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Abstract 
 

This paper investigates the market-risk-hedging effectiveness of the Taiwan Futures 

Exchange (TAIFEX) stock index futures using daily settlement prices for the period from 

July 21, 1998 to December 31, 2010. The minimum variance hedge ratios (MVHRs) are 

estimated from the ordinary least squares regression model (OLS), the vector error 

correction model (VECM), the generalized autoregressive conditional heteroskedasticity 

model (GARCH), the threshold GARCH model (TGARCH), and the bivariate GARCH 

model (BGARCH), respectively. We employ a rolling sample method to generate the 

time-varying MVHRs for the out-of-sample period, associated with different hedge 

horizons, and compare across their hedging effectiveness and risk-return trade-off. In a 

one-day hedge horizon, the TGARCH model generates the greatest variance reduction, 

while the OLS model provides the highest rate of risk-adjusted return; in a longer hedge 

horizon, the OLS generates the largest variance reduction, while the BGARCH model 

provides the best risk-return trade-off.  We find that the selection of appropriate models to 

measure the MVHRs depends on the degree of risk aversion and hedge horizon.   

 

JEL classification numbers: F37, G13, G15 

Keywords: Index Futures; Hedge Ratio; VECM model; GARCH model; Multivariate- 

GARCH model 

 

 

1  Introduction 

 
Following the subprime crisis, financial risk management has played an important role in 

investment decisions and asset allocations. Indeed, one of the key components of risk 

management is how to hedge, with hedging through trading index futures being one of the 

main functions of derivative markets. Hedgers who hold cash assets trade in the futures 

markets in order to reduce their risk of adverse price movements, and the reliable 
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computation of the hedge ratio substantially affects the effectiveness of a hedge. Thus, the 

core of a successful hedging activity depends on the computation of hedge ratio. There are 

many different approaches to calculate the hedge ratio, such as the simplest one-to-one, 

the well-known ordinary least squares regression (OLS), and a series of other more 

complicated models, introduced by various researchers, to solve this problem.  Yet the 

question remains:  which one is better (or the best) for the task to measure hedging 

performance?   

Using the traditional OLS model for estimating the hedge ratio may suffer from the 

problems of serial correlation in the residuals (Herbst et al., 1993) and heteroskedasticity 

in spot-futures price series (Park and Switzer, 1995). Taking into account the spot-futures 

cointegrating relationship is actually indispensible for an effective hedge.  According to 

Ghosh (1993a; 1993b), ignoring the cointegration could result in underestimating the 

minimum variance hedge ratio (MVHR). This study adopts the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model in attempts to 

circumvent these problems.   

To explore further for better alternatives, we thus also employ the relatively more 

advanced bivariate GARCH (BGARCH) and threshold GARCH (TGARCH) models, 

respectively, to compute the hedge ratio in conjunction with the ―rolling sample method‖ 

(also called the moving window method). Based upon data series of Taiwan stock index 

futures traded during 1998-2010, we compute the hedge ratios via different models, and 

thus conduct the out-of-sample analysis to compare across their ―hedging effectiveness‖ 

and ―risk-return trade-off‖ measures.   

According to the Futures Industry Association (FIA), the trading volume of the Taiwan 

Futures Exchange (TAIFEX) during 2009 was 135,125,695 contracts and ranked 18th in 

the world. During 2010, the total trading volume rose to 139,792,891 contracts and 

ranked 17th. According to TAIFEX, the trading volume of stock index futures increased 

from 24,625,062 contracts to 25,332,827 contracts during 2010.  Aside from stock index 

futures contracts, there are various other derivatives in the futures market for hedging, 

which further increase the trading volume. Up to now, the trading volume in Taiwan’s 

futures market still continues to grow. Both hedgers and investors can use hedge 

strategies to make their investing portfolios not only more flexible and less risky, but also 

to generate greater risk-adjusted return. Taiwan’s stock index futures market has become 

so growingly popular to the investing public that it deserves a detailed analysis on its 

hedging performance.     

Our study has some major contributions. First, different from prior works on those index 

futures markets in various developed countries, our research focus is switched onto 

emerging markets such as Taiwan, and update the data coverage to a more recent 1998-

2010 horizon. Second, we use models such as bivariate GARCH and TGARH, not 

employed in previous studies, to specify the relationship between stock index spot prices 

and stock index futures prices and to estimate the hedge ratios combining with the rolling 

sample method, which is not adopted by any other published studies. Third, following the 

key methodologies of Yang and Allen (2005), we incorporate the risk-return trade-off and 

different hedge horizons to compare the hedge performance, but our empirical results, 

somehow differ from Yang and Allen (2005), suggest that there exists a risk-return trade-

off reflecting the importance of the degree of risk aversion and hedge horizon, both of 

which do play an influential role in determining the MVHRs.  
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2  Literature Review 
 
We review the existing literature for the variety of hedging performance measurements 

and modelling designs. The simplest hedge strategy is the traditional one-to-one, i.e., the 

so-called naïve hedge. Hedgers who own a spot market position just need to take up a 

futures position that is equal in size, but opposite in sign, to the spot market position, i.e. 

the hedge ratio is equal to -1. The price risk will be eliminated if the magnitude of price 

changes in the spot market is exactly the same with those in the futures market. However, 

the correlation between spot and futures returns is not perfectly linear in practice, and 

hence the optimal hedge ratio is almost bigger than -1.   

