑
i,j=1

αiᾱjf(x−1
i xj) ≥ 0.

It can be shown (cf. [7.]) that f(e) ≥ 0 and |f(x)| ≤ f(e) for every x ∈ G

implying that the space P of all positive-definite spherical functions on G is a

subset of the space F1 of all bounded spherical functions on G.

We know, by the Helgason-Johnson theorem ([9.]), that

F1 = a∗ + iCρ

where Cρ is the convex hull of {sρ : s ∈ w} in a∗. Defining the involution f ∗

of f as f ∗(x) = f(x−1), it follows that f = f ∗ for every f ∈ P , and if ϕλ ∈ P ,

then λ and λ̄ are Weyl group conjugate, leading to a realization of P as a

subset of w \ a∗C. P becomes a locally compact Hausdorff space when endowed

with the weak ∗−topology as a subset of L∞(G).

3 The Spherical Bochner Theorem and its Ex-

tension

Let

ϕ0(x) :=

∫
K

exp(−ρ(H(xk)))dk

be denoted as Ξ(x) and define σ : G → C as

σ(x) = ‖X‖

for every x = k exp X ∈ G, k ∈ K, X ∈ a, where ‖ · ‖ is a norm on the

finite-dimensional space a. These two functions are spherical functions on G

and there exist numbers c, d such that

1 ≤ Ξ(a)eρ(log a) ≤ c(1 + σ(a))d.

Also there exists r0 > 0 such that c0 =:
∫

G
Ξ(x)2(1 + σ(x))r0dx < ∞, [13, p.

231]. For each 0 ≤ p ≤ 2 define Cp(G) to be the set consisting of functions f
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in C∞(G) for which

‖f‖g1,g2;m := sup
G
|f(g1; x; g2)|Ξ(x)−2/p(1 + σ(x))m < ∞

where g1, g2 ∈ U(gC), the universal enveloping algebra of gC, m ∈ Z+, x ∈ G,

f(x; g2) := d
dt

∣∣
t=0

f(x · (exp tg2)) and f(g1; x) := d
dt

∣∣
t=0

f((exp tg1) · x). We call

Cp(G) the Schwartz space on G for each 0 < p ≤ 2 and note that C2(G) is the

well-known (see, [1]) Harish-Chandra space of rapidly decreasing functions on

G. The inclusions

C∞
c (G) ⊂ Cp(G) ⊂ Lp(G)

hold and with dense images. It also follows that Cp(G) ⊆ Cq(G) whenever

0 ≤ p ≤ q ≤ 2. Each Cp(G) is closed under involution and the convolution, ∗.
Indeed Cp(G) is a Fréchet algebra [12, p. 69]. We endow Cp(G//K) with the

relative topology as a subset of Cp(G).

For any measurable function f on G we define the spherical Fourier trans-

form f̂ as

f̂(λ) =

∫
G

f(x)ϕ−λ(x)dx,

λ ∈ a∗C. It is known (see [3]) that for f, g ∈ L1(G) we have:

(i.) (f ∗ g)∧ = f̂ · ĝ on F1 whenever f (or g) is right - (or left-) K-invariant;

(ii.) (f ∗)∧(ϕ) = f̂(ϕ∗), ϕ ∈ F1; hence (f ∗)∧ = f̂ on P : and, if we define

f#(g) :=
∫

K×K
f(k1xk2)dk1dk2, x ∈ G, then

(iii.) (f#)∧ = f̂ on F1.

In order to know the image of the spherical Fourier transform when re-

stricted to Cp(G//K) we need the following spaces that are central to the

statement of the well-known result of Trombi and Varadarajan [11] (Theorem

3.1 below).

