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Abstract 

In this work we develop quantum stochastic solution flows of stochastic diffusion 

evolution equations of the form  
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on a suitable von Neumann ( ∗W -, Clifford) algebra C  of operators with a finite 

(probability) regular trace. By AdtdL += /:  it is denoted a linear operator such 

that A−  (the Hamiltonian operator of a Quantum Mechanical or a Quantum Field 

System)  is a non-negative and self-adjoint linear operator and the infinitesimal 

generator of the corresponding analytic semigroup acting on 2L -commutative 

(Bose-Einstein) of functions or on an 2L -non-commutative (Fermion-Dirac) of 

operators (possible unbounded operators) Hilbert space  H .  By F  we mean a 

given H -valued quantum stochastic process. Our results apply on a Fock space 

generated by Hilbert space K  with conjugation J , in a Quantum Mechanical or 

Quantum Field System, including interactions involving  quantized Bose-Einstein 

and Fermion-Dirac fields (specifically spin ½ Dirac particles) with an external 

field via a cutoff Yukawa-type interaction. 

 

Mathematics Subject Classification: 34K30; 47D03; 47D06; 47L30; 81T05; 

81T10 

Keywords: Diffusion evolution equation; one-parameter analytic semi-groups; 

quantum stochastic flows; quantum mechanics; quantum field theory 

 

 

1  Introduction 

This paper is devoted to quantum stochastic diffusion evolution equations of 

the form 
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on a suitable Hilbert space H  defined by a suitable von Neumann ( ∗W -, Clifford) 

algebra C  endowed with a probability regular trace. 

The subject has roots in the interactions of elementary particles namely 

Bosons (photons, mesons, H4, mesotrons, pions) and Fermions (neutrons, 
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neutrinos, protons, electrons) have been studied from a variety of points of view 

(cf. [1], [2]). 

In particular in their famous papers Carathéodory [3] and Einstein [4], 

investigated a foundation of Thermodynamics which has consequences for a better 

consideration of modern quantum fields models for the interactions of elementary 

particles. 

Besides, Oppenheimer and Schwinger [5] examined an effort to take into 

account the relation of the source to the mesotron field than either Blabha’s 

classical methods or the a priori postulation of isobars afforded. 

Moreover, Yukawa, Sakata and Taketani in a series of papers [6], [7] and [8] 

following previous ideas of Heisenberg and Fermi studied the emission of light 

particles, i.e. a neutrino and an electron, after the transition of a “heavy” particle 

from neutron state to photon state. Years later, Glimm [9], Glimm and Jaffe [10] 

continue the investigations of Yukawa-type interacting coupling spaces. 

On the other hand, Accardi, Anillesh and Volterra [11], Arnold and Sparber 

[12], Canizo, Lopez and Nieto [13], Lindsay [14], Lindsay and Wills [15], 

Lindsay and Parthasarathy [16], Sparber, Carrillo, Dolbeault and Markowich [17], 

considered a class of quantum evolution equations, quantum dynamical 

semigroups for diffusion models and studied a non-commutative generalization of 

a stochastic quantum differential equation (of Feynman-Kac type) deriving 

stochastic quantum flows. 

In the present work we obtain quantum stochastic diffusion flows in a 

commutative case (Bose-Einstein interaction) and in a non-commutative case 

(Fermi-Dirac interaction). 

We study  (SDE) in the infinite dimensional case, where AdtdL += /:  

denotes a linear operator such that A−  is a non-negative self-adjoint linear 

operator (the Hamiltonian operator) acting on a Hilbert space H  such that A−   is 

the infinitesimal generator of an analytic semigroup tAe− , +∈Rt  and F  is a given 

quantum stochastic process taking values in H . 
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2  Function spaces and flows 

In what follows H  will denote a general (complex) Hilbert space with norm 

|||| ⋅ . Let A−  be a non-negative self-adjoint operator acting on the Hilbert space 

H  and let tAe− , ),0[: ∞=∈ +Rt  be the analytic semigroup acting on H  with 

infinitesimal generator A− .  

As it is well-known we may assume that there exist positive real numbers 

δ,M  such that  
ttA Mee δ−− ≤|||| ,   for all +∈Rt . 