The beta hedge ratio is related to the portfolio’s beta. In order to fully hedge the price risk, 

the number of futures contracts needs to be adjusted by the portfolio’s beta. Under a beta 

hedge strategy, the optimal hedge ratio is bigger than or equal to -1. The ―naïve‖ and 

―beta‖ hedges are considered the most traditional in financial market risk management. 

Johnson (1960) first introduced the MVHR to calculate the optimal hedge ratio, varying 

from the traditional hedge methods by applying modern portfolio theory to the hedging 

problem. He offered the definition to return and risk in terms of mean and variance of 

return. The hedge ratio calculated under the minimum portfolio variance assumption is the 

optimal hedge ratio, which is also called the MVHR.  The MVHR (h*) is computed as 

follows: 

 

h* = - XF / XS = - Cov(ΔS, ΔF) / Var(ΔF),                                                                          (1) 

 

where XF and XS represent the relative dollar amount invested in futures and spot stock 

index inderespectively,  Cov(ΔS, ΔF ) is the covariance of spot and futures price changes, 

and Var(ΔF) is the variance of futures price changes.   

The MVHR can also be calculated by regressing the spot price changes on futures price 

changes, and the coefficient of the futures price changes is the MVHR.  The negative sign 

of Equation (1) reveals that if hedgers want to hedge their long positions in the spot 

market, then they have to short futures contracts. Johnson also proposed a measure of the 

hedging effectiveness of the hedged position in terms of the variance reduction, expressed 

as follows: 

 

[Var(U) - Var(V)] / Var (U),                                                                                              (2) 

 

where Var(U) and Var(H) is the variance of a un-hedged and a hedged portfolio, 

respectively.    

Figlewski (1984) calculated the risk minimizing hedge ratio by OLS on historical U.S. 

S&P 500 spot and futures returns to analyze the hedge effectiveness of stock index 

futures. He found that hedge ratios computed by ex-post MVHRs outperformed the beta 

hedge ratios, and that both time to maturity and hedge duration were important factors. 

Junkus and Lee (1985) also used the OLS conventional regression model to calculate the 

optimal hedge ratios, and to investigate the hedging effectiveness of U.S. stock index 

futures by alternative hedging strategies. They argued that the use of MVHR assessment 

is the best strategy to reduce the risk of adverse price movement. 

Ghosh (1993a,1993b) argued that the conventional OLS approach does not take account 

of the lead and lag relationships between U.S. stock index prices and corresponding stock 
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index futures prices and is not well specified in estimating the hedge ratio. He used the 

Error Correction Model (ECM) to overcome this problem and showed that the impact of 

contract expiration and hedging effectiveness is little. Ghosh found that if there existed 

cointegration between spot and futures prices, and the regression model did not contain 

the error correction term to take account of the cointegration effect, then the estimated 

MVHR would be biased downwards due to misspecification. Holmes (1996) applied the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) to estimate optimal 

hedge ratios of U.K. FTSE-100 stock index. In his investigation he found that based on 

MVHRs, the optimal hedge ratio calculated by conventional OLS outperforms those 

estimated by an ECM or a GARCH (1,1) approach. He further pointed out that hedging 

effectiveness increased with an increase in hedge duration. 

Butterworth and Holmes (2001) used the Least Trimmed Squares Approach to estimate 

optimal hedge ratios of U.K. FTSE-Mid 250 stock index futures contracts. They 

compared the ratios with those obtained from the FTSE-100 stock index, and figured out 

that the FTSE-Mid 250 index futures contract outperforms the FTSE-100 index futures 

contract when hedging cash portfolios. 

Chou et al. (1996) examined hedge ratios with different time horizons of Japan’s Nikkei 

Stock Average (NSA) index spot and futures contract by the conventional OLS model and 

ECM. After comparing the in-sample and out-of-sample performances, the conventional 

OLS is superior to the ECM approach under the in-sample performance, but the ECM 

outperformed the conventional OLS approach under the out-of-sample performance.   

Lypny and Powalla (1998) investigated the hedging effectiveness of the German stock 

index DAX futures. They showed that the hedge ratios taking account of the time-varying 

conditional variance and computed by GARCH (1,1) approach are the optimal hedge 

ratios.  

Based on the summary of aforementioned research works on the stock index futures 

markets in developed countries, we can easily consider that the hedge ratios estimated by 

the complicated econometric model such as GARCH may not always reduce the most 

variation of return.  When we only take account of risk-return trade-off, the easier model 

such as OLS may usually bring a higher risk-adjusted return. To our knowledge, only a 

few papers have compared the MVHR based on the variance reduction and risk-return 

trade-off at the once; yet none of those studies focuses on the emerging markets such as 

Taiwan’s stock index futures. As such, we employ several models, from the easiest 

Ordinary Least Square (OLS) to the Bivariate GARCH Model, in order to calculate 

MVHRs and further evaluate them by following the methodology of Yang and Allen 

(2005). 

