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Abstract 
 

Traditional econometric modelling typically follows the idea that market returns follow a 

normal distribution. However, the concept of tail risk indicates that the distribution of 

returns is not normal, but skewed and has heavy tails. Thus, a heavy-tailed distribution, 

which accurately estimates the tail risk, would significantly improve quantitative risk 

management practice. In this paper, we compare four widely used heavy-tailed 

distributions using the S&P 500 daily returns. Our results indicate that the Skewed t 

distribution in Hansen (1994) has the superior empirical performance compared with the 

Student’s t distribution, the normal reciprocal inverse Gaussian distribution and the 

generalized hyperbolic distribution. We further showed the Skewed t distribution could 

generate the VaR estimates closest to the nonparametric historical VaR estimates 

compared with other heavy-tailed distributions. 
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1  Introduction 
 

The aftermath of the recent Financial Crisis emphasized the shortcomings of conventional 

financial wisdom. Even when everything is well crafted or normal, unexpected events can 

still pose a threat. These potentially rare events highlight the ongoing relevance of heavy 

tails throughout the finance industry. By definition, a heavy tail is a probability 

distribution which predicts movements of three or more standard deviations more 

frequently than a normal distribution. Even before the financial crisis, periods of financial 

stress had resulted in market conditions represented by heavy tails. This is important 

because normal distributions understate asset prices, stock returns and subsequent risk 

management strategies. 
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As early as 1963, Mandelbrot recognized the heavy-tailed and highly peaked nature of 

certain financial time series. Since that time many models have been proposed to model 

heavy-tailed returns of financial assets (Cont, 2001). The implication that returns of 

financial assets have a heavy-tailed distribution may be profound to a risk manager in a 

financial institution. For example, 3σ events may occur with a much larger probability 

when the return distribution is heavy-tailed than when it is normal. Quantile based 

measures of risk, such as Value at Risk, may also be drastically different if calculated for 

a heavy-tailed distribution. This is especially true for the highest quantiles of the 

distribution associated with very rare but very damaging adverse market movements. 

 

In this paper, we discuss several widely-used heavy-tailed distributions, fit them in the 

Standard & Poor’s 500 index returns, and further compare their empirical performance by 

goodness of fit and estimation of risk measures. Our risk metric focuses the Value at Risk 

(VaR), one of the most widely used measures of market risk, credit risk or operational risk 

since its introduction by J.P. Morgan in 1994 (Duffie and Pan, 1998). Our results indicate 

the Skewed t distribution has superior empirical performance compared several other 

widely used heavy-tailed distributions, such as the Student’s t distribution, the normal 

reciprocal inverse Gaussian distribution (NRIG) and the generalized hyperbolic 

distribution (GH). We further illustrate their implications in VaR calculations. 

 

 

Literature Review 

It is of great importance for those in charge of managing risk to understand how financial 

asset returns are distributed. Since the 1960s, empirical evidence has led in favor of 

various heavy tailed distributions. In a heavy-tailed distribution the likelihood that one 

encounters significant deviations from the mean is much greater than in the case of the 

normal distribution. It is now commonly accepted that financial asset returns are, in fact, 

heavy-tailed, and consequently, many heavy-tailed distributions have been introduced to 

the literature (see Rradley and Taqqu, 2003, for a survey). In addition to the standard 

Student’s t distribution, there are several other examples. For instance, Hansen (1994) 

introduced a type of Skewed t distribution and applied it to the U.S. Dollar/Swiss Franc 

exchange rate. Zhu and Galbraith (2012) considered a generalized asymmetric Student’s t 

distribution with applications in financial econometrics. Barndorff-Nielsen (1977) 

introduced generalized hyperbolic distributions into the equity market. Socgnia and 

Wilcox (2014) compared various subclasses of the generalized hyperbolic distribution, 

including hyperbolic, variance gamma, normal inverse Gaussian (NIG) and Skewed t, for 

the daily log-returns of seven of the most liquid mining stocks listed on the Johannesburg 

Stocks Exchange. Barndorff-Nielsen (1997) investigated the NIG distributions, a subclass 

of the generalized hyperbolic distribution, in stochastic volatility modeling. Finally, 

Figueroa-Lopez, et al. (2011) surveyed estimation of the NIG distribution and variance 

gamma models for high frequency financial data. 