Let ),( HCb
+R  the Banach space of bounded continuous functions 

Hu →+R:  endowed with supremum norm  

(2.1)                                           { }+∈= Rttuu :||)(||:||  

and let ),( HC +R  be the Fréchet space of continuous functions Hu →+R: . 

 

By a flow (dynamical system, nonlinear semigroup) on a complete metric 

space X  we mean a family )(tUU = , +∈Rt of functions XXtU →:)( , 

enjoying the following properties; 

(2.2)         for every +∈Rt , )(tU  is continuous from X  into X  

(2.3)         for each Xx∈  the function xtUt )(  is continuous  

(2.4)                   iU =)0(  (identity on X )      

(2.5)                   xsUtUxstU )()()( =+ , whenever +∈Rst,  and Xx∈  

We recall that the function xtUt )(  is called the trajectory of Xx∈ . 

 

In practice flows arise from autonomous differential equations for which there 

are theorems concerning existence uniqueness and continuity of solutions. 
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3  Main results 

3.1 The linear case  

We start with the linear initial value problem 

(3.1)                                     
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where f  is a given H -valued function on +R , Hx ∈0 . 

 

A function )(: ADu →+R  is called a classical solution on +R  of (3.1) if it is 

strongly differentiable for every +∈Rt  and satisfies (3.1) for every t  in +R . 

On the other hand a function u  in ),( HC +R  given by  

(3.2)                                 ∫ −−− +=
t AsttA dssfeuetu
0

)(
0 )()(  

is called the mild solution of (3.1) on +R , with initial data 0)0( uu =  in H . 

 

Theorem 3.1. Let f  be in the Fréchet space ),( HC +R . Then there exists exactly 

one mild solution u  of (3.2) in ),( HC +R  and if ),( HCf b
+∈ R  then also  

),( HCu b
+∈ R . 

Proof. Let t  in +R .  By hypothesis the function Htf →],0[:  is bounded and 

continuous. Hence the Bochner integral   

(3.3)                                    ∫∫ −= −−− t sAt Ast dsstfedssfe
00

)( )()(  

is well-defined for every  0≥t , since: 

           ∫ −−t sA dsstfe
0

||)(|| ∫ −≤ −t s dsstfeM
00 ||)(||δ ∫ −≤

t s
t dsefM

00 || δ       

 (3.4)                                    )1(|| 1
0

t
t efM δδ −− −=  

where { }],0[||,)(||sup:|| tssff t ∈= . 
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Then the function 

∫ −+= −− t sAtA dsstfeuetut
00 )(:)(  

is the unique continuous mild solution of (3.1) (see also [18]). 

Finally if ),( HCf b
+∈ R  then also ),( HCu b

+∈ R  since 

                      ||)(|| tu ∫ −+= −− t sAtA dsstfeue
00 )(  

                                  ∫ −+≤ −− t sAtA dsstfeue
00 )(  

                                  ∫ −+≤ −t sA dsstfeuM
000 )(||||    

(3.4)                          1
000 |||||| −+≤ δfMuM                                                        □  

                                                                                                       

 

3.2 The non-linear case  

We consider the non-linear initial value problem 

(3.5)                                    






=

>=





 +

0)0(

0)),(()(

xx

ttxFtxA
dt
d

 

where F  is a given H -valued function on H , Hx ∈0 .  

A function )(: ADu →+R  is called a classical solution on +R  of (3.5) if it is 

strongly differentiable for every +∈Rt  and satisfies (3.5) for every t  in +R . 

Moreover a solution u  in ),( HC +R  of the integral equation  

(3.6)                                 ∫ −−− +=
t AsttA dssxFeuetx
0

)(
0 ))(()(  

will be called a mild solution of (3.5) on +R , with initial data 0)0( uu =  in H . 



P.N. Koumantos, O.R. Katsikas, E.S. Athanasiadou and P.K. Pavlakos                       103 

Let Φ  be the corresponding Nemytskii operator of the non-linear operator 

HHF →:  appearing in eq. (3.5), i.e. for every Hy →+R: , yΦ  is defined by 

the formula:  

                                                 ))((:)( tyFty =Φ , +∈Rt   

Now we state the following condition concerning the Nemytskii operator 

Φ . 