 

 

3  Model and Estimation Methodology 
 

In attempt to find the most appropriate model for estimating optimal hedge ratios in 

Taiwan stock index futures, five different models are employed to compute the optimal 

hedge ratios respectively, and then be compared across their hedging performance. The 

hedging performance is measured by a) the percentage variance reduction from the 

hedged portfolio to the un-hedged portfolio, and b) the risk-return trade-off. 
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Model 1:  Conventional OLS Regression Model 

This model is just a linear regression of change in spot prices on changes in futures prices.  

Let St  and Ft  be logged spot and futures prices, respectively, and the one period MVHR 

(h*) can be estimated from the expression: 

 

ΔSt = c + βΔFt+ εt,                                                                                                             (3) 

 

where c is the intercept, εt is the error term from OLS estimation, ΔSt and ΔFt represent 

corresponding spot and futures price changes, and the slope coefficient β is the MVHR.   

 

Model 2:  Vector Error Correction Model (VECM) 

According to Herbst et al. (1989), if the residuals obtained from Model 1 are 

autocorrelated, then the result may be Model 1’s invalidity. In order to take account of 

serial correlation, the spot and futures prices are modeled under a bivariate-VAR 

framework as follows: 

 

ΔSt = cs + ∑i
k
=1 βsiΔSt-i  + ∑i

k
=1 βsiΔFt-i + εst,                                                                      (4) 

ΔFt = cf + ∑i
k
=1 βfiΔSt-i  +∑i

k
=1 βfiΔFt-i + εft                                                       

 

Where c is the intercept, βs and βf are positive parameters, εst and εft are ―independently 

identically distributed‖(IID) random vectors. k is the optimal lag length and begins from 

one, and is added up by one until the serial correlation of residuals is got rid of the mean 

equations.  The MVHR is:  

 

h* = Cov(εst, εft) /  Var(εft).                                                                                                 (5) 

 

When the sets of series carry a cointegration relationship, as shown by Engle and Granger 

(1987),the data contain a valid ―Error Correction‖ representation. It is obvious that 

Equation (3) ignores the relationship that the two series are cointegrated, which is further 

addressed in Ghosh (1993b), Lien and Luo (1994), Lien (1996), and Lien et al. (2014). 

They jointly showed that if the two price series are found to be cointegrated, then a VAR 

model should be estimated along with the error-correction term, which takes account of 

the long-run equilibrium between spot and futures price movements. Thus, Equation (4) is 

modified into: 

 

ΔSt = cs + ∑i
k
=1 βsiΔSt-i  + ∑i

k
=1 βsiΔFt-i–λsZt-1+ εst,                                                             (6) 

ΔFt = cf + ∑i
k
=1 βfiΔSt-i  +∑i

k
=1 βfiΔFt-i+ λfZt-1+ εft, 

 

where cs and cf  are the intercept, βsi,βfi, λs and λf are positive parameters, εst and εft are 

white noise disturbance terms. Zt-1 refers to the error-correction term, which measures how 

the dependent variable adjusts to the previous period’s deviation from long-run 

equilibrium as Zt-1 = St-1–αFt-1, where α is the cointegrating vector.   

Equation (6) is a bivariate VAR (k) model in first differences augmented by the error-

correction terms λsZt-1 and λfZt-1.The speed of adjustment depends on λs and λf, causing the 

response of St and Ft, respectively, to the previous period’s deviation from long-run 

equilibrium. The constant hedge ratio can be similarly calculated using Equation (5). 
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Model 3:  GARCH Model 

Bollerslev (1986) introduced the GARCH (1,1) model to parameterize volatility as a 

function of unexpected information shocks to the market. A standard GARCH (1,1) model 

is expressed as: 

 

σt
2
 = α0 + α1εt-1

2
 + β1σt-1

2
,                                                                                            (7) 

 

where σt
2 

is the conditional variance, α0 is the mean,  εt-1
2
 (the ARCH term) and σt-1

2
 (the 

GARCH term) refer to, respectively, the lag of the squared residual from the mean 

equation and the last period’s forecast variance capturing the news about volatility from 

the previous period. The more general forms of GARCH (p, q) compute σt
2 
from the most 

recent p observations on εt
2 

and the most recent q estimates of the variance rate. Values of 

(α1 + β1) close to or even larger than unity mean that the persistence in volatility is high.  

If there is a large positive shock εt-1, such that εt-1
2 

is large, then the conditional variance 

σt
2 

increases. Such a shock fades away if (α1 + β1) is less than unity, but persists into the 

long run if it is greater than or equal to unity. 

 

Model 4:  Threshold GARCH (TGARCH) Model 

Glosten et al. (1993) developed TGARCH, which is also called GJR-GARCH.  They 

added the asymmetric term to expand the GARCH model to capture the asymmetric 

leverage effect rather than quadratic. A standard TGARCH (1, 1, 1) is presented as: 

 

σt
2
 = α0 + α1εt-1

2
 + γεt-1

2
Dt-1 + β1σt-1

2
, 

Dt-1 = 1 if εt-1< 0,  

Dt-1 = 0 if εt-1≥ 0,                                                                                                                 (8) 

 

where α0, α1, γ, and β1are constant parameters, Dt-1 is a dummy variable, εt-1 represents the 

good or bad news impact, and the threshold is zero.   

