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Notes on Fano Ratio and Portfolio Optimization
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Abstract

We discuss — in what is intended to be a pedagogical fashion — gener-
alized “mean-to-risk” ratios for portfolio optimization. The Sharpe ratio
is only one example of such generalized “mean-to-risk” ratios. Another
example is what we term the Fano ratio (which, unlike the Sharpe ra-
tio, is independent of the time horizon). Thus, for long-only portfolios
optimizing the Fano ratio generally results in a more diversified and less
skewed portfolio (compared with optimizing the Sharpe ratio). We give
an explicit algorithm for such optimization. We also discuss (Fano-ratio-
inspired) long-short strategies that outperform those based on optimizing
the Sharpe ratio in our backtests.
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Loadings; Factor Covariance Matrix; Risk Factor; Volatility; Variance; Covari-
ance; Correlation; Bounds; Trading Costs; Constraints; Regression; Weights

1 Introduction and Summary

When constructing a (e.g., stock) portfolio, one balances risk and reward (i.e.,
expected return) [36]. Mean-variance optimization [28] provides an implemen-
tation of this general idea. In some (somewhat limited) sense, maximizing the
Sharpe ratio [36] can be taken as a justification for mean-variance optimization.
Thus, without costs, bounds, constraints, etc., maximizing the Sharpe ratio of a
portfolio is equivalent to mean-variance optimization. However, once, e.g., costs
are included, this equivalence is gone. This begs the question:3

Can we anchor portfolio optimization on quantities other than the Sharpe
ratio? In these notes we address precisely this question. The Sharpe ratio is a
ratio of the (properly adjusted — see below) expected return over the standard
deviation. So, it is a ratio of the expected return to a particular measure of risk,
in this case, the standard deviation. However, we can consider other measures
of risk, e.g., some generic function of the variance.* Thus, one property of the
Sharpe ratio is that it depends on the time horizon for which it is calculated.
E.g., a daily expected return and volatility give us a daily Sharpe ratio, which is
on average lower (by a factor of /252, where 252 is the approximate number of
trading days in a year, if we focus on stocks) than an annualized Sharpe ratio. If
the daily expected return and volatility are stable in time, the Sharpe ratio goes
to infinity as /T with the time horizon T.

In contrast, the mean-to-variance ratio (i.e., the expected-return-to-variance
ratio) — which we refer to as the Fano ratio (see the next section) — is independent
of the horizon T' (in the aforementioned sense). We could then take the Fano
ratio as the starting point for portfolio optimization. As mentioned above, more
generally, we can take a ratio of the expected return to a suitable function of the
variance. This is the avenue we explore in these notes, which are intended to be
pedagogical.

In Section 2 we discuss maximizing generalized mean-to-risk ratios in the

3 Modifications of mean-variance optimization have been discussed before; see, e.g., [25],
[34], [7], [29], [8]. E.g., in [25] the standard deviation is replaced by MAD (that is, mean
absolute deviation). Here we take a rather different approach.

4 The standard deviation is a square root of the variance, but other functions are also
possible.
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context of long-only portfolios. Maximizing the Fano ratio leads to simplifications
(compared with the general case). Dealing with nonnegativity of the portfolio
weights, just as when maximizing the Sharpe ratio, requires an iterative procedure
and we provide an approximate relaxation algorithm for optimizing the Fano
ratio. For long-only portfolios optimizing the Fano ratio effectively amounts to
shifting the expected returns by a positive amount, which results in fewer stocks
being excluded from the portfolio (including some stocks with negative expected
returns), i.e., in a more diversified and less skewed portfolio (compared with
optimizing the Sharpe ratio).

In Section 3 we discuss long-short portfolios, for which certain issues with opti-
mizing the Fano ratio inspire construction of new “multiply-optimized” strategies,
which outperform optimizing the Sharpe ratio. We briefly conclude in Section 4.

2 Generalized Mean-to-Risk Ratios

Our discussion below is agnostic to the underlying tradable instruments, which a
priori can be stocks, bonds, currencies, etc. However, for the sake of definiteness,
let us focus on a portfolio of stocks (e.g, 2,000+ most liquid U.S. stocks). So, we
have N stocks with time series of (e.g., close-to-close daily, weekly, monthly or
some other horizon) returns R, i = 1,..., N. Here the index s =1,...,T labels
trading days on which these returns are computed (s = 1 labels the most recent
date).’

Above, R;s are the realized returns (ex-post). We can also define expected
returns (ex-ante) via, e.g., moving averages:

s+d

1
Eis - a Z Risl (1)

s'=s+1

Thus, if R;; are daily returns, then E;; are d-day moving averages. We emphasize
that (1) is only an example and there are myriad other ways of constructing
E;s. Generally, expected returns can be quite convoluted and have no simple
financial interpretation, e.g., machine learning based expected returns [18]. In
the following, for the sake of simplicity, we will omit the index s and refer to
expected returns as FE;. Thus, we can think of E; as the expected returns for
s =1 (i.e., “today’s” date). What is important is that F; are computed out-of-
sample.

5 Here the returns R;s are defined as excess returns w.r.t. a risk-free return. In the case of
dollar-neutral portfolios this is not crucial. However, here we do not require dollar neutrality.
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Next, we can define a sample covariance matrix C;; based on the time series
E;s or R;s and also computed out-of-sample (ex-ante). In what follows it may
appear natural to compute Cj; based on the expected returns E;; as opposed to
the realized returns R;;. However, in practice, in many cases it can be (much)
simpler to compute Cj; based on R;;. In some cases basing Cj; on F;; may not
even be practicable. One issue is that typically the lookback — i.e., the number
of datapoints in the time series, call it M - is insufficient to compute Cj; reliably.
Thus, if M < N+1, then the sample covariance matrix Cj; is singular, whereas for
our purposes below Cj; must be positive-definite. Furthermore, unless A/ > N,
which is rarely if ever the case in practice, the off-diagonal elements (in particular,
the correlations — the diagonal elements are relatively stable) are highly unstable
out-of-sample rendering C;; essentially useless (unpredictive out-of-sample). So,
in practice one replaces the sample covariance matrix C;; via a model covariance
matrix, call it T';;, such as a multifactor risk model.® If built in-house, T';; could a
priori be built based on E;; (among other things). If it is a third-party product,
naturally, it is built based on R;s; (or some other returns). In any event, here
we will not delve into how I';; is built. We will simply assume that C;; below
is identified with some model covariance matrix I';;, which is i) positive-definite
and ii) sufficiently stable out-of-sample.