 

Condition )(Φ : ),( HCy b
+∈Φ R  provided that ),( HCy b

+∈ R  and there exists a 

real-valued function ),( ++∈ RRbCγ  such that: 

(3.7)   )()()()()( 2121 tytyttyty −≤Φ−Φ γ , for all ),(, 21 HCyy b
+∈ R  and 

+∈Rt . 

 

Theorem 3.2. Let condition )(Φ  holds. Then for any given Hu ∈0  there exists 

exactly one mild solution ),0(: 0uuu =  in ),( HCb
+R  of (3.5) satisfying 

0)0( uu = . Moreover assuming that every mild solution is a classical solution of 

(3.5), there exists exactly one solution flow )(tU  on H  with trajectories 

xtUt )(  in ),( HCb
+R , Hx∈ . 

Proof.  Let Hu ∈0 . Considering the Hamerstein-type operator    

(3.8)                                      ),(),(:Π HCHC bb
++ → RR   

which to any  ),( HCy b
+∈ R   associates (according to condition )(Φ  and to 

Theorem 3.1) the unique mild solution   

(3.9)                          ∫ −Φ+= −− t sAtA dsstyeuety
00 )(:)(Π , +∈Rt   

in ),( HCb
+R  of the linear initial value problem: 

(3.10)                                           






=

Φ=





 +

0)0(

)()(

ux

tytxA
dt
d
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Now let ),(, 21 HCyy b
+∈ R  and +∈Rt . 

Then applying (2.2) and condition )(Φ  we see that: 

           )(Π)(Π 12 tyty − ∫ ∫ −Φ−−Φ= −−t t sAsA dsstyedsstye
0 0 12 )()(  

                                        ∫ −Φ−−Φ≤ −t sA dsstystye
0 12 ))()((  

                                        ∫ −Φ−−Φ≤ −t s dsstystyeM
0 120 )()(δ  

                                        ∫ −−−≤ −t s dsstystyeM
0 120 )()(|| δγ  

                                        ∫
∞+ − −−−≤

0 120 ||)()(|||| dsstystyeM sδγ  

(3.11)                              |||| 12
1

0 yyM −≤ −δγ  

Applying (3.11) and induction we deduce 

 (3.12)               )(Π)(Π 12 tyty nn −
( )

||
!
||

12

1
0 yy

n
M n

−≤
−δγ

, for all N∈n . 

From (3.12) and for n  large enough we conclude that Π  is a contraction operator 

on ),( HCb
+R  and has a unique fixed point ),0(: 0uuu =  satisfying 

(3.13)                            ∫ −Φ+= −− t sAtA dsstueuetu
00 )(:)( ,  +∈Rt  

Therefore the function Hu →+R:  is the unique mild solution of (3.5) in  

),( HCb
+R  with 0)0( uu =  (see also [18]). 

Then setting 

(3.14)                                               )(:)( 0 tuutU =  

whenever +∈Rt  and Hu ∈0  and assuming that u  is a classical solution of (3.5)  

we must infer that )(tU , +∈Rt , is the unique solution flow on H , with 

trajectories 0)( utUt   in ),( HCb
+R . 

We have first to justify that )(tU  satisfies conditions (2.10) and (2.11). 
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Let +∈Rt . 

Let also a sequence )( )(
0

nu  in H  such that: 

 

(3.15)                                                  0
)(

0 uuim n

n
=

∞→
  

Moreover we consider the corresponding solutions  

n
n

n uuu =:),0( )(
0 ,   for every N∈n ,   and   uuu =:),0( 0 ,  

such that: 