The more general GARCH (p, q, r) computes σt
2
 from the most recent p observations 

onε
2
, the most recent q estimates of the variance rate, and the most recent r unexpected 

impacts. Since the asymmetric term γεt-1
2
 Dt-1 is included, the model will be asymmetric if 

γ≠ 0. The presence of leverage effects can be tested by the hypothesis γ< 0. After running 

the appropriate regression, if γ is positive and statistically different from zero, it implies 

that negative shocks generate more volatility than positive shocks (good news).  

   

Model 5:  Bivariate GARCH (BGARCH) Model 

Park and Bera (1987) and Pagan (1996) both pointed out that heteroskedasticity (or 

ARCH effects) in the second movements partly invalidates hedge ratio estimates. Thus, 

we employ Bollerslev et al. (1988) VECM-GARCH model to take account of the ARCH 

effects in the residuals. 

Engle (1982) and Bollerslev (1986) developed the ARCH model to examine the second 

movement of financial and economic time series. Bollerslev et al. (1988) generalized the 

univariate GARCH model to the BGARCH model by simultaneously modeling the 

conditional variance and covariance of two interacted series. Since the estimated 

conditional variance and covariance of spot and futures prices vary over time, hedge 

ratios are also different from time to time. Bollerslev (1986) assumed that covariance 

matrices are diagonal and the correlation between the conditional variances is constant, so 

as to reduce some of the large number of parameters, which need to be estimated in the 
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model. However, Bera and Roh (1991) tested the constant correlation assumption and 

found the assumption unrealistic for many financial time series.   

Bollerslev et al. (1988) develop the Diagonal Vector (DVEC) model, which likes the 

constant correlation model, but allows for a time-varying conditional variance. In the 

DVEC model, the off-diagonals in covariance matrices are also set to zero, and so the 

condition variance depends only on its own lagged variances and lagged squared 

residuals. Accordingly, the diagonal expression of the conditional variance element scan 

be presented as: 

 

hss,t = css + αss (εs,t-1)
2
 + βsshss,t-1, 

hsf,t = csf + αsf (εs,t-1)(εs,t-1) + βsfhsf,t-1, 

hff,t = cff + αff (εf,t-1)
2
 + βffhff,t-1.                                                                                            (9) 

 

Equation (9) incorporates a time-varying conditional correlation coefficient between 

index spot and futures prices, thus making the resulting BGARCH time-varying hedge 

ratios more realistic. 

 

 

4   Data and Preliminary Analysis 

4.1 Data 

We use data collected by Info Winner Plus, which is a local data vendor, containing the 

closing prices (CP) of Taiwan Stock Exchange Capitalization Weighted Stock Index 

(TAIEX) and the settlement prices (SP) of the corresponding TAIEX Futures on a daily 

basis for the period of July 21, 1998 to December 31, 2010.In all estimations the futures 

contract nearest to expiration is used.  Following previous studies, no adjustment is made 

for dividends and we use the changes in logarithms of both spot and futures prices for 

analysis. There are a total of 3,146 observations, but only the first 2,644 observations 

(07/21/1998 – 12/31/2008) are used for measuring the MVHRs, leaving the remaining 

502 observations (01/01/2009 – 12/31/2010) for the out-of-sample forecast.  

Figure I plots the logarithm of CP and SP, and we find that the two series are highly 

correlated. Just in case that a cointegration relationship might exist between the two sets, 

we conduct the ADF test, KPSS test, and Johansen test. 
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Figure I: The Logarithm of Spot Closing Prices(LCP) and Futures Settlement  

Price(LSP) Series on Taiwan Stock Market Index 

 

4.2 Tests of Unit Roots and Cointegration 

Tests for the existence of a unit root are performed by conducting the Augmented Dickey-

Fuller (1979) ADF tests.  The KPSS tests proposed by Kwiatkowski et al. (1992) are 

employed to complement the ADF tests, since the power of such tests are questioned by 

Schwert (1987) and DeJong and Whiteman (1991). The null hypothesis for the ADF test 

is that a series contains a unit root or it is non-stationary at a certain level. However, the 

null hypothesis for the KPSS test is that a series is stationary around a deterministic trend, 

and the alternative hypothesis is that the series is difference stationary.      

The series is represented as the sum of deterministic trend, random walk, and stationary 

error: 

 

yt = ξt + rt + εt, 

 

where rt = rt-1 + ut, and ut is IID (0, σu
2
). The test is a Lagrange Multiplier (LM) test of the 

hypothesis that rt has zero variance, which means that σu
2
 = 0. In this case, rt becomes a 

constant and then the series {yt} is trend stationary. The test is based on the statistic: 

 

LM = (1/T
2
) ∑t

T
=1St

2
/ σs

2
, 
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where St
2
= ∑t

T
=1et, et is the residual term from the regression of series yt on a intercept, σs

2 

is the estimation value of the variance of et, and T is the sample size. If the value of LM is 

large enough, the null of stationary for the KPSS test is rejected. 