2.1 Generalized Mean-to-Risk Ratios for Portfolios

Now we can define portfolio risk. Let us assume that our portfolio consists of our
N stocks with weights w;. A priori some of these weights can be 0 or negative.
The normalization condition for the weights is

> il =1 @

Below we will consider a case with nonnegative weights; for now w; are general.
The expected return of the portfolio is given by

N
E = Zwi Ei (3)
i=1

The expected variance of the portfolio is given by

N
V == Z Cij w; ’U)j (4)

ij=1

6 For a general discussion, see, e.g., [13]. For an explicit open-source implementation of a
general multifactor risk model for equities, see [20].
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We can define the Sharpe ratio [37] of the portfolio via

E
A nice thing about the Sharpe ratio is that it is invariant under the formal
rescalings w; — ¢ w;, where ¢ > 0. This rescaling invariance is the reason why
in the absence of trading costs, bounds, etc., maximizing the Sharpe ratio is
equivalent to mean-variance optimization [28].” Indeed, maximizing (5) (i.e., we
find the maximum of S w.r.t. w;)® is equivalent to maximizing (w.r.t. w;) the

objective function
A

g=E-2V (6)
2
and A is fixed (after maximization) via (2). So, in some (somewhat limited) sense,
maximizing the Sharpe ratio can be taken as a justification for mean-variance
optimization. However, once, e.g., trading costs, etc., are added, maximizing the
Sharpe ratio is no longer equivalent to mean-variance optimization [16].
Furthermore, one property of the Sharpe ratio is that it depends on the time
horizon for which it is calculated. E.g., a daily expected return and volatility
give us a daily Sharpe ratio, which is on average lower (by a factor of v/d, where
d ~ 252 is the approximate number of trading days in a year, if we focus on stocks)
than an annualized Sharpe ratio. If the daily expected return and volatility do
not change much in time, then the Sharpe ratio goes to infinity as /7' with the
time horizon T. So, a practical way of thinking about the Sharpe ratio is that,
if, say, the annualized Sharpe ratio is 2, then the probability of losing money
in a given year is less than about 2.3% (assuming normally distributed realized
returns, that is, which can be farfetched — see below).” Can we define a ratio
independent of the time horizon?'’

" More precisely, there is a single exception to this, which is the case of linear costs for
establishing trades — see [16] for details.

8 Which can be done by ignoring (2) due to the aforesaid rescaling invariance as we can always
rescale the weights obtained via such maximization to conform to (2). In fact, maximizing (5)
fixes w; only up to an overall normalization factor.

% Recall the 68-95-99.7 rule: if z is a normally distributed variable with mean p and standard
deviation o, then we have the following probabilities: Pr(u —no <z < p+no) = P,, P =
68.27%, Py ~ 95.45%, P3 ~ 99.73%. The probability of losing money when the Sharpe ratio
equals n. (i.e., i = no) then is P = (1—P,)/2. So, we have P, ~ 15.9%, P, ~ 2.3%, P ~ 0.14%.
However, this does not take into account leverage, margin calls, investor withdrawals and other
such nuances.

10 Another known issue with the Sharpe ratio maximization and mean-variance optimization
is that one can get portfolios with low degree of diversification. E.g., consider a simple example
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The answer is affirmative. We can simply define the mean-to-variance ratio:!!

F=y (7)
This ratio is independent of the horizon T (in the aforementioned sense). Other
than tautological “mean-to-variance ratio”, this ratio apparently has not been
named in finance. It would appear appropriate to term it the Fano ratio due to
its relationship to the Fano factor [12] named after Ugo Fano, an Italian American
physicist. The Fano factor (a.k.a. variance-to-mean ratio and index of disper-
sion), in our notations, is simply V/FE, i.e., the inverse of the Fano ratio (7).!2
Up to a factor of 2, it is the same as the ratio
2F
K= (8)
discussed in [19] in the context of stock price bubbles, where it was argued that
the dimensionless ratio x can be used to define a criterion for when a stock (or a
similar instrument) is not a good investment in the long term, which can happen
even if the expected return is positive. Thus, assuming log-normal distribution
for stock prices, this criterion (i.e., that the stock is not a good investment in a
long run) is
k<1 9)

This criterion for the Fano ratio (defined for a single stock) would be F' < 1/2.
So, naturally, we can ask: why not maximize the Fano ratio (instead of the
Sharpe ratio)? In fact, we can define more general “mean-to-risk” ratios via

E
G=—7= (10)
fvV)
where f(V') is some function of V. We can then maximize G instead of S (or F').
Recall, however, that we could ignore the normalization condition (2) when
maximizing the Sharpe ratio as the latter is invariant under the rescalings w; —
¢ w;. Such invariance is gone in the case of the Fano ratio or more general ratios G

where all E; > 0 and the matrix C;; = af d;; is diagonal (uncorrelated returns — this is not
a crucial assumption here, the following can happen even for correlated returns). The weights
that maximize the Sharpe ratio are given by w; = vE;/o?, where v is fixed via (2). Now
consider a case where all E; are small except for one. Then we can have all weights but one
small and most of the investment will be allocated to the corresponding single stock thereby
forgoing diversification.

LA mean-to-variance ratio test is advocated as a complement to a coefficient of variation
test and a Sharpe ratio test in [4]. Also see [3].

12 Similarly, the Sharpe ratio is the inverse of the coefficient of variation vV /E.



Zura Kakushadze and Willie Yu 7

defined via (10). So, the maximization problem becomes more nontrivial. Thus,
we must maximize the objective function

g:G+u(Z|wi|—1> (11)

i=1

where g is a Lagrange multiplier. The modulus complicates things quite a bit
(see Section 3). Therefore, for the sake of simplicity, for now let us focus on the
case of long-only portfolios, where w; > 0. Then our objective function simplifies:

g:G+u<Zwi—1> (12)

However, now we have bounds
w; >0 (13)

To get a flavor of the problem at hand, at first we will ignore the bounds (13)
when solving the maximization problem and then incorporate them via a certain
trick.