 

All the above heavy-tailed distributions have already been applied into risk management 

area for VaR estimations. For instance, Dokov, et al. (2008) defined the Skewed t 

distribution as a location-scale normal mixture, developed analytical formulas and 

numerical approximations for its VaR and average VaR and tested the results numerically. 

Venter and de Jongh (2002) compared the NIG distribution with the extreme value theory 
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(EVT) and Student’s t based distributions. Venter and de Jongh found when VAR is the 

risk measure; the NIG based approach is more robust than the EVT method for samples of 

sizes up to 250 and also in larger samples if the NIG distribution fits, while the EVT 

method should only be used in large samples if the NIG distribution does not fit 

adequately. In the case of symmetric distributions, the Student’s t based approach 

compares well with the NIG based approach. However, when expected shortfall is the risk 

measure, the NIG based approach is found to be the clearly preferred method in small 

samples. 

 

Wilhelmsson (2009) proposed a new model for financial returns based on the NIG 

distribution with time varying variance, skewness and kurtosis. Bauer (2000) showed 

symmetric hyperbolic distributions have simple practical VaR computations. Fajardo, 

Farias and Ornelas (2005) analyzed the use of generalized hyperbolic distributions to VaR 

calculations with applications in the US Dollar/Brazilian real exchange rate. Through 

various perspectives, Fajardo, Farias and Ornelas recommended the use of the GH family 

distribution estimating by the maximum log likelihood method. Huang, et al. (2014) 

applied the generalized hyperbolic distributions for VaR estimation for the South African 

mining index. Through the comparison of three subclasses of the generalized hyperbolic 

distributions using the Akaike information criterion (AIC), the Bayesian information 

criterion (BIC) and log-likelihoods, Huang, et al. found the generalized hyperbolic (GH) 

skew Student’s t distribution as the most robust model for the South African mining index 

returns. Finally, Mabitsela, et al. (2015) compared the normal distribution, the Skewed t 

distribution, the Student’s t distribution and the normal inverse Gaussian distribution in 

quantification of VaR in the South African equity market. 

 

In this paper, we compare the various types of heavy-tailed distribution using the US 

stock market index returns. In contrast to the literature focusing on the subclasses of the 

generalized hyperbolic distributions, we consider the generalized hyperbolic distribution 

itself and allow all of parameters to be estimated. Also, we consider the Skewed t 

distribution as in Hansen (1994), and our results indicate the Skewed t distribution has 

superior performance in risk management practice. The remainder of the paper is 

organized as follows. In Section 2, we introduce the heavy-tailed distributions. Section 3 

summarizes the data. The estimation results are in Section 4. Finally, we conclude in 

Section 5. 

 

 

2  The Heavy-tailed Distributions 
 

In this section, we introduce four types of heavy-tailed distribution in addition to the 

normal distribution: (i) the Student’s t distribution; (ii) the Skewed t distribution; (iii) the 

normal reciprocal inverse Gaussian distribution (NRIG); and (iv) the generalized 

hyperbolic distribution (GH). All the distributions have been standardized to ensure mean 

and standard deviation equal to zero and one respectively. Their probability density 

functions are given as follows. 

 

(i) Student’s t distribution: 
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where   indicates degrees of freedom and 𝑒𝑡 is daily US equity market index return. 

 

(ii) Skewed t distribution: 
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where te  is the standardized log return, and the constants a , b  and c  are given by
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has a mode of /a b , a mean of zero, and a unit variance.  The density function is 

skewed to the right when 0  , and vice-versa when 0  . The skewed Student’s t 

distribution specializes to the standard Student’s t distribution by setting the parameter

0  .  

 

The Skewed t distribution is specified as in Hansen (1994). We choose this particular type 

of Skewed t distribution instead of other forms because the parameters are easy to 

estimate and its analytical form is close to the standard Student’s t distribution, as one can 

still see the power function form clearly. Meanwhile, it is also commonly used in the 

finance literature also with good results in our application. 

 

(iii) Normal reciprocal inverse Gaussian distribution (NRIG): 
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where 𝐾𝜆(∙) is the modified Bessel function of the third kind and index 𝜆 = 0 and 𝛼 > 0. 