Table 1 reports the results of unit roots tests of logarithmic levels and first differences of 

stock prices and stock index futures prices. This table indicates that both series are non-

stationary under their level, since the ADF t-statistic is insignificant and the LM-statistic 

is significant. After being differentiated once, the ADF t-statistic changes to being 

significant and the LM-statistic becomes insignificant, so that the two differentiated series 

turn to being stationary and the logged spot and logged futures prices are I (1) processes.  

According to Enders (1995), when two series are both I (1) processes, there may exist 

cointegration between them. 

 

Table 1: Tests for Unit Roots 

 
ADF Tests 

t-statistic 

KPSS Tests 

LM-statistic  

Neither Trend nor Intercept  

LCP 

LSP 

DLCP 

DLSP 

-0.545780 

-0.599671 

-12.20973*** 

-12.80585***   

Critical Values  

Level 

ADF 

1% 

-2.565842 

5% 

-1.940944 

10% 

-1.616618 

 

Trend and Intercept  

LCP 

LSP 

DLCP 

DLSP 

-2.041124 

-2.000197 

-12.21948*** 

-12.81896*** 

0.809612*** 

0.773838*** 

0.110228 

0.101630  

Critical Values  

Level 

ADF 

KPSS 

1% 

-3.961534 

0.216 

5% 

-3.411517 

0.146 

10% 

-3.12762 

0.119 

    

Intercept  

LCP 

LSP 

DLCP 

DLSP 

-2.061830 

-2.017024 

-12.21791*** 

-12.81586*** 

0.885481*** 

0.795064*** 

0.105976 

0.098758  

Critical Values  

Level 

ADF 

KPSS 

1% 

-3.432645 

0.739 

5% 

-2.86244 

0.463 

10% 

-2.567294 

0.347 

Notes: For the ADF tests, *** represents that the series is stationary at the 99% confidence level; 

for the KPSS tests, *** means that the series is non-stationary at the 99% confidence level.  LCP 

and LSP are the logarithm of spot closing and futures settlement prices, respectively.  DLCP and 

DLSP are the differenced logarithm of spot and futures prices, respectively. 
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Table 2 shows the results of the Johansen and Juselius (1990) cointegration test and the 

supplement model selection-criteria method. The former tests the hypothesis of r 

cointegrating vectors versus (r+1) cointegrating vectors (the maximum eigenvalue test), 

and the latter tests for the existence of r cointegrating vectors (the trace test), both of them 

are undertaken on logarithmic spot and futures prices.  Under the null hypothesis of no 

cointegrating vector, both tests strongly reject the null hypothesis; however, under the 

hypothesis that there exists a single cointegrating vector, both tests fail to reject it. After 

testing, we figure out that there exists a cointegration relationship between the series with 

rank of one. The result resembles that of the model selection-criteria method, in which the 

statistic of each criterion (AIC for Akaike Information Criterion, SBC for Schwarz 

Bayesian Criterion) reaches the largest value when the cointegrating rank equals one. 

 

Table 2: Tests for Cointegration 
H0 H1 Eigenvalue Test Trace Test H0 H1 

  LR-statistic 

95%  

Critical Value LR-statistic 

95%  

Critical Value 

r = 0 r < 1 123.1953** 19.38704 r = 0 r < 1 

r = 1  r < 2 3.571712 12.51798 r = 1  r < 2 

Choice of the Number of Cointegrating 

Relations Using Model Selection Criteria 

 

 

 

 
 

Rank      AIC      SBC 

r = 0 -12.42866 -12.38857 

r = 1 -12.45316# -12.40193# 

r = 2 -12.45082 -12.38845 

Notes:Cointegration LR Test Based on Maximum Eigen value of the Stochastic Matrix and Trace 

of the Stochastic Matrix. r represents the number of linearly independent cointegrating vectors. 

Trace statistic =–T∑i=
n

r+1ln(1 –λi); Eigenvalue statistic = –T ln(1 –λr+1), where T is the number of 

observations in Johansen and Juselius (1990).  AIC = Akaike Information Criterion, SBC = 

Schwarz Bayesian Criterion.# marks the largest statistic value for a certain criterion.  ** denotes 

the significance level of 5%. 

 

 

5  Empirical Results 

5.1 Results from Models 1, 2, 3, 4, and 5 

The estimation of Equation (3), with the OLS being applied, is presented as follows: 

 
ΔSt = -0.00003087 + 0.7837 ΔFt + et, 

 

where ΔSt = Ln(CPt/CPt-1), ΔFt = Ln(SPt/SPt-1), and et is the residual of the regression. The 

estimated MVHR is 0.7837, which is significant at the 99% level, and R
2
 is 0.8341. 