Let Cρ be the closed convex hull of the (finite) set {sρ : s ∈ w} in a∗, i.e.,

Cρ =

{
n∑

i=1

λi(siρ) : λi ≥ 0,
n∑

i=1

λi = 1, si ∈ w

}
where we recall that, for every H ∈ a,

(sρ)(H) =
1

2

∑
λ∈4+

mλ · λ(s−1H).
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Now for each ε > 0 set Fε = a∗ + iεCρ. Each Fε is convex in a∗C and

int(Fε) =
⋃

0<ε′<ε

Fε
′

[11, Lemma 3.2.2]. Let us define Z(F0) = S(a∗) and, for each ε > 0, let

Z(Fε) be the space of all C-valued functions Φ such that (i.) Φ is defined and

holomorphic on int(Fε), and (ii.) for each holomorphic differential operator D

with polynomial coefficients we have supint(Fε) |DΦ| < ∞. The space Z(Fε) is

converted to a Fréchet algebra by equipping it with the topology generated

by the collection, ‖ · ‖Z(Fε), of seminorms given by ‖Φ‖Z(Fε) := supint(Fε) |DΦ|.
It is known that DΦ above extends to a continuous function on all of Fε [11,

p. 278-279]. An appropriate subalgebra of Z(Fε) for our purpose is the closed

subalgebra Z̄(Fε) consisting of w-invariant elements of Z(Fε), ε ≥ 0. The

following well-known result affords us the opportunity of defining a distribution

on Cp(G//K).

3.1 Theorem (Trombi-Varadarajan [11]). Let 0 < p ≤ 2 and set ε =

(2/p)− 1. Then the spherical Fourier transform f 7→ f̂ is a linear topological

algebra isomorphism of Cp(G//K) onto Z̄(Fε). �

In order to use the above theorem to state the results of Barker [3], we

require the following notions.

3.1 Definitions.

(i.) A distribution T on G (i.e., T ∈ C∞
c (G)′) is said to be (integrally)

positive-definite (written as T � 0) whenever

T [f ∗ f ∗] ≥ 0,

for f ∈ C∞
c (G).

(ii.) A distribution T on G is called K-bi-invariant whenever T# = T where

T#[f ] := T [fL(k1)R(k2)],

for f ∈ C∞
c (G).

(iii.) A measure µ defined on P is said to be of polynomial growth if there

exists a holomorphic polynomial Q on a∗C such that
∫
P(dµ/|Q|) < ∞.

(iv.) The support, supp(µ), of a regular Borel measure µ is the smallest closed

set A such that µ(B) = 0 for all Borel sets B disjoint from A.



26 On harmonic analysis of spherical convolutions

The following is the first of the main results of [3].

3.2 Theorem (The spherical Bochner theorem). Suppose T ∈ C∞
c (G)′

and T � 0. Then T extends uniquely to an element in (C1(G))′ and there ex-

ists a unique positive regular Borel measure µ of polynomial growth on P such

that

T [f ] =

∫
P

f̂dµ, f ∈ C1(G//K).

The correspondence between T and µ is bijective when restricted to K−bi-

invariant distributions, in which case the formula holds for all f ∈ C1(G). �

The second of the main results of [3] is a consequence of the Trombi-

Varadarajan theorem (Theorem 3.1 above) and is stated as follows.

3.3 Theorem (The extension theorem). Suppose T is a positive-

definite distribution with spherical Bochner measure µ. Then T ∈ (Cp(G//K))′

iff supp (µ) ⊂ Fε where 1 ≤ p ≤ 2 and ε = (2/p)− 1. In such a case

T [f ] =

∫
P

f̂dµ, f ∈ Cp(G//K). �

4 Spherical Convolutions

We start by defining the central notion of this research work.

4.1 Definition. Let f be any measurable function on G. The spherical

convolution of f is the measurable function, Hx,λf, on G × a∗C given by the

map

(x, λ) 7→ Hx,λf := (f ∗ ϕλ)(x),

where x ∈ G, λ ∈ a∗C.

We shall refer to the map λ 7→ Hx,λf as the spherical convolution of f

at x ∈ G. The importance of Definition 4.1 is seen from the next Lemma

(especially the realization of the spherical Fourier transforms in item (ii.)).

4.1 Lemma. Let f, f1 and f2 be measurable functions on G, whose identity

element is denoted as e. Then

(i.) Hx,λ(f1 ± cf2) = Hx,λf1 ± cHx,λf2, x ∈ G, c ∈ C, λ ∈ a∗C;

(ii.) He,λf = f̂(λ), λ ∈ a∗C;
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(iii.) Hx,01 =
∫

G
Ξ(y−1x)dy, x ∈ G.