2.2 Maximization Ignoring Bounds

Maximizing (12) w.r.t. w; and g (and ignoring the bounds (13)), we get the
following solution (f'(V') is the first derivative w.r.t. V, and C’Z-;l is the inverse
of Cij):

N
= Cy' B (15)
=1
]N
n=3City, (16)
j=1
_ W)
"~ 357V "
W)
b=V~ 5T (18)

Here v; = 1 is the unit N-vector (using which might appear redundant at first,
but will be useful later). So, we have three unknowns, E, V and a. Using the
condition S w; = 1 and the definitions (3) and (4), we have the following
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equations:'?

ay+b5% =1 (19)
E =ao® + by (20)
V = a’a® + 2aby + b’ 8% = a’a’ + (ay + 1)b = a’a® + (1 — a®y%) /5% (21)
where
N
CYQ = Z CZ;I Ez Ej (22)
i,7=1
N
52 = Z ngl V; Vj (23)
ij=1
N
ij=1

and in (21) we repeatedly used (19). So we can express a via V:

VB2 -1
2 _
a” = T TR (25)
Combining (19), (18) and (25), we get the following equation involving V" only:
Ve -1 () i
2 =145 -V 26
v Q2B — 2 ( +8 {Qf’(V) (26)

For general f(V') this equation is transcendental. In some cases it simplifies.

Let us start with the case of the Sharpe ratio f(V') = V/V. Then we have the
familiar solution b = 0 and @ = 1/v. If f(V) = VP, where p > 0 and p # 1/2,
then (26) is a quadratic equation for V' and can be readily solved. It is also a
quadratic equation when f (V) = exp(£V). For f(V) = exp(£V?) the equation is
quartic.

2.2.1 Maximizing Fano Ratio

While the aforesaid quadratic equations can be solved, generally they involve
radicals and are not particularly illuminating. However, in the case of the Fano
ratio, i.e., when f(V') =V things further simplify and there are no radicals. The
solution is:

1
a:aﬁ+’y (27)
"= BB 25)

13 Note that (20) follows from (17), (18), (19) and (21).
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and we have

E:% (29)
__ 2 (30)
Blaf +7)
F =3 (af+7) (31)
_ JeleB+7)
5= " (32)

Had we maximized the Sharpe ratio, we would get F, = o?/v, V., = o?/¥% F, =~
and S, = a. Since v < af, it follows that S < S, and F' > F, (which should
come as no surprise as F' and S, are the maximum possible values thereof), and
E < FE, and V < V,. So, maximizing the Fano ratio produces a portfolio with a
lower expected return but also a lower expected volatility than maximizing the
Sharpe ratio.™

2.3 Incorporating Bounds

The solution (14) is not necessarily good in the sense that some w; might be
negative. Indeed, even if all F; are nonnegative, we can have negative w; due to
the off-diagonal elements in Cj;. So, we must incorporate the bounds (13) into
the solution somehow.

The issue is that we are not dealing with a quadratic optimization problem

> However, not all is lost and the following trick provides a reasonable

here.!
approximation. Thus, the solution (14) formally can be thought of as the solution
to maximizing the following quadratic objective function (A is fixed after solving
for w; by rescaling them such that vazl w; = 1, which rescaling is not affected

by the bounds (13))

v (33)

14 Note that in portfolios based on maximizing the Sharpe ratio the realized expected return
and Sharpe ratio can be vastly different from their expected values based on optimization.
Therefore, the fact that the expected return is higher when we maximize the Sharpe ratio as
compared to when we maximize the Fano ratio means little in terms of what the realized return
will be.

15 This is also the case when maximizing the Sharpe ratio in the presence of bounds.
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subject to the bounds (13), where (note that A = a/(J)3(J) + v(J))

E = zN: w; E; (34)
E; = E1 +E(J)) v (35)
E(J) = % (36)
()] = ZE:J[C(J) i Bi B (37)
B = %E;I[C(J)]Zf Vi v (38)
v(J) = ié[C(J)]ml Ei v (39)

where J = {i|w; > 0} is the subset of positive weights, [C'(.]) Z-_jl is the N(J) x
N(J) matrix inverse to the N(J) x N(J) matrix [C'(J)];; obtained from C;; by
restricting 4, j € J. (Here N(J) = |J]| is the number of elements in .J.) So, the
catch is that E(J), and thereby E;, depend on J, which is unknown. Had E(J)
been known a priori, then we would simply minimize (33) subject to the bounds
(13) via standard quadratic optimization techniques.'® So, here is a relaxation
algorithm that approzrimates the optimal solution. At the initial iteration, we
assume that J® is the full set {1,..., N} and compute w; via (14). If all w; > 0,
then there is nothing else to do, we are done. So, let us assume that the set
JO = fijw; < 0} is not empty. Let us take the value of £ € J© for which
F, = min(F}), where F; = E;/C;; are the Fano ratios for each stock.'” We then
permanently set w, = 0, take J() = J© \ ¢ and compute w; via (14). If the
resulting w; > 0 for all i € JU), then we are done. So, let us assume that the
set JO = {ijw; < 0,i € JV} is not empty. Let us take the value of ¢ € JO for
which Fy = min(F;), i € J® (see fn.17). We then permanently set wy = 0, take
J@ = JW\ ¢ and compute w; via (14). And so on. We repeat this procedure
until at some k-th iteration all w; > 0 for i € J®). As always, one issue with
this relaxation algorithm is the computational cost: we must compute the inverse

matrix [C(J) Z-_jl at each iteration. However, for a K-factor model of the form

16 See, e.g., [10], [11], [15], [16], [31], [32], and references therein.

17 1f there are multiple values of ¢ for which F;, = min(F}), then we take the value of ¢ for
which Cpy = max(Cj;), and if there are still multiple values of ¢ remaining, we simply take the
lowest .
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(here & is the specific a.k.a. idiosyncratic risk, Q;4, A = 1,..., K is the factor
loadings matrix, and ¢ p is the factor covariance matrix)

K
Ci; =& 6ij + Z Qia dap Qja (40)
A1

to compute [C’(J)]i_jl, we only need to invert the K x K matrix ¢p5 once, plus
we must invert a K x K matrix'®

QDan = b3+ 3 77 Bt (41)
ieJ

at each iteration. However, these inversions are much cheaper assuming K < N.