However, the model results exhibit problems of both serial correlation and 

heteroskedasticity.  To minimize such problems in our time-series data and to improve the 

consistency of the OLS estimations, we further employ Newey-West (1987) estimators, 

with the results being corrected as: 

 

ΔSt = -0.00007320 + 0.6129 ΔFt + et. 
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Table 3: Estimates of Vector Error Correction Model 

 
DLCP DLSP 

 
Coefficient Std. Error Coefficient Std. Error 

Cointegrating  0.0311* 0.0175  0.0861*** 0.0202 

Equation (Zt-1)      (λs) 
 

   (λf) 
 DLCP (-1)  0.0013 0.0511  0.2537*** 0.0589 

DLCP (-2)  0.0594 0.0494  0.2185*** 0.0571 

DLSP (-1)  0.0503 0.0443 -0.2244*** 0.0511 

DLSP (-2) -0.0237 0.0432 -0.1391** 0.0499 

     Cointegrating Relationship 
  

 

 
LCPt-1  LSPt-1 

  Coefficient 1.0000 -1.001494 
  Notes: This table report the results estimated from the VECM model in Equation (6).   The 

coefficients of cointegration equation are λi and λj in Equation (6).  The DLCP (.) and DLSP (.) 

represent the coefficients of each lag from 1 to 10 for the differenced logarithm of spot and futures 

prices, respectively.  The statistically significant coefficients are marked with *, **, and *** to 

show each coefficient’s significance at 90%, 99%, and 99.9% level, respectively. The cointegration 

relationship is LCPt-1 = -1.001494LSPt-1. 

 

According to Schwarz’s Bayesian Information Criterion (BIC), the appropriate lag length 

of the bivariate VECM model is ten.
4
 Tables 3 and 4 show the associated VECM test 

results, indicating that for both equations, the coefficients of the error correction term are 

statistically significant. Since λs<λf (0.0311 vs. 0.0861), the spot price series St have a 

slower speed of adjustment to the previous period’s deviation from the long-run 

equilibrium than do the index futures price series. Such findings suggest that the futures 

price has to adjust itself to the spot price on the delivery date.   

 

Table 4: ARCH LM Test and White Heteroskedasticity Test on the Residuals from 

VECM 
ARCH LM Test  χ

2
 Prob. 

est  257.2876 0.0000 

eft  239.9920 0.0000 

White Heteroskedasticity Test    

est .est  265.1495 0.0000 

est .eft  461.5788 0.0000 

eft .eft  298.0486 0.0000 

Notes: The ARCH LM Test is Engle (1982)’s Lagrange Multiplier (LM) Statistic for 

Autoregressive Conditional Heteroskedasticity under the null hypothesis of no ARCH effect.  The 

White Heteroskedasticity Test tests for heteroskedasticity in the residuals, and the asymptotically 

distribution of test statistic is χ
2
 under the null hypothesis of no heteroskedasticity.est and eft 

represent the respective residuals of ΔSt and ΔFt from VECM in Equation (6).   

 

                                                 
4
The results for the VECM order selection can be provided upon request. 
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Figure II plots the two streams of residuals from Equation (6), exhibiting volatility 

clustering, but the mean seems constant around zero. 

 

 
Figure II: The Plot of Residuals from VECM 

According to Mandelbrot (1963)and Engle (1982), there exists an autoregressive 

conditional heteroskedastic (ARCH) effect. We thus apply the other three models- 

GARCH (2,2), TGARCH (2,2,1), and BGARCH (1,1) - to correct for the presence of 

heteroskedasticity.
5
We also incorporate the error correction term into Model 1 as the 

mean equation for the above three models.  The estimation results are reported in Tables 5 

and 6.   

Specifically in Table 5, the parameters α1, α2 and β1are significant at the 1% level for the 

GARCH (2,2) model. Testing for the ARCH (1) and ARCH (2) effects, we do not reject 

the null hypothesis of no ARCH effects at the 5% level, and thus heteroskedasticity is 

corrected for. The sum of ARCH and GARCH coefficients (α1 + β1+ α2) is 0.9522, very 

close to unity and showing that old shocks have an impact on current variance and this 

effect is permanently remembered. In addition, a TGARCH (2,2,1) model was estimated 

and all the parameters are significant at the 1% level except β2. As with the GARCH (2,2) 

model, the test for ARCH (1) and ARCH (2) effects are both insignificant to show the 

correction of the heteroskedasticity. Since the leverage effect term γ is positive and 

statistically significant at the 1% level, there exists a leverage effect in which negative 

shocks (bad news) generate more volatility than positive shocks (good news).    

 

 

 

 

 

 

                                                 
5
The results for the GARCH, TGARCH, and BGARCH order selection based on AIC can be 

provided upon request. 
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Table 5: Results from the GARCH model and TGARCH model 
GARCH (2,2) 

Variable Coefficient Std. Error z-Statistic Prob. 

ΔFt 

(εt-1)
2 

(εt-2)
2
 

(σt-1)
2
 

(σt-2)
2
 

0.838993 

0.252835 

-0.202426 

0.904331 

0.047304 

0.004048 

0.024464 

0.024097 

0.057481 

0.053973 

207.2426 

10.33513 

-8.400428 

15.73278 

0.876446 

0.0000 

0.0000 

0.0000 

0.0000 

0.3808 

Adjusted R
2 

S.E. of regression ARCH test (p-value)  

0.834513 0.006602 0.6448 

 

TGARCH (2,2,1) 

Variable Coefficient Std. Error z-Statistic Prob. 