The NRIG distribution is specified as in Prause (1997). We are particularly interested in 

the NRIG distribution instead of the NIG distribution, since Guo (2017) show the NRIG 

distribution has better empirical performance than the NIG distribution under the 

generalized autoregressive heteroskedasticity (GARCH) model framework. 

 

(iv) Generalized hyperbolic distribution: 
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    1, , , ,m p b g b d p b g R . 𝑝, 𝑏 and g are parameters. The generalized hyperbolic 

distribution is a standardized version of Prause (1997). 

 

 

3  Data 
 

We fit the heavy tailed distributions with the normalized US equity market index returns. 

The Standard & Poor’s 500, based on the market capitalizations of 500 large companies 

having common stock listed on the NYSE or NASDAQ, is considered as one of the best 

representations of the U.S. stock market. We collected the standardized S&P 500 daily 

dividend-adjusted close returns from Yahoo Finance for the period from March 4, 1957 to 

January 31, 2017, covering all the available data since the index was launched. Figure 1 

illustrates the dynamics of S&P 500, and the biggest spike was observed on October 19, 

1987. The recent financial crisis also witnessed significant volatility in the financial 

market. 

 

 
Figure 1: S&P 500 returns 

 

Table 1 exhibits basic statistics of the S&P 5 returns. The results show the S&P 500 daily 

returns are leptokurtotic and negatively skewed. The extreme downside move is almost 

twice of the extreme upside move. 
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Table 1: Descriptive statistics 

min max mean std skewness Kurtosis 

-20.47% 11.58% 0.03% 0.99% -0.62 20.87 

 

Figure 2 is the histogram of the raw data. We fit the returns by the Gaussian distribution 

and the Student’s t distribution. The upper panel in Figure 2 is fitted by the normal 

distribution. Clearly, the Student’s t distribution has a much better in-sample goodness of 

fit.  

 
Figure 2: S&P 500 returns – Normal vs. Student’s t 

 

 
4  Empirical Results 
 

4.1 Parameters Estimation 

We estimated the parameters by the maximum likelihood estimation (MLE) method and 

the estimation results of the key parameters are given in Table 2. All the parameters are 

significantly different from zero at 5% significance level.  
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Table 2: Estimated values of key parameters 

  Normal Student’s 

t 

Skewed t NRIG Generalized 

Hyperbolic 

Symmetric Y Y N N N 

Fat-tailed N Y Y Y Y 

Estimated 

Parameters 

 
  Nu = 

3.86 

Nu = 3.85; beta = -

0.063   

(a=-0.09; b=1.002; 

c=0.54) 

alpha 

=1.285;  

beta =-0.097 

p=-1.498; 

b=-0.095; 

g=0.465 

 

4.2   Goodness of Fit 

Based on Huber-Carol, et al. (2002) and Taeger and Kuhnt (2014), in this section we 

compare the four heavy-tailed distributions and the benchmark normal distribution in 

fitting the S&P 500 daily returns through four different criteria: (i) Kolmogorov-Smirnov 

statistic; (ii) Cramer-von Mises criterion; (iii) Anderson-Darling test; and (iv) Akaike 

information criterion (AIC). 

 

(i) Kolmogorov-Smirnov statistic is defined as the maximum deviation between empirical 

CDF (cumulative distribution function) 𝐹𝑛(𝑥) and tested CDF 𝐹(𝑥): 
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(ii) Cramer-von Mises criterion is defined as the average squared deviation between 

empirical CDF and tested CDF: 
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(iii) Anderson-Darling test is defined as the weighted-average squared deviation between 

empirical CDF and tested CDF:  
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and the formula for the test statistic A  to assess if data comes from a tested distribution is 

given by:  
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(iv) Akaike information criterion (AIC) is defined as: 
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 2 2ln( )AIC k L   ,                                                           (8) 

where L is the maximum value of the likelihood function for the model, and k  is the 

number of estimated parameters in the model.  

 

The comparison results are illustrated in Table 3 and Figure 3, indicating the Skewed t 

distribution has the best goodness of fit compared with other selected types of 

distribution, followed by the Student’s t distribution and the generalized hyperbolic 

distribution.   