2.4 The “Market” Mode

The issue we wish to address next is equally pertinent to maximizing the Sharpe
ratio, the Fano ratio and the generalized mean-to-risk ratios we discuss above.
For the sake of definiteness and simplicity, let us focus on the case of maximizing
the Sharpe ratio. Let us ignore the bounds (13) for a moment. Then the weights
are given by

N
j=1
N
lel = Z Clgl E1Z Vi (43)
1,j=1

For a typical configuration, even if all F; are nonnegative, close to 50% of the

weights w; can be negative. Thus, to illustrate this point, let us consider the
2

following “toy” covariance matrix:'? Ci; = 0i0;¥,5, where o7 are the variances;
the correlation matrix U,;; = (1 — p) §;; + pr;vj; and v; = 1 is the unit N-vector.
Le., all N stocks have uniform pair-wise correlations equal p. Inverting this
matrix gives the following weights:
N
w= ——— | B - — P N F, (44)

~oi(l-p) L+ (N =1)p =

18 Tteratively dropping the stock with the lowest Fano ratio is only an approximation. How-
ever, it is computationally feasible. E.g., iteratively dropping the stock with the smallest impact
on the full Fano ratio (31) would prohibitively require inverting ~ N matrices (41) at each it-
eration.

19 This is an example of a 1-factor model.
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where EZ = F;/o; are the normalized expected returns. Generically, the latter
are expected to be roughly symmetrically distributed around their mean. It is
then evident from (44) that, unless p < N, roughly 50% of the weights w; are
negative.

Now, in practice the correlation matrix with uniform pair-wise correlations
is unrealistic. However, the above issue persists even for realistic correlation
matrices. Thus, consider a general correlation matrix ¥;;. We can always write

it as
N N
Here p = m Z V;; is the average pair-wise correlation, and Z A =0.
6,J=1; i#£j ij=1

In the zeroth approximation we can drop Ay, i.e., W;; ~ Wi, Its first principal
component Ui(l) = 1;/V/N. Tt describes the “market” mode [6],% i.e., the average
correlation of all stocks, which is nonzero (and not small, definitely p &« 1/N).%!
The “market” mode corresponds to the overall movement of the broad market,
which affects all stocks (to varying degrees) — cash inflow (outflow) into (from) the
market tends to push stock prices higher (lower). This is the market risk factor.
To mitigate this risk factor, one can, e.g., hold a dollar-neutral portfolio of stocks.
However, long-only portfolios are exposed to market risk by construction.

So, neutralizing the market risk factor while maximizing the Sharpe ratio is
an unwelcome feature. Why? Because at the end we impose the bounds (13)
anyway, so the market risk is still present, but the resultant portfolio gets arti-
ficially distorted due to pushing the negative weights (that is, in the unbounded
optimization) to zero thereby also affecting the positive weights. The culprit here
is that, when maximizing the Sharpe ratio using a covariance matrix that includes
the “market” mode, we approximately neutralize the portfolio w.r.t. the market
risk. Put differently, we hedge against all stocks — i.e., the broad market — going
bust. However, holding a long-only portfolio with thousands of stocks invariably
is exposed to the broad market. So, we must eliminate the “market” mode out

of the covariance matrix.??

20 Also see [22].

>! Note that the eigenvalue of ¥}, corresponding to UM s A =1+ p(N —1).

22 Here one can argue that one can build a “market-neutral” long-only portfolio by picking
stock weights such that they are neutral w.r.t. market betas by utilizing the fact that some
betas can be negative. However, not only do the betas tend to be highly unstable out-of-sample,
we still have the bounds (13) (which are not that easy to satisfy for beta-neutral portfolios), and
neutralizing against the “market” mode (whose elements are all positive) in no way is helpful
in building a beta-neutral long-only portfolio. For a review of some market-neutral strategies
(which, however, are not long-only), see, e.g., [26] and references therein.
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In the context of factor models (40) this can be achieved relatively easily. In
this case (ignoring the bounds (13)) we have (as above, a is fixed via S, w; = 1)

E 1 & M B,
m=a |5k S anen YD, (16)
i i AB=1 j=1 >J

N
1
Qap = dap+ > g Yia Qi (47)
i=1 >?

Eliminating the “market” mode from Cj; then amounts to requiring that the
factor loadings matrix is orthogonal to some positive N-vector v; > 0:

N
D v Qia=0 (48)
i1

Then we no longer have roughly 50% of negative weights w;. While some of these
weights can still be negative, typically the number of such negative weights will
be relatively small compared with N (assuming all E; > 0, that is). So, what are
v;?

One — but not the only — way of thinking about v; is that they are the weights
of some benchmark long-only portfolio: v; = wl*"mark > (. The choice of this
benchmark portfolio is not all that critical provided it is reasonably diversified.
For example, we can take?® v; = 1, i.e., an equally-weighted benchmark. We can
take v; = 1/0? or v; = 1/&2. This can skew the portfolio toward low-volatility
(which are typically large market cap) stocks. To mitigate this, we can Windsorize
or otherwise deal with the tails in the skewed (roughly log-normal) distribution
of o; (or &;). Etc.

2.5 Statistical Risk Models

Statistical risk models [23] provide a particularly simple example of factor models,
!