(iv.) Hx,−λf = Hx,λf, x ∈ G, λ ∈ a∗C;

Proof. Items (i.) and (iv.) are clear. We recall that, for any measurable

function f on G, the spherical Fourier transform, f̂ , of f is given as f̂(λ) =∫
G

f(x)ϕ−λ(x)dx, λ ∈ a∗C. Since ϕ−λ(x) = ϕλ(x
−1), for every λ ∈ a∗C, x ∈ G,

this may be written as

f̂(λ) =

∫
G

f(x)ϕλ(x
−1)dx = (f ∗ ϕλ)(e) = He,λf.

This proves (ii.). Item (iii.) follows if we recall that ϕ0(x) = Ξ(x). �

Item (iv.) of Lemma 4.1 gives the functional equation for spherical con-

volutions. This Lemma (especially in item (ii.)) explains that the harmonic

analysis of G has so far been explored only with the spherical convolution at

e. The implication of considering only

(e, λ) 7→ He,λf =: f̂(λ)

is that the direct contribution of the non-identity members of G to its harmonic

analysis are suppressed and may never be suspected or known in the context of

f̂(λ). Indeed a great deal of properties of the spherical convolutions and their

contributions to harmonic analysis on G would not be available if, instead

of considering the entirety of the map (x, λ) 7→ Hx,λf, we restrict ourselves

to either λ 7→ He,λf = f̂(λ) or x 7→ Hx,01 or any other special case of the

spherical convolutions as has been done till now.

We shall therefore show the importance of including spherical convolutions

in the harmonic analysis of G by giving its bounds, w−group transformation

and differential equation. These are contained in the following Theorem while

a Plancherel formula for the functions x 7→ Hx,λf on G is proved after a study

of its spherical Fourier transforms.

4.1 Theorem. Consider a measurable function f on G, x ∈ G and let

λ ∈ a∗C. Then

(i.) | Hx,λf |≤‖ f ‖1, with f ∈ L1(G);

(ii.) | Hx,λf |≤ Hx,<λf, | Hx,λf |≤ Hx,i=λf and | Hx,λf |≤ Hx,0f, for f ≥ 0;

(iii.) Hx,sλf = Hx,λf, for every s ∈ w;
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(iv.) ΩHx,λf = −(〈λ, λ〉+ 〈ρ, ρ〉) · Hx,λf, for f ∈ Cp(G), 0 < p ≤ 2;

(v.) Hx,−iρf =
∫

G
f(y)dy.

Proof. We employ the properties of spherical functions given in §2 to establish

(i.), (ii.), (iii.) and (v). The proof of (iv.) follows if we recall that

Ω(f ∗ ϕλ) = f ∗ Ωϕλ. �

The equation established in Theorem 4.1 (iv.), or any other such equation

for q ∈ U(gC), shows that the spherical convolutions inherit the differential

equations satisfied by ϕλ. This resemblance suggests the choice of the name

adopted in Definition 4.1. It therefore has the following series expansion.

4.1 Corollary. The spherical convolutions, Hh,λf admit the series expan-

sion

Hh,λf =
∑
s∈w

c(sλ)

e(sλ−ρ)(log h) +
∑

µ∈L+

aµ(sλ)e(sλ−ρ−µ)(log h)

 ,

regardless of the functions f ∈ Cp(G), 0 < p ≤ 2, where h ∈ A+, λ ∈ ∗F′ :=

{ν ∈ ∗F : ν is regular}, L+ = L \ {0}, with

L :=

{ ∑
1≤i≤r

miαi : m1, . . . ,mr are integers ≥ 0

}
,

for the simple roots αi, 1 ≤ i ≤ r, some subset ∗F of a∗C and coefficient functions

aµ(λ) which may be generated from the recursive relation

(〈µ, µ〉 − 2〈µ, λ〉) aµ(λ)