ΔFt 

(εt-1)
2
 

(εt-1)
2
Dt-1 

(εt-2)
2
 

(σt-1)
2
 

(σt-2)
2
 

0.836930 

0.239832 

0.036295 

-0.214821 

0.886279 

0.071109 

0.004214 

0.024890 

0.007434 

0.024691 

0.051624 

0.049223 

198.6161 

9.635541 

4.882214 

-8.700459 

17.16795 

1.444638 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.1486 

Adjusted R
2
 S.E. of regression ARCH test (p-value)  

0.834936 0.006593 0.5793 

Notes: This table reports the estimates from the GARCH model in Equation (7) and TGARCH 

model in Equation (8). ΔFt=Ln(SPt/ SPt-1), and the coefficient ofΔFt is the minimum variance 

hedge ratio. 

 

We finally examine a BGARCH to correct for heteroskedasticity, and the results are 

presented in Table 6. We use the diagonal-vech model and matrix-diagonal model to 

estimate all coefficients cij, αij, and βij simultaneously and all estimates are positive 

definite and significant at the 1% level. Moreover, the sum of each equation is close to 

unity (for example, css + αss + βss= 0.98733), showing the persistence of shockimpacts.   

The minimum-variance hedge ratios, measured by the coefficients of ΔFt, amount to 

0.838993, 0.836930 and 0.794622 for GARCH(2,2), TGARCH(2,2,1) and BGARCH(1,1) 

estimations, respectively; and all such estimates are significant at the 0.01 level. 
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Table 6: Results from the BGARCH (1,1) Model 

Variable Coefficient Std. Error z-Statistic Prob. 

ΔFt 

css 

csf 

cff 

αss 

αsf 

αff 

βss 

βsf 

βff 

0.794622 

0.000004 

0.000004 

0.000005 

0.069656 

0.071881 

0.077761 

0.917671 

0.913125 

0.908600 

0.005350 

0.000001 

0.000001 

0.000001 

0.004956 

0.004877 

0.005119 

0.005025 

0.005087 

0.006332 

  148.5275 

7.788508 

8.526319 

8.997206 

14.05472 

14.73837 

15.19184 

182.6101 

179.5131 

143.4949 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

Notes: This table reports the results estimated from the BGARCH model in Equation (9).   css, csf 

and cffare constants; αss, αsf and αff are coefficients of the squared error terms;  βss, βsf and βff are 

coefficients of the conditional variances and covariances. ΔFt=Ln(SPt/ SPt-1), and the coefficient of 

ΔFt is the minimum variance hedge ratio. 

 

5.2 Hedging Effectiveness Comparison 

So far five models have been employed in our study to estimate the MVHR. To evaluate 

the hedging effectiveness and forecasting accuracy of each model, we introduce a rolling 

sample method to estimate the five respectivetime-varying MVHRs for the out-of-sample 

period. As aforementioned in Section 4, our complete sample time series consist of a total 

of 3,146 daily observations, in which the first 2,644 observations (07/21/1998 – 

12/31/2008) are used for measuring the MVHRs, and the remaining 502 observations 

(01/01/2009 – 12/31/2010) for the out-of-sample forecast.  According to Baillie and 

Myers (1991) and Park and Bera (1987), the returns on the portfolio can be expressed as: 

 

ru = ΔSt+1–ΔSt, 

rh = ΔSt+1–ΔSt–h* (ΔFt+1–ΔFt),                                                                                        (10) 

 

where ru is the return of un-hedged portfolios, rh is the return of hedged portfolios, and h* 

is the MVHR.  The mean and variance of un-hedged and hedged portfolios can be 

obtained as follows: 

 

E(U) = E(ru), 

E(H) = E(rh), 

Var(U) = Var(ru), 

Var(H) = Var(rh),                                                                                                             (11) 

 

Following Johnson (1960), we compute hedging effectiveness by Equation (2) to compare 

hedging performances. In addition to hedging effectiveness, the risk-return trade-off is 

also compared with in various hedge horizons of one-day, one-week, and one-month, 

presuming the performance may vary (Lien and Tse, 1999). Under the rolling sample 

method, all estimated MVHRs vary with time, while transaction costs remain constant 

and thus their effects are ignored.   
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The mean of the hedge ratio is the average of the time-varying hedge ratio estimated by 

each model during the out-of-sample period.  The mean and variance of the return of the 

portfolio, and percentage in variance reduction, are calculated by Equations (11) and (2), 

respectively. 

Table 7 summarizes the comparisons of the MVHR estimated by alternative methods. 

There are several issues noteworthy. Firstly, under a one-day hedge horizon, a trade-off 

between risk and return occurs. Although the OLS model generates the highest daily 

return, its resulting variance is also the largest. On the other hand, the TGARCH model 

yields the smallest variance and the largest variance reduction, but this is accompanied by 

a smaller daily return.   
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Table 7: Hedging Performances Comparison 

Hedge 

Horizons 

Mean of the 

Hedge Ratio 

Mean of the Return 

of the Portfolio 

Variance of the 

Return of the 

Portfolio 

Percentage in 

Variance Reduction 

     

One-Day     

UN-

HEDGE 0 0.133470% 0.017286% 0% 

NAÏVE 1     -0.004281% 0.002249% 86.99% 

OLS 0.7852763 0.025222% 0.001566% 90.94% 

VECM 0.7986924 0.023367% 0.001546% 91.06% 

GARCH 

(2,2) 
0.8373481 0.018014% 0.001534% 91.13% 

TGARC

H (2,2,1) 
0.8359688 0.018078% 0.001530% 91.15% 

BGARCH 

(1,1) 
0.8059272 0.022686% 0.001663% 90.38% 

     