(3.16)                        ∫ −Φ+= −− t
n

sAntA
n dsstueuetu

0

)(
0 )()( , +∈Rt  

(3.17)                        ∫ −Φ+= −− t sAtA dsstueuetu
00 )()( , +∈Rt  

Then combining condition )(Φ , (3.16) and (3.17) we have: 

         ||)()(|| 0
)(

0 utUutU n − ||)()(|| tutun −=  

                                           ∫ −Φ−−Φ+−= −− t
n

sAntA dsstustueuue
00

)(
0 ))()(()(  

                                           ∫ −Φ−−Φ+−≤ −− t

n
sAntA dsstustueuue

00
)(

0 ))()(()(  

                                          ∫ −Φ−−Φ+−≤ −t
n

sn dsstustueMuuM
000

)(
00 )()(δ  

                                          ∫ Φ−Φ+−= −−t
n

stn dssusueMuuM
0

)(
00

)(
00 )()(δ  

(3.18)                                 ∫ −+−≤
t

n
n dssusuMuuM

000
)(

00 )()(|| γ  

Thus from (3.18) and making use of Gronwall inequality we get: 

                 ||)()(|| 0
)(

0 utUutU n − ||)()(|| tutun −=   

                                                   ∫−≤
t

dsMn euuM 0 0 ||

0
)(

00

γ
 

(3.19)                                         ||
0

)(
00

0 γtMn euuM −≤  

Consequently by (3.15) and (3.19) it follows 
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(3.20)                                           0
)(

0 )()( utUutUim n

n
=

∞→
 . 

Next let Hu ∈0 . Consider also a sequence )( nt  and +∈Rt  such that  

(3.21)                                                   ttim nn
=

∞→
   

and let +∈R0t  with  

(3.22)                                            0|| ttt nn ≤= , N∈∀n .  

We also put  

(3.23)                                                  { }01 ,max: ttt = . 

Then by (3.12), (3.15) and (3.23) we deduce 

||)()(|| 00 utUutU n − ||)()(|| tutu n −=                                                   

                                 ∫∫ −Φ−−−Φ+= −−−− t sAtAt
n

sAAt dsstueuedsstueue n
n

0000 )()(  

                                 ∫ −Φ−−Φ+−≤ −−− 1

000 ))()((
t

n
sAtAAt dsstustueueue n  

                                 ∫ −Φ−−Φ+−≤ −−− 1

000 ))()((
t

n
sAtAAt dsstustueueue n  

                                 ∫ −Φ−−Φ+−≤ −− 1

0000 )()(
t

n
tAAt dsstustuMueue n  

(3.24)                        ∫ −−−+−≤ −− 1

0000 )()(||
t

n
tAAt dsstustuMueue n γ  

for every N∈n . 

Thus by (3.21), (3.24) and the Lebesgue Dominated Convergence Theorem it 

follows that: 

(3.25)                                               00 )()( utUutUim nn
=

∞→
  

Finally, by standard arguments, we have 00)0( uuU =  and 

021021 )()()( uttUutUtU += , for all +∈R21, tt , 

and the proof of the theorem is complete.                                                                □ 
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4  Applications 

4.1 Bose-Einstein case 

Let E  be the complexification Hilbert space of a real Hilbert space E′  and let 

)(Es∧  denote the Hilbert space of symmetric tensors over E . 

Then there exists an isomorphism of  )(Es∧  (via a unitary operator) onto the 

Hilbert space )),(,( 2
2

cdEBEL ′′ , with 

(4.1)                                       )()2()( 4
||||

2
2

2

xdetd kc
xk

c λπ ∫Θ
−−

=Γ  

where )(1 Θ=Γ −P , Θ  is a Borel set in the image EP ′of a k -dimensional 

orthogonal projection P  on E′  and )),(,( kkk B λRR  is the Borel-Lebesgue 

measure in EP ′  (cf. [19]). 

Therefore we can take the case 

(4.2)                                   )()),(,(: 2
2 EdEBELH sc ∧=′′= . 

 

 

4.2 Fermion (Fermion-Dirac) case  

It is well-known that the Banach lattices ),,( µSXLp , ∞≤≤ p1 when 

),,( µSX  is a measure space can be extended in a non-commutative algebraic 

context. 

We start recalling briefly some well-known facts concerning a non-

commutative integration theory in which, instead of integrating functions on a 

measurable space with respect to a given measure, one integrates (possibly 

unbounded) operators “affiliated” with a von Neumann algebra V  with respect to 

a “gage” (or a “trace”) on V . We shall restrict on “probability gages” since these 

gages are relevant for the study of Fermions. 
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Let E  be a complex Hilbert space (the Fermion one-particle space) and let 

)(En
a∧  denote the Hilbert space of antisymmetric tensors of rank n  over E , 

whenever ,2,1=n and let )(0 Ea∧ be the complex numbers C . 