= −2
∑

α > 0, k ≥ 1

µ− 2kα ∈ L

n(α)〈λ− µ + 2kα− ρ, α〉aµ−2kα(λ), n(α) := dim(gα). �

We shall now consider the map λ 7→ He,λf for its differentiability and/or

integrability with respect to λ in some specified subset, Y, of a∗C. Indeed,

He,λf ∈ Cc(Y ), for every f ∈ Cc(G) and any subset, Y, of a∗C. This makes

its integral,
∫

Y
He,λfdµ(λ), with respect to some normalised measure, µ, on Y,
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worthy of an indepth study. To this end we define the map f 7→ f{ϕλ} on G

at the identity element, e, as

f{ϕλ}(e) =

∫
Y

He,λfdµ(λ), f ∈ Cc(G), ϕλ ∈ Cp(G).

Before considering the generality of f{ϕλ}(x), for every x ∈ G, we state our

first major result on f{ϕλ}(e) which gives an important application of its

integral for Y = F1.

Define the map a 7→ βF1(a) as βF1(a) =
∫

F1 eν(log a)dµ(ν), a ∈ A and the

βF1−weighted Fourier transforms, f̃ , of f ∈ Cc(A) at λ ∈ F1 as

f̃(λ) =

∫
A

f(a)eλ(log a)dη(a),

where dη(a) = βF1(a)da. Observe that the above weighted Fourier transforms

f̃(λ) reduces to the classical Fourier transforms f̂(λ) =
∫

A
f(a)eλ(log a)da when

βF1(a) = 1, ∀ a ∈ A. We shall however use this (weighted) transforms only at

the identity element 0 ∈ F1 of the vector space F1 (i.e., f̃(0) =
∫

A
f(a)dη(a) =∫

A
f(a)βF1(a)da), in the next Theorem and this, as could be seen below, may

not be un-connected with the fact that

f{ϕλ}(e) =

∫
F1

(Hx,λf)|x=edµ(λ)

is itself an evaluation at the identity element of G.

4.2 Theorem. Let dx = e2ρ(log a)dk da dn, where dk, da and dn are

Haar measures on K, A, and N, respectively, with dk normalised. For every

f ∈ Cc(G//K), let A(f) denote the Abel transform of f defined on A as

A(f)(a) = eρ(log a)
∫

N
f(an)dn. Then

f{ϕλ}(e) = (̃Af)(0), λ ∈ F1.

Proof. We only need to prove that

f{ϕλ}(e) =

∫
A

Af(a)βF1(a)da, λ ∈ F1.
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Indeed, using the Harish-Chandra parametrisation of ϕλ, we have

f{ϕλ}(e) =

∫
F1

(f ∗ ϕλ)(e)dµ(λ)

=

∫
F1

f̂(λ)dµ(λ) =

∫
F1

∫
G

f(x)ϕ−λ(x)dxdµ(λ)

=

∫
F1

∫
G

∫
K

f(xk)e(λ−ρ)(H(xk))dxdkdµ(λ)

=

∫
F1

∫
G

f(y)e(λ−ρ)(H(y))dydµ(λ)

=

∫
F1

∫
AN

f(an)e(λ+ρ)(log a)dadndµ(λ)

=

∫
F1

∫
A

(Af)(a)eλ(log a)dadµ(λ),

which implies our result, using Fubini’s theorem. �

The last result shows the importance of f{ϕλ}(e) in the harmonic analysis

of G and prepares the ground for the consideration of results of Paley-Wiener

type. It will soon be clear that it is sufficient to take the measure µ as the

Borel measure on P in defining the map a 7→ βP(a). Our motivation in this

direction is to consider the general map

λ 7→ Hx,λf,

not only for the identity element x = e ∈ G, but for other values of G as well.

This leads to the definition of f{ϕλ}(x), x ∈ G, as

f{ϕλ}(x) =

∫
Y

Hx,λfdµ(λ),

f ∈ Cc(G), ϕλ ∈ Cp(G), whenever the integral is absolutely convergent. We

already have two candidates for the position of Y, namely F1 and P . Among

other results, it would be important to evaluate the above measure, µ, on

these candidates. In the mean time we study some of the properties of x 7→
f{ϕλ}(x).