;]c_zmp e

correlation matrix computed based on time series of historical returns. W;™" te

where the factor covariance matrix is diagonal. Thus, let ¥ be the sample

can be singular. This will not affect our discussion below. The sample covari-

.. ! ! .. .
ance matrix is C7;""" = 0,0, W™, We can construct a statistical risk model

23 Up to an overall normalization, that is.
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covariance matrix Cj; as follows:

Cij = O'Z'O'j\Ifij (49)
_ K
Wi =& 0+ Y ANV v (50)
a=1
G=1- Y X[ (51)
a=K+1

Here V;(a) are the principal components of the matrix \Iff;mple with the corre-
sponding eigenvalues in the descending order: AV > X2 > ... > X\ where r is
the rank of \I!f;m”le (if < N, then for @ > r we have A = 0). The number of
factors K is determined via (truncated or rounded) eRank (effective rank) [35] —
see [23] for details. The issue with the so-constructed Cj; is that it contains the
“market” mode. Indeed, without loss of generality we can assume that all ele-
ments of the first principal component V;-(l) > ( — this can be ensured by, if need
be, changing the basis as follows: Cj; — €;¢;C;;, where ¢; = sign(‘/;(l)). Then the
all-positive V;(l) can be regarded as the “market” mode [6]. In fact, for large N
we have V;(l) . 1/\/N Note that higher principal components V;(a>1) invariably
have negative elements. So, we need to eliminate the first principal component.
This can be achieved simply by defining

Cyj = 0,0, T (52)
K
Uy =& 6+ Y A@ V@ v (53)
a=2
E=1-XV [P 3 @ [pep (54)
a=K+1

This is not the only possible definition, but it is as good as any other. With this
definition we can think of the benchmark portfolio as that with v; = V;-(l)/ ;.

Our discussion above is for maximizing the Sharpe ratio but equally applies
to maximizing the Fano ratio and the generalized mean-to-risk ratios. This is
because in all these cases the weights involve inverting the covariance matrix.
Indeed, in (14) we have w; = aZ;.V:l C’Z-;l B}, where B = E; + v; b/a, so the
above still applies.

2.6 Why Is This Useful?

For long-only portfolios optimizing the Fano ratio effectively amounts to shifting
the expected returns by a positive amount via (35), which results in fewer stocks
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being excluded from the portfolio due to the bounds (13) (including some stocks
with negative expected returns F;, for which the effective returns EZ can be
positive), i.e., in a more diversified and less skewed portfolio (compared with
optimizing the Sharpe ratio). This is evident for a diagonal matrix C;; = o2 0;;.
And this conclusion persists for non-diagonal C;; of the factor model form with the
“market” mode removed. This can be illustrated using a simple 1-factor model
of the form Cj; = 0,0,¥;;, where the correlation matrix V,;; = (1 — p) §;; + ps;s;,
and s; = 1 for half of the values of i, and s; = —1 for the other half (the number
of stocks N is assumed to be even). (As above, let us ignore the bounds for a
moment.) Then we have (here a is given by (27))

N
a ~ p Si ~
wi=— B — P N 55
oi (L= p) 1+(N—1)p; 7 (53)
~ ~ O{V.
E=E+2Y 56
(= E+ L (56)
! [~ ) N 2
o = B2 —L E; s; (58)
(1-p) ; 1+ (N—-1)p ;

o1 1 P NSi 2
P (S e (B )

¢ =1

It is reasonable to assume that there is no substantial correlation between the
values of ¢; and the signs s;, or the values of E; and s;. Then we can estimate
that ‘ZZJL si/0i| < VN /0., where N/o? = SN 1/02. Similarly, |V, F; ;| <
VN E,, where N E2 = SV E2. Further, we can reasonably assume that p &
1/N (and N > 1). Then we have

2
o? = (i\fi) 11— O(1/N)] (60)
§ = [l O(1/N)] (61)
or (1-p)
and, up to terms suppressed by 1/N, the weights are given by
a ~ =~ o S e [~ ~ 0,8
mzaﬁiﬂ-E+Ewﬂi—ﬁr1@%%+a ;ﬁ] (62)

In this expression the terms containing E, are pertinent to optimizing the Fano
ratio; the other two terms are present when optimizing the Sharpe ratio (in which
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case the overall normalization coefficient a is different). And it is precisely the
second term in the square brackets in (62) that makes the difference here. Here
is why and how.

Based on our argument above, the term in (62) containing a sum over j has
a magnitude of order E, /V/N. Now consider the values of the index i such that
0; < V/'N o,. For such i the second term in (62) dominates the term containing
the sum and we have

w; & ﬁ {E B, 0—} (63)
For such values of 7, w; can be positive even for negative returns FE;. This is
because i) the contributions of the off-diagonal terms in the covariance matrix
Cj; into the optimization are suppressed for such 7, and ii) the intrinsic-to-Fano-
ratio term (proportional to E*) provides an additive positive contribution. This
reduces the number of stocks with negative weights (when we ignore the bounds,
that is), which are then “pushed up” when we include the bounds. And this
additive contribution is positive even for the values of i for which o; &« V'N o,.
Let us quantify this.
We can reasonably assume that there is no substantial correlation between
E; and 1/0;. Then the deviations for the two terms in the parenthesis in (62)
can be estimated independently. The standard deviation of the term containing
the sum in (62) (approximately) is \/2/N E,. Conservatively, assuming that its
actual value deviates by 5/ V2 ~ 3.54 standard deviations in either direction, we
can estimate the bound & on o; such that, for o; < 7 it is unlikely (with roughly
3.54 standard deviations confidence level) that the term containing the sum in
(62) outweighs the second term in (62) such that the total contribution of these

terms is negative:
-~ VN

And the number of such stocks typically is pretty small (compared with the
number of stocks in the portfolio). To illustrate this, here is an example from
data. We take the data for the universe of tickers as of Sep 6, 2014 that have
historical pricing data on http://finance.yahoo.com (accessed on Sep 6, 2014) for
the period Aug 1, 2008 through Sep 5, 2014.2* We restrict this universe to include
only U.S. listed common stocks and class shares (no OTCs, preferred shares, etc.)
with BICS (Bloomberg Industry Classification System) sector, industry and sub-
industry assignments as of Sep 6, 2014. The number of such tickers in our data is