We shall denote by )(Ea∧  the (Fermion-Dirac) Fock space, that is the 

Hilbert space direct sum  

(5.1)                                                )(0 En
an ∧⊕∞

=  

and ω  will denote the complex number (“bare vacuum” or no-particle state) 

)(1 0 Ea∧∈ . 

For every x  in E , the creation operator xC  is the bounded linear operator on 

)(Ea∧  with norm |||||||| xCx =  such that: 

(5.2)                                            )()1()( 2
1

uxPnuC ax ⊗+=  

whenever )(Eu n
a∧∈ , where aP  denotes the antisymmetrization projection. 

The annihilation operator, xA , Ex∈  is defined to be the adjoint of  xC , that 

is ∗= xx CA : . 

Now let J  be a conjugation on E . We recall that a function EEJ →: is said 

to be a conjugation on E  if J  is antilinear ( )()()( yJbxJabyaxJ +=+ , 

whenever Eyx ∈,  and for all complex numbers a and b ), J  is antiunitary 

( ><=>< xyyJxJ ,)(),( , whenever Eyx ∈, , where >< ,  denotes the inner 

product on E ) and J  has period two ( IJ =2 ). 

We also denote by C  the von Neumann algebra generated by all operators 

(the “Fermion-Dirac fields”) xB , Ex∈  on )(Ea∧  defined by the formula: 

(5.3)                                                  )( xJxx ACB +=  

We note that C  is the weakly closed Clifford algebra over E  relative to the 

conjugation J . 
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A regular probability gage space is a triple ),,( τVK , where K  is a complex 

Hilbert space, V  is a von Neumann algebra of linear operators on K  and τ  is a 

faithful, central, normal trace (state) on V , i.e. τ  is a linear functional from V  

into C  such that: 

 

)( 1τ  τ  is a state, i.e. 1)( =Iτ , VT ∈ , 0≥T  implies 0)( ≥Tτ   

)( 2τ  τ  is completely additive, namely, if O  is any set of mutually orthogonal 

projections in V  with upper bound Y then ∑
∈

=
OP

PY )()( ττ  

)( 3τ τ  is regular or faithful, i.e. if VT ∈ , 0≥T , 0)( =Tτ  implies 0=T  

)( 4τ τ  is central, i.e. )()( STTS ττ = , whenever VST ∈, . 

),),(( τCEa∧  is a regular probability gage space, where C→C:τ , and 

(5.4)                                   ><= ωωτ ,:)( uu  for every C∈ω  

(cf. Segal [20]) 

For any closed linear operator T  on E  we put 

(5.5)                                                    ( )2
1

:|| TTT ∗=  

 

For ∞<≤ p1 , ),,( τCELp  is defined to be the completion of C  with respect 

to the norm ( )pp
p TTT

1

|||||| τ= . ),,( τCEL∞  is defined to be the Banach 

space C  with respect to its operator norm. It has been shown that the Banach 

space  ),,( τCELp , ∞≤≤ p1  are spaces of linear (possible unbounded) operators 

on E  (cf. Segal [20]).  

In particular the function ωuu   extends to a unitary operator from 

),,(2 τCEL  onto )(Ea∧  (cf. [21]). 

Now we can take the case  

(5.6)                                          )(),,(: 2 ECELH a∧== τ  
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since ),,(2 τCEL  can be regarded as an ordered Hilbert space of operators on E . 

Next let S  be a four-dimensional complex spin space with positive definite 

inner product ),(  and let K  be the Hilbert space of S -valued functions on 3R  

with 

(5.7)                               ∞<= ∫ )())(),((|||| 32
3

xdxxK λψψψ
R

. 

 

Then we can also take H  the Hilbert state space )(Za∧  over the Hilbert 

space Z  of a free spin ½ Dirac particle with an external field via a cutoff 

Yukawa-type interaction such that 

(5.8)                                                  ++ ⊕= KKZ  

where +K  is the irreducible part of K  when the infinitesimal generator of time 

translation is positive on +K . 
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