4.3 Theorem. Let f ∈ Cc(G//K), ϕλ ∈ Cp(G//K), 1 ≤ p ≤ 2, and

Y = P . Then, as a function on P , λ 7→ Hx,λf is continuous with compact

support. Indeed, f{ϕλ} ∈ Cp(G//K). Moreover, we have that

f{ϕsλ} = f{ϕλ} = f{ϕsλ̄},
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for every s ∈ w.

Proof. The first assertion holds, since f ∈ Cc(G//K) and Cc(G//K) is

dense in Cp(G//K). The properties of ϕλ at the end of §2 imply the second

assertion . �

We also have that f{ϕλ1 + cϕλ2} = f{ϕλ1} + cf{ϕλ2}, c ∈ C, suggesting

that the map f 7→ f{ϕλ} may be a calculus on Cp(G//K).

Let us now consider the spherical convolution map

(x, λ) 7→ Hx,λf := (f ∗ ϕλ)(x)

as the function

x 7→ Hx,λf

on G. Since it is measurable its spherical Fourier transforms may be computed

as shown in the following result which gives how to generate positive-definite

distributions on G and which will be found useful in the proof of its Plancherel

formula given later in Theorem 4.7.

4.4 Theorem. Let f ∈ Cc(G//K), ϕλ ∈ C1(G//K). Let µ be a spherical

Bochner measure corresponding to a positive-define distribution T on G. Then

(i.) ̂(Hx,λf)(ν) = f̂(λ) · ϕ̂λ(ν), x ∈ G, ν ∈ a∗C.

(ii.)
∫
P

̂(Hx,λf)(ν)dµ(ν) = f̂(λ) · T [ϕλ].

Moreover, if T# = T, the integral in (ii.) holds for all ϕλ ∈ C1(G).

Proof. (i.) Employing the defining properties of a spherical function given

in §2. we have, for every x ∈ G, ν ∈ a∗C, that

̂(Hx,λf)(ν) = (f ∗ ϕλ)(e) · ϕ̂λ(ν) = f̂(λ) · ϕ̂λ(ν).

(ii.) Now fix ϕλ ∈ C∞
c (G//K), then∫

P

̂(Hx,λf)(ν)dµ(ν) =

∫
P

f̂(λ) · ϕ̂λ(ν)dµ(ν)

= f̂(λ) ·
∫
P

ϕ̂λ(ν)dµ(ν)

= f̂(λ) · T [ϕλ].

We apply the denseness of C∞
c (G//K) in C1(G//K) to conclude the second

assertion. That (ii.) holds for all ϕλ ∈ C1(G) follows from the second part of

Theorem 3.2. �
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The extension Theorem 3.3 leads also to an extension of Theorem 4.4 given

next.

4.5 Theorem (Extension Theorem). If supp(µ) ⊂ Fε, ε = (2/p) − 1

and 1 ≤ p ≤ 2, then
∫
P

̂(Hx,λf)(ν)dµ(ν) is a constant multiple of T [ϕλ] for

every ϕλ ∈ Cp(G//K). �

The conclusion on
∫
P

̂(Hx,λf)(ν)dµ(ν) in the last Theorem above may be

generalized to the Schwartz algebra Cp
τ (G) of all τ− spherical functions on G

where τ = (τ1, τ2) is a double representation of K. This would be so immedi-

ately the Trombi-Varadarajan theorem, Theorem 3.1, is established for Cp
τ (G).

The case p = 2 has been proved and is contained in [1] for real-rank 1 Lie

groups G, and in [2] for any semisimple Lie group of any rank, while the case

of general p remains an open problem.

However the situation for general p and the group G = SL(2, R), or its

conjugate SU(1, 1), is contained in [13] from which other groups could be con-

sidered. Thus using the results of [4] on C2
τ (SL(2, R)) we extend the assertions

of Theorem 4.5 to all the members of C2
τ (SL(2, R)). This leads to an expan-

sion of
∫
P

̂(Hx,λf)(ν)dµ(ν) for ϕλ in the Schwartz algebras of all τ− spherical

functions on G = SL(2, R). This expansion brings in the involvement of the

well-known global characters of the (unitary) principal and discrete series of

representations of G = SL(2, R), [13].