24 The choice of this window is not critical here. We simply used data readily available to
us.
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3811. We then compute the 21-trading-day (i.e., 1-month) historical volatilities
based on daily close-to-close returns for the most recent date in the data, Sep 5,
2014. One stock was not trading (zero volatility) in that 21-trading day period,
so we are left with 3810 stocks with nonzero volatilities. These are our o;. The
cross-sectional distribution of o; is roughly log-normal, with a long tail at higher
values (see Figures 1 and 2). The summary of these 3810 values of o; is as follows:
Min = 0.64 x 1073, 1st Quartile = 9.16 x 10~3, Median = 0.0137, Mean = 0.0185,
3rd Quartile = 0.02197, Max = 0.3252, SD (standard deviation) = 0.01706, MAD
(mean absolute deviation) = 8.37 x 107®. Further, we have o, = 9.99 x 1073,
and the number of stocks in this universe with o; > ¢ is only 14. If we take
10 in the denominator?® instead of 5 in the definition (64), we still only get 78
stocks with o; > . If we restrict our stock universe to the top 2000 most liquid
stocks by ADDV (average daily dollar volume, also computed based on the same
21-trading-day period), the results are similar (also see Figures 3 and 4): Min =
0.64 x 1073, 1st Quartile = 7.86 x 1072, Median = 0.0111, Mean = 0.01470, 3rd
Quartile = 0.01678, Max = 0.2566, SD = 0.01408, MAD = 5.60 x 1073, Further,
we have o, = 8.55 x 1073, and the number of stocks in this universe with o; > &
is only 16. If we take 10 in the denominator instead of 5 in the definition of (64),
again we still only get 69 stocks with o; > .

2.7 Multifactor Risk Models

In the preceding subsection we discuss a simple 1-factor model where the pair-
wise correlations (after removing the “market” mode) take two values, £p. (If
we add back the “market” mode with a uniform correlation py, then the pair-
wise correlations in the resultant correlation matrix take two values, neither of
which need be (but one of them can be) negative. Our discussion above can be
generalized to multifactor models (with the “market” mode removed). The math
is more involved but the gist of it is captured by the 1-factor example we discuss
above. Thus, we can reasonably assume that the returns E; are not significantly
correlated with o; or the factor loadings €2; 4, so that in optimizing the Fano ratio
(as compared with the Sharpe ratio) the expected returns effectively get shifted by
a positive additive contribution for most stocks, excepting large volatility stocks.
As above, this results in fewer weights violating the bounds (13) and the portfolio
is also more diversified.

25 This corresponds to 10/v/2 ~ 7.07 standard deviations (instead of 5/v/2 ~ 3.54 — see
above).
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3 Long-Short Portfolios

Above we discuss long-only portfolios. What about long-short portfolios? To
maximize the Fano ratio, we need to maximize the objective function (11). The
modulus in (11) complicates things. First, its derivative is well-defined for w; # 0
and for the subset J = {i|w; # 0} the maximization of ¢ in (11) is equivalent to
dg/0w; = 0, 1 € J. For the sake of simplicity,?® let us assume that all w; # 0.
Then we have all the same formulas as above for the long-only portfolio (without
any bounds as w; need no longer be nonnegative) except that v; is replaced by
Xi = sign(w;). So the analog of (14) now must be solved iteratively. However,
here we will not delve into solving this problem (or its subtleties) as there is a
more prosaic issue to address.

Ignoring the aforesaid subtleties, the equation we would need to solve itera-
tively reads (see (14) and the subsequent equations for definitions of a and b)

N
wy =Y Cy'la Ej+bx] (65)
7j=1

where a and b also depend on y;. However, it is not this dependence that is
problematic. Instead, it is the presence of signs, i.e., x;, in (65). Signs are highly
unstable (they “flip-flop” a lot, especially for shorter horizons). To illustrate
this, let us simplify things and consider the case of a diagonal covariance matrix
C;j = o? 0;. Then 7; = E;/o? and we can set y; = sign(E;). So, for a small E;
(e.g., compared with its historical standard deviation or some suitable multiple
thereof), if its sign flips (but the absolute value remains small), we can have
a 100% opposite contribution from x; into (65). This is the root-cause of the
aforesaid instability, which also persists even for non-diagonal Cj; (in which case
things are simply messier). We can think about this as follows. The weights (65)
effectively are the same as linearly combining two strategies. One is based on
optimizing the Sharpe ratio for the expected returns E;. The other is based on
optimizing the Sharpe ratio for binary?” expected returns y; = #1. It should
come as no surprise to quant traders that the second strategy is suboptimal.

26 Here we will not delve into the w; = 0 (and other important) subtleties. Such subtleties
arise, e.g., in the case of mean-variance optimization with linear costs. For a recent discussion,
see, e.g., [16]. For a partial list of related literature, see, e.g., [1], [5], [9], [14], [24], [27], [30],
[33], [38], and references therein.

27 For the sake of simplicity, assuming, as above, that all w; # 0, that is. If some w; = 0,
then the corresponding returns are not binary but trinary (with at most a small number of null
returns). However, this does not alter the above conclusion relating to the instability of the

signs ;.
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E.g., if we take sign(F};) instead of E; as binary expected returns, this strategy
underperforms the strategy based on optimizing F;. This is because forecasting
just the direction and not the magnitude of the expected returns provides only
partial information. Linearly combining such a suboptimal strategy with the
strategy based on optimizing the Sharpe ratio then also is suboptimal.

Can we fix this? We can smooth out the sign in y; = sign(w;). One way to
do this is to replace it by, e.g., a hyperbolic tangent: x; = tanh(w;/4;), where A;
are some parameters. In the limit A; — 0 we recover y; = sign(w;). Introducing
N new parameters A; can be unappealing as they can easily turn out to be out-
of-sample unstable. We can mitigate this, at least to a degree, by taking uniform
A; = A (however, we will relax this below). We then have

w; =Y Cy'la Ej+b tanh(w;/A)] (66)

We can solve this equation, e.g., by linearizing the hyperbolic tangent, which
formally amounts to the limit where A — 0o, b — 0o, and b = b/A is kept finite:

N
w; = ZOZEI [a Ej +g U)j:| (67)
7=1
A formal solution?® reads
N o~
7=1
61']' = Oij —g 52']' (69)

The overall normalization parameter a is fixed by requiring the normalization
condition (2). However, the parameter b is a priori undetermined. Since we
have departed from optimizing the Fano ratio, it is no longer evident what b
should be. Instead of trying to fix it “theoretically”, we can take a pragmatic
approach and treat b as a free parameter. For b =0 we are simply optimizing the
Sharpe ratio. For b # 0, we are optimizing the Sharpe ratio but with a modified

covariance matrix C;;, whose off-diagonal elements are the same as those of C;;

Js el
but the diagonal elements (variances) are shifted: they can be increased (b < 0)
or decreased (b > 0).