Table 3: Comparison of selected types of distribution 

 Gaussian Student’s t Skewed t NRIG Generalized 

Hyperbolic 

K-S Test 0.018 0.009 0.006 0.008 0.007 

Cv-M Test 0.025 0.016 0.013 0.019 0.015 

A-D Test 1.54 1.15 1.07 1.21 1.11 

AIC 61314.5 56063.4 55949.8 56301.6 55956.6 

 

 
4.3   Value at Risk 

Table 4: Scenarios for SPX shocks 

Left Tail (Daily Loss) 

Confidence 99.999% 99.99% 99.975% 99.95% 99.9% 

Empirical -22.23% -14.75% -8.87% -6.83% -5.96% 

Normal -4.22% -3.68% -3.44% -3.25% -3.06% 

T -13.89% -11.02% -8.27% -6.09% -5.05% 

Skewed T -15.80% -12.07% -8.88% -6.50% -5.39% 

NIG -10.50% -8.45% -6.58% -5.10% -4.36% 

GH -12.21% -9.47% -7.20% -5.50% -4.66% 

Right Tail (Daily Loss) 

Confidence 0.001% 0.01% 0.025% 0.05% 0.1% 

Empirical 13.23% 11.18% 8.09% 6.35% 5.06% 

Normal 4.22% 3.68% 3.44% 3.25% 3.06% 

T 13.89% 11.02% 8.27% 6.09% 5.05% 

Skewed T 12.26% 10.19% 7.83% 5.81% 4.83% 

NIG 10.50% 8.45% 6.58% 5.10% 4.36% 

GH 9.77% 8.17% 6.47% 5.01% 4.28% 

 

In financial mathematics and financial risk management, VaR is defined as: for a given 

position, time horizon, and probability p, the p VaR is defined as a threshold loss value, 
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such that the probability that the loss on the position over the given time horizon exceeds 

this value is p. with the estimated parameters in Section 4.1, we calculate VaRs for 

different confidence levels: 

( ) inf{ : ( ) 1 }t tVaR e e P e e      ,                                               (9) 

where (0,1)  is the confidence level. We select the following levels for downside 

moves: {99.999%, 99.99%, 99.975%, 99.95%, 99.9%}, and for upside moves: {0.001%, 

0.01%, 0.025%, 0.05%, 0.1%}. From Equation (9), the VaR levels are given as in Table 

4. Table 4 indicates that the Skewed t distribution has the closest VaRs to the 

nonparametric historical VaRs compared with other types of distributions.  

 

We further draw the tail parts of the distributions in Figure 3. Again, the figure illustrates 

that the Skewed t distribution has best goodness-of-fit in the tail parts, followed by the 

Student’s t distribution and the generalized hyperbolic distribution. The normal 

distribution has almost no predictive ability for the tail parts.  

 

Figure 3: Comparison of selected types of distribution – tails 

 

 

5  Conclusions 
 
Value-at-Risk (VaR), defined as the worst expected loss over a given period at a specified 

confidence level, has become one of the most widely used risk measures by financial 

institutions and regulatory. When evaluating VaR for financial assets the distribution of 

the returns of the underlying asset play an important role. The methods to estimate VaR 

can be classified into two groups, i.e., the parametric VaR and non-parametric VaR. 

Parametric VaR assumes that financial returns following a specific statistical distribution 
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(e.g., Gaussian and Student t distribution). The quality of parametric VaR is therefore 

dependent on how well the statistical distribution captures the asymmetric and leptokurtic 

behavior of the financial returns. A more reliable statistical distribution could result in 

more trustworthy estimations of risk and lead to improved risk management practice. 

 

In this paper, we consider four widely used heavy-tailed distributions, and fit them with 

the S&P 500 returns. Through a variety of criteria, we found the Skewed t distribution in 

Hansen (1994) has the best in-sample goodness of fit compared with the Student’s t 

distribution, the normal reciprocal inverse Gaussian distribution and the generalized 

hyperbolic distribution. Moreover, we showed the Skewed t distribution could generate 

Value at Risk estimates closest to the nonparametric historical Value at Risk estimates. 

For the future research, one may consider combining the volatility clustering effect with 

the heavy tails phenomenon as in Guo (2017) and investigate their implications in risk 

measure estimates. 
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