To establish this expansion formula we put the needed type of measures in

place. A pair (µc, µd) is called a tempered Bochner measure pair whenever:

(i.) µc is a non-negative Baire measure on R which is symmetric and of

polynomial growth. That is, dµc(−λ) = dµc(λ), for all λ ∈ R and∫
R

dµc(λ)/(1+ | λ |r) < ∞

for some r ≥ 0.

(ii.) µd is a non-negative counting measure on Z′ = Z\0 which is of poly-

nomial growth. That is, ∑
l∈Z′

µd(l)/(1+ | l |r) < ∞

for some r ≥ 0.

The following Theorem opens up the integral contained in Theorem 4.5 in

the special case of G = SL(2, R)



Olufemi O. Oyadare 33

4.6 Theorem (Expansion for
∫
P

̂(Hx,λf)(ν)dµ(ν) on C2
τ (SL(2, R))). Let

f ∈ C∞
c (G), ϕλ ∈ C2

τ (SL(2, R)). Then, up to a non-zero constant, the positive-

definite distribution
∫
P

̂(Hx,λf)(ν)dµ(ν) is given as∫
P

̂(Hx,λf)(ν)dµ(ν) = f̂(λ) · limn→∞(

∫ n

−n

Φλ[ϕλ]dµc(λ) + Σ1≤|l|≤nΘl[ϕl]µd(l)),

where Φλ and Θl are the global characters of the (unitary) principal and discrete

series of representations of G = SL(2, R) and (µc, µd) is the tempered Bochner

measure pair associated to a tempered invariant positive-definite distribution

on G. In particular,
∫
P

̂(Hx,λf)(ν)dµ(ν) is a tempered invariant distribution

on G.

Proof. For any tempered invariant positive-definite distribution T on G

there corresponds a Bochner measure pair (µc, µd) such that

T [f ] = limn→∞(

∫ n

−n

Φλ[f ]dµc(λ) + Σ1≤|l|≤nΘl[f ]µd(l)).

This is the main result of [4] (listed there as Theorem 9.3), which when com-

bined with our Theorem 4.5 gives the assertion. �

4.1 Remark. The expansion given above for
∫
P

̂(Hx,λf)(ν)dµ(ν) reveals

the rich structure encoded in it. Indeed since the global characters above, in

terms of which it is expressed (in Theorem 4.6), have well-known transfor-

mation under the action of the center, Z, of the universal enveloping algebra,

U(gC), of the complexification gC of the Lie algebra g of G, a study of the

functional and differential equations of
∫
P

̂(Hx,λf)(ν)dµ(ν) is very possible

and suggests a harmonic analysis involving both the discrete and (unitary)

principal series of, at least, G = SL(2, R).

For f ∈ Cc(G//K) and ϕλ ∈ Cp(G//K) as in Theorem 4.5, we may view

the map λ 7→ f{ϕλ} as the evaluation of members of Cc(G//K) on members

of Cp(G//K). This means that λ 7→ f{ϕλ} is an operational calculus on the

Schwartz algebras, Cp(G//K), whose spherical Fourier transform is a distri-

bution on G. This suggests the use of the term ‘distributional calculus’ for

f 7→ f{ϕλ}. A more detailed study of f{ϕλ} may therefore be conducted by

considering the invariant eigendistributions on G, most especially the global

characters of the irreducible admissible representations of G.

We now consider the explicit form of the Plancherel formula for the measur-

able functions x 7→ Hx,λf on G. A Haar measure dx on G is said to be admissi-

ble if dx = e2ρ(log a)dkdadn (x = kan) where
∫

K
dk = 1 and

∫
N

e−2ρH(n)dn = 1
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where dn is a Haar measure on N := θ(N). Recall the Borel measure dµ(λ)

from Theorem 4.4. The pair (dx, dµ(λ)) of Haar measures on the pair (G, F1)

shall be de termed admissible if, every f in the Schwartz space, S(A), of A

whose Fourier transform f̂ , already known as

f̂(λ) =

∫
A

f(a)eλ(log a)da, λ ∈ F1,

satisfies

f(a) =

∫
F1

f̂(λ)e−λ(log a)dµ(λ), a ∈ A.