In this regard, it is instructive to consider the case of nonuniform A;. In this

case we still have (68), where now

Ci; = Cyj — b; 6 (70)

28 We, yet again, use the adjective “formal” as a and ba priori are undetermined (see below).
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and b; = b/A;. Let us consider a factor model of the form (40). If we set b; = 6 £2,
where &2 are the specific variances and 6 is a parameter, then for § = 1 the matrix
@j is singular. We can invert it in the 6 1 1 limit (in this limit the normalization
a goes to 0 such that w; are actually finite) and the result is that, up to an overall
normalization factor (fixed via (2)), the weights w; are given by €; /&2, where ¢; are
the residuals of a cross-sectional regression of E; over the factor loadings §2; 4 with
the regression weights z; = 1/£2 and no intercept® [16]. Equivalently, € = ¢;/¢;
are the residuals of a cross-sectional regression of E;/&; over the matrix ;4/&;
with unit regression weights (and no intercept — see above). So, here we are
interpolating between optimizing the Sharpe ratio and a (weighted) regression.
Formally, we can view (68) as an infinite series (here a, = a bP~):

Zap ZC EY (71)

p=1
N

EPTY Z C;;t BV (72)

EY = E (73)

)

L.e., thisis a combination of “once-optimized”, “twice-optimized”, “trice-optimized”,

, strategies. In fact, we can simply forget about how we got this result (which
was in an ad hoc and handwaving fashion — however, see below) and take a
truncated series

TNopt N
ZapZo EY —aZC’ 1B (74)
p=1

where EZ = Zn"”t [ E . Only one of the n,y, coefficients a, is fixed by the
normalization condition (2), i.e.,, we can fix a; = a. As mentioned above, a
priori there is no guiding principle for fixing the b parameter.> However, we can
require that the coefficients a, have the proper scaling properties under £, — CE;
and C;; — ACyj, where ¢ > 0 and A > 0 (so that w; are invariant under such
rescalings):

29 Unless the intercept is already subsumed in the factor loadings matrix Q;4, that is.

30 More generally, we can depart from a, = a b"~! and treat the coefficients a, as indepen-
dent. Then we can datamine a,>; and see if they are stable out-of-sample. We will not do this
here.
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This implies that b is invariant under E; — (FE;, and we have b — b under
Cij — ACjj. Consider b of the following form:

N -1
b=Dh=0 Zz’,j:loij L E;
N -1 (2 @2
> Cij B Ej

1,j=1

(77)

Then b is invariant under both the ¢ and A rescalings. We can therefore treat b
as a purely numerical coefficient. For instance, for n,, = 2 we have

N N
_ T — 2
wi=a | C;' Ej+bh Yy O EY (78)
j=1 j=1

[.e., we are combining the “once-optimized” and “twice-optimized” strategies
with the relative coefficient controlled by b. We discuss a backtest of this strategy
below.

3.1 Bells and Whistles

While our w; in (74) are roughly dollar-neutral (due to the presence of the “mar-
ket” mode in Cj;, which a priori need not be removed for long-short portfolios),
they are not exactly dollar-neutral. We may wish our long-short portfolio to be
exactly dollar-neutral (e.g., due to risk management/compliance requirements,
etc.):

XN: w; =0 (79)

More generally, we may wish to impose more than one linear homogeneous con-
straints

N
ZGmwi:O, a=1,....m (80)
i=1

where the columns of the N x m matrix G;, are linearly independent. Such
constraints are readily incorporated in the optimization problem by “padding”
the factor loadings matrix with the extra m columns: Q‘Z = (Qja, Gia), where
the index A = (4,a) € H now takes K = |H| = K + m values (H = {4}). We
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then have (see, e.g., [16])

_ 1 Qf ~ Q-g
Ci'=g0i— >, 2 Q55 2 (81)
& =~ & 3
A,BeH
~ 1 ~ ~
Qiz=vig+ ) g i fhp (82)
ieJ
Yap=0¢np AB=1,... K (83)
Yaa=0, A=1,....K, a=1,...,m (84)
Vap =0, ao,f=1,....,m (85)
The matrix C’Z-EI has the following property:
N N - -
> 05 Vo= Y, 5 Qxy vie (86)

j=1 A,BeH

which (together with (84) and (85)) in turn implies that

N
> .Cy' Gia

Jj=1

0, a=1,...,m (87)

This results in a solution (74) satisfying the linear constrains (80). In practice,
to minimize noise in the factor model covariance matrix, the factor loadings €2;4
should be chosen orthogonal to the matrix G, [16]:

N
> 2 Gin=0, A=1,... K a=1,....m (88)
i=1

This is not required for the above “padding” trick, which works irrespective of
(88).31
Another consideration is that in practice one often needs to impose upper and
lower bounds on w;:
w; < w; < w;t (89)

See [16] for a practically-oriented discussion. Assuming w; < 0 and w;" > 0, we
can readily incorporate such bounds using the algorithm given in [16] for which
the source code is given in [17]. The bounds (89) are simply imposed in optimizing
the Sharpe ratio with the “effective” expected returns E; on the r.h.s. of (74)
(but no bounds are imposed in (72)).

31 Also, the “padding” is needed only in Cj; on the r.h.s. of (74), not in the definitions (72).
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Finally, for our backtesting purposes below, here we discuss how to include
trading costs. Including nonlinear impact complicates the problem and is unnec-
essary for our purposes here. However, we can include linear trading costs. Below
we will consider purely intraday strategies where the positions are established just
once at the open and are liquidated just once at the close of the same trading
day. For the stock labeled by i, let the linear trading cost per dollar traded be
7;- Then including such costs in the case of optimizing the Sharpe ratio with the

expected returns E; amounts to replacing the expected return for the portfolio
(3) by™

N
i=1

A complete algorithm for including linear trading cost in mean-variance optimiza-

tion is given in, e.g., [16]. However, for our purposes here the following simple

“hack” suffices. We can define the effective return

EYT = sign(E;) max(|E;| — 7;,0) (91)
and simply set
N
E=>Y E'w, (92)
i=1

L.e., if the magnitude for the expected return for a given stock is less than the
expected cost to be incurred, we set the expected return to zero, otherwise we
reduce said magnitude by said cost. This way we can avoid a nontrivial iterative
procedure (see [16]), albeit we emphasize that this solution is only an approxi-
mation to the optimal solution. However, here we are already employing other
approximations, so this way of treating linear trading costs is well-justified.??