One-

Week     

UN-

HEDGE 0 0.680767% 0.080844% 0% 

NAÏVE 1     -0.023044% 0.006157% 92.38% 

OLS 0.8634001 0.071162% 0.003719% 95.40% 

VECM 0.8871256 0.053476% 0.003858% 95.23% 

GARCH 

(2,2) 0.8760147 0.063974% 0.003760% 95.35% 

TGARCH 

(2,2,1) 0.8800202 0.059750% 0.003793% 95.31% 

BGARC

H (1,1) 0.8491698 0.083348% 0.004340% 94.63% 

     

One-

Month     

UN-

HEDGE 0  2.791744% 0.487517% 0% 

NAÏVE 1 -0.255422% 0.029286% 93.99% 

OLS 0.9067244   0.001005% 0.018851% 96.13% 

VECM 0.9518758  -0.012258% 0.022328% 95.42% 

GARCH 

(2,2) 0.9663665 -0.166920% 0.024636% 94.95% 

TGARCH 

(2,2,1) 0.9710556 -0.166824% 0.024698% 94.93% 

BGARC

H (1,1) 0.8894014   0.119150% 0.020180% 95.86% 

 

Under the one-week and one-month hedge horizons, the BGARCH model provides the 

highest return, while the OLS model generates the smallest variance and largest variance 

reduction. Hence, which model is more appropriate for hedging purpose seemingly 

depends on the investor’s degree of risk aversion.  Secondly, within one-week and one-

month hedge horizons, the OLS model has the largest variance reduction (similar to 
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Holmes, 1996), but it is not the case for the one-day hedge horizon (different from Lypny 

and Powalla, 1998). Such inconsistency in findings may be attributed to that prior 

researchers did not use the rolling sample method that we have employed. Hence, our 

evidence suggests that the same model could lead to different hedging performances 

under various hedge horizons (in line with Lien and Tse, 1999), but which specific model 

should be considered superior for a specific hedge horizon does not have a clear-cut 

answer. Thirdly, a longer hedge horizon is associated with a greater average of MVHR 

and variance reduction, no matter which model is adopted (supporting Holmes, 1996). 

Finally, the average MVHR of the OLS model, which does not account for cointegration, 

is smaller than the other models (consistent with Ghosh 1993a, 1993b). 

 

 

6  Summary and Conclusions 
 
This study uses a variety of models to estimate MVHRs and thus examine the hedging 

effectiveness of the TAIFEX stock index futures. Besides investigating across alternative 

hedge models over the 07/21/1998 – 12/31/2008 sample estimation period, we implement 

the rolling sample method to evaluate time-varying MVHRs of various models for the 

01/01/2009 – 12/31/2010 out-of-sample forecast period. To examine each model’s 

appropriateness for measuring MVHRs, we conduct cross-model comparison of hedging 

performance in terms of hedging effectiveness and risk-return trade-off.   

In the one-day hedge horizon, the TGARCH model generates the largest variance 

reduction, whereas the OLS model provides the highest rate of risk-adjusted return. In the 

longer hedge horizon, however, the OLS generates the largest variance reduction, while 

the BGARCH model provides the highest rate of risk-adjusted return. As the risk-return 

trade-off occurs, the investor’s degree of risk aversion plays an important role in choosing 

the appropriate model to measure the MVHRs. Such findings differ from Yang and Allen 

(2005) and other prior literatures, possibly due to that most of those previous studies did 

not adopt the rolling sample method to get time-varying hedge ratios for constant hedge 

ratio models such as the OLS. The earlier studies, instead, focus on the ―constant‖ and 

―time-varying‖ hedge ratio such as BGARCH. 

Our study estimates all MVHRs by each model varying with time, and we also take 

account of different hedge horizons, which in turn affect the hedging performance 

(supporting Figlewski, 1984; Lien and Tse, 1999). A longer hedge horizon accompanies a 

larger average of MVHR and variance reduction, which is consistent with earlier findings 

(Chou et al., 1996; Holmes, 1996;Kenourgios et al., 2008). This evidence indicates that as 

the hedge horizon increases, the variance of the return of spot and futures prices also 

increases; but the increased variance of the return of futures prices is smaller than that of 

spot prices. Thus, the hedge ratio will grow larger so as to hedge the more volatile spot 

prices.  Finally, the average MVHR of the OLS model, which does not account for 

cointegration, is smaller than the other models, and this is in line with both previous 

empirical findings(e.g., Yang and Allen, 2005; Kenourgios et al., 2008) and the 

underlying theorems (Ghosh, 1993a, 1993b). In summary, our findings, collected from an 

emerging market of stock index futures, can meaningfully extend the scope of similar 

research works which have been mainly focusing on those presumably more developed 

and efficient markets. In the implementation process of hedging stock market risk, the 

application appropriateness of various models could be mixed, with being 
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country/region/market depth-specific in some aspects yet consistent in some others. 

Further studies are needed to investigate other futures markets and contract types, and/or 

to incorporate additional measurements of hedging performance (e.g., Pennings and 

Meulenberg,1997). 
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