4.7 Theorem (Plancherel formula for spherical convolutions). Let

(dy, dµ(λ)) be an admissible pair of Haar measures on the pair (G, F1), x ∈ G

and f ∈ C(G//K). If we define the measure dζx,λ as a normalization of the

spherical Bochner measure dµ(λ) on F1 by the requirement that

dζx,λ(ν) =
1

| ϕ̂λ(ν) |2
dµ(λ),

then ∫
G

| f(y) |2 dy =

∫
F1

| ̂(Hx,λf)(ν) |2 dζx,λ(ν).

In particular the map f 7→ ̂(Hx,λf), for x ∈ G and λ ∈ F1, extends uniquely to

a unitary isomorphism of L2(G//K) with L2(F1, dζx,λ(ν))w.

Proof. Since the spherical convolutions of f ∈ C(G//K) may be considered

as the functions x 7→ Hx,λf on G it follows that its spherical Fourier transforms,

ν 7→ ̂(Hx,λf)(ν), is well-defined on F1. Therefore∫
F1

| ̂(Hx,λf)(ν) |2 dζx,λ(ν) =

∫
F1

| f̂(λ) |2 · | ϕ̂λ(ν) |2 dζx,λ(ν)

(from Theorem 4.4 (i.))

=

∫
F1

| f̂(λ) |2 dµ(λ)

(from definition of dζx,λ)

=

∫
G

| f(y) |2 dy

(by the Plancherel formula for f). �

The situation of Theorem 4.7 for x = e is well-known, while the inverse,

(Hx,λf)−1, for fixed f ∈ C(G//K), x ∈ G and λ ∈ F1, is given as

(Hx,λf)−1(b)(y) =

∫
F1

b(λ)ϕλ(y)dζx,λ(ν), b ∈ S(F1)w, y ∈ G
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and is commonly called the exact (normalized) wave packet. The explicit ex-

pression for the Plancherel measure, dζx,λ(ν), of the spherical convolutions in

terms of elementary functions of harmonic analysis is therefore given as

dζx,λ(ν) =| w |−1| ϕ̂λ(ν) |−2| c(λ) |−2 dµ(λ),

for x ∈ G, ν, λ ∈ F1, where the map λ 7→ c(λ) is the Harish-Chandra

c−function. The combination of Theorems 4.2 and 4.7 may be used to give

the Paley-Wiener theorem for spherical Fourier transforms of spherical convo-

lutions.

It is known [11, p. 298] that He,λf = f̂(λ) and that, in this case, the

Plancherel measure, dζe,λ(ν), of the spherical convolution, Hx,λf, at x = e is

dζe,λ(ν) =| w |−1| c(λ) |−2 dµ(λ).

A non-trivial problem is to find the relation between ν and λ for the Plancherel

measure, dζx,λ(ν), of the spherical convolutions to reduce to the classical

Plancherel measure, | w |−1| c(λ) |−2 dµ(λ), on G. This is equivalent to seeking

those ν in terms of λ for which | ϕ̂λ(ν) |= 1, where ϕλ ∈ C1(G//K). We plan

to address this problem in another paper.

The richness of our results, which may be ultimately seen in Theorem 4.7,

derives from the fact that the spherical convolutions are functions on both G

and F1. This fact allows us to switch its domains between G and F1, depending

on its immediate use. In all these diverse instances of the harmonic analysis on

G we still use the same defining functions for the spherical convolutions. We

have however taken advantage of some known results in the harmonic anal-

ysis on G (like the Harish-Chandra series expansion inherited by Hh,λf (in

Corollary 4.1) and the classical Plancherel formula on G used in the proof of

Theorem 4.7) in order to establish our results. Nevertheless our results could

still be established from the scratch without recourse to the special case of

He,λf = f̂(λ).
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