So, what should we use as 7; in (91)? The model of [2] is reasonable for our
purposes here. Let H; be the dollar amount traded for the stock labeled by i.
Then for the linear trading costs we have

T = ¢ o i (93)

where o; is the historical volatility, A; is the average daily dollar volume (ADDV),
and ( is an overall normalization constant we need to fix. However, above we work

32 This is the expected return of the portfolio once it is established. In computing the P&L,
we must take into account not only the establishing costs, but also the liquidating costs (so the
total costs subtracted from the P&L are approximately double the establishing costs).

33 For “multiply-optimized” strategies in (74), it may make sense to use more sophisticated
approximations. For the sake of simplicity and not to overcomplicate things, we will use (91)
here.
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with weights w;, not traded dollar amounts H;. In our case of a purely intraday
trading strategy discussed above, they are related simply via H; = I w;, where [
is the total investment level (i.e., the total absolute dollar holdings of the portfolio
after establishing it). Therefore, we have (note that T; = 7; |H;| = 7; I |w;])

Ti=(¢ % (94)

We will fix the overall normalization ¢ via the following heuristic. We will
(conservatively) assume that the average linear trading cost per dollar traded
is 10 bps (1 bps = 1 basis point = 1/100 of 1%),** i.e., mean(r;) = 10~ and
¢ = 1073 /mean(0;/A;).

3.2 Backtests

Here we discuss some backtests. We wish to see how “multiply-optimized” strate-
gies (74) for dollar-neutral intraday models compare with optimizing the Sharpe
ratio (i.e., a “singly-optimized” strategy). For this comparison, we run our back-
tests as in [17]. For our C;; (in all cases) we use heterotic risk models of [17]. The
historical data we use in our backtests here is the same as in [17] and is described
in detail in Subsections 6.2 and 6.3 thereof. The trading universe selection is
described in Subsection 6.2 of [17]. We assume that the portfolio is established
at the open with fills at the open prices; and ii) it is liquidated at the close on the
same day — so this is a purely intraday strategy — with fills at the close prices. We
include the transaction costs as discussed in Subsection 3.1 hereof. Furthermore,
we include strict trading bounds (which in this case are the same as position
bounds)

|H;| <0.01 A, (95)

We further impose strict dollar-neutrality on the portfolio, so that

XN: H; =0 (96)

The total investment level in our backtests here is I = $20M (i.e., $10M long and
$10M short), same as in [17]. For the Sharpe ratio optimization with bounds we
use the R function bopt.calc.opt() in Appendix C of [17]. We use b=1 (see
above) in “multiply-optimized” strategies. The backtest results are summarized
in Table 1, which shows that the n,, = 2 strategy outperforms the n,, = 1
strategy (which is simply optimizing the Sharpe ratio). However, for higher n,,
it appears that we get — quite literally — “diminishing returns”.

34 This amounts to assuming that, to establish an equally-weighted portfolio, it costs 10 bps.
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4 Concluding Remarks

For long-only portfolios optimizing the Fano ratio effectively amounts to shifting
the expected returns by a positive amount via (35), which results in fewer stocks
being excluded from the portfolio due to the bounds (13) (including some stocks
with negative expected returns F;, for which effective returns EZ can be positive),
i.e., in a more diversified portfolio® (compared with optimizing the Sharpe ratio).

However, for long-short portfolios this is a non-issue to begin with: the weights
need not be nonnegative. As we discuss above, optimizing the Fano ratio in
this case would be suboptimal. However, the Fano ratio optimization inspires
considering modifications of optimizing the Sharpe ratio, such as (66) and (67).
In this regard, the following comment is in order. Linearizing the hyperbolic
tangent in (66) amounts to completely removing the sign “flip-flopping” issue
discussed in Section 3, which (to a lesser degree) is present even when we replace
the sign in (66) by the hyperbolic tangent in (67). The further reduction via
(74) essentially amounts to simply combining multiple different alphas — even
though here alphas are of a specific (“multiply-optimized”) form. However, more
generally, combining multiple (even a large number of) different alphas yields
higher returns and Sharpe ratios and lower turnover and higher cents-per-share
(see, e.g., [22]).

Finally, let us mention that the Fano ratio arises in the context of statistical
industry classifications via clustering techniques [21]. One question for clustering
in the context of quant trading is what to cluster? Clustering returns is sub-
optimal. Naively, clustering normalized returns F;/o; appears to be reasonable.
However, as was argued and supported via backtests in [21], clustering FE;/o? —
i.e., the corresponding Fano ratios — is the optimal choice. Thus, clustering E;/o;
groups together stocks that are (to varying degrees) highly correlated in-sample.
However, there is no guarantee that they will remain as highly correlated out-of-
sample. Intuitively, it is evident that higher volatility stocks are more likely to get
uncorrelated with their respective clusters. This is essentially why suppressing
by another factor of o; in the Fano ratio E;/o? (as compared with E;/o;) leads to
better performance: inter alia, it suppresses contributions of those volatile stocks
into the corresponding cluster centers [21].

35 And also less skewed portfolio.
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Table 1: Simulation results for the “multiply-optimized” strategies (defined in
Eq. (74) in Section 3) with bounds and costs. ROC = Return-on-Capital, SR =
annualized Sharpe Ratio, CPS = cents-per-share. Note that n,, = 1 corresponds
to vanilla optimization of the Sharpe ratio (i.e., a “singly-optimized” strategy).

net ROC SR CPS

35.37% 13.65 1.74
36.62% 15.43 2.02
34.00% 15.39 2.06
26.38% 11.80 1.69
17.00% 7.27  1.09

T = W N =~
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Figure 1: Density of volatility for the universe of 3810 stocks (see Section 2.6).
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Figure 2: Density of log-volatility for the universe of 3810 stocks (see Section
2.6).
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Figure 3: Density of volatility for the universe of 2000 most liquid stocks (see
Section 2.6).
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Figure 4: Density of log-volatility for the universe of 2000 most liquid stocks (see
Section 2.6).



