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Approximate Solutions

of the Brinkman-Forscheimer Model
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Abstract

This article discusses approximation methods for solving the strongly
nonlinear Brinkman-Forscheimer equation describing the unidirectional
flow of fluid through a horizontal channel filled with porous medium.
Comparisons were made of approximations by semi-analytic methods
and the finite difference method for this nonlinear problem. The re-
sults indicated that the approximations by the finite difference method
compared well with solutions by semi-analytic methods in the literature.
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1 Introduction

The steady state and pressure driven unidirectional flow of fluid through a

horizontal channel filled with porous media is often modeled by the Brinkman-
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Forscheimer momentum equations represented by the second-order nonlinear

differential equation

µeff
du∗

dy∗2
=

µ

K
u∗ +

ρCf√
K
u∗2 +G (1)

where the variables Cf , G,K, ρ, µ, µeff denote respectively the drag coefficient,

the pressure gradient, the permeability, the fluid density, the fluid viscosity and

the effective fluid viscosity inside the porous medium [8]. The impermeable

walls of the channel are assumed to be at the positions y∗ = ±h. By introducing

the similarity variables

x =
x∗

PeH
, y =

y∗

h
, u =

Gh2u∗

µ

the dimensionless form of (1) is obtained as a

d2u

dy2
− s2u− Fsu2 +

1

M
= 0 (2)

subject to the boundary conditions

u(±1) = 0.

In the above, the variables

M =
µeff

µ
, F =

CfρGH
3

µeffµ
, Da =

K

H2
, s =

(
1

MDa

) 1
2

where Pe, Da and H denote respectively the Peclet, the Darcy number and

the total width of the channel.

Several numerical methods abound for approximating the solution of the

above nonlinear two-point boundary value problem. These methods include,

but not limited to, the shooting method, finite difference method, Green’s func-

tion, etc. Over the years, semi-analytical methods and series solution methods

like the Adomian decomposition method (ADM) [3] and Variational Iteration

Method (VIM) [6, 7] have been employed to obtain semi-analytical solution

of general two-point boundary value problem which covers problem (2). It is

well known that ADM handles nonlinear boundary value problems quite very

effectively [1, 4, 2]. The VIM has also been applied to solve both linear and

nonlinear BVP over the years, and it has been reported that solutions obtained
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via the VIM compare well with those of the ADM. However, due to ease of

application, the ADM remains a preferred method over the VIM [6]. Research

results have also indicated that the ADM is preferred over the shooting method

[5].

In this article, we apply finite difference method to obtain approximations

to the solution of the BVP (2). In addition, we discuss the variational iter-

ation method as well as the Adomian decomposition method applied to (1).

More, precisely, in Section 2.1, we discuss the variational iteration method

applied to (2) and pointed out why the method is not attractive to solving

this model problem. Since there is no closed form solution of problem (2) in

general, numerical solutions are also computed via the Matlab routine BVP4c

as reference solution. Our numerical results in Section 3 indicated that finite

difference method handles Problem (2) better than the ADM for certain com-

bination of the parameters in which case, solution by ADM is not available.

2 Numerical Methods for Problem (2)

In this section we shall consider popular methods for finding approximate

solutions of (2), namely the semi-analytical methods: the Adomian Decompo-

sition method and the Variational Iteration method, and the finite difference

method as a numerical method among the three. We will provide brief de-

scription of the methods, and their applications to (2).

2.1 Variational Iteration Method

Here, we discuss the variational iteration method - a semi-analytical method

that can be used to solve the model problem (2). More specifically, we highlight

challenges in applying the method to the present problem.

Let us consider a general nonlinear problem

Lu(y) +Nu(y) = f(y)

where L,N, f denote a linear operator, nonlinear operator and a forcing term

respectively. The basic idea of the variational iteration technique applied to
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the above problem is to is to construct a correction functional

un+1 = un +

∫ y

0

λ(Lun(ε) +Nũn(ε)− f(ε))dε

for the nonlinear problem. In the above, λ represents a Lagrange multiplier

which can be identified optimally through variation theory, un denotes the nth

approximate solution and ũn denotes a restricted variation in the sense that

δũn = 0 holds true. The series solution to the problem is then obtained from

the approximate solutions u1, u2, ... via

u(y) = lim
n→∞

un.

2.2 Application to Problem (2)

In order to apply the variational iteration technique described above to(2),

the Lagrange multiplier λ has to be firstly identified. By defining the correction

functional associated with (2) as

un+1 = un +

∫ y

0

λ(y, ε)
(
u′′n(ε)− s2un(ε)− Fs ũ2

n(ε) +
1

M

)
dε (3)

the Lagrange multiplier λ can then be obtained as the solution of the following

stationary conditions:

δun(ε) : λ′′ − s2λ(y, ε) = 0, (4)

δun(y) : 1− λ′(ε)
∣∣∣
ε=y

= 0, (5)

δu′n(y) : λ(ε)
∣∣∣
ε=y

= 0. (6)

Now solving the stationary conditions (4)- (6) yields

λ(y, ε) =
1

2s

(
es(ε−y) − e−s(ε−y)

)
=

1

2s
sinh(s(ε− y)). (7)

Substituting (7) into (3), we obtain the iterative scheme

un+1 = un +
1

2s

∫ y

0

sinh(s(ε− y))
(
u′′n(ε)− s2un(ε)− Fs u2

n(ε) +
1

M

)
dε. (8)
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2.2.1 Slow convergence of VIM for problem (2)

As hinted in [7] the Lagrange multiplier for nonlinear problem is difficult

to identify in general. In the immediate previous discussion, this parameter

has been identified using the idea of restricted variation. It is well known

that inexact identification of the Lagrange multiplier this way results in slow

convergence of the iteration (8).

Typically, the first iteration of variational iteration method gives a very

accurate approximation [7]. However, for this present problem, the second

iteration of (8) with initial solution u0(y) = u0 = y2−1
3

that obviously satisfies

the boundary conditions u(±1) = 0 yields an inaccurate approximation involv-

ing almost 160 terms! The iterative procedure therefore become unmanageable

coupled with a very slow convergence. It is therefore not surprising (see [7]

and references therein) that in spite of the popularity of the method for more

than a decade, no attempt was made to apply variational iteration method to

the Brinkman-Forscheimer model equation (2).

As we shall see in Section 3, the Adomian decomposition method, which

otherwise is a method of choice for two-point boundary value problem is also

sometimes too sensitive to the model parameters F, s and M.

2.3 Adomian Decomposition Method

To illustrate this method, let us consider a general nonlinear problem

Lu(y) +Ru(y) +Nu(y) = f (9)

where L,R,N denote respectively the linear, linear remainder and non-linear

operators, e.g. for (2) we could choose Lu(y) = d2u(y)
dy2 , Ru(y) = −s2u(y), Nu(y) =

Fsu(y)2 and f = 1
M
. In the case L = dk

dyk then the inverse operator L−1 rep-

resents a k−fold definite integration from y0 to y such that L−1Lu = u − Φ

where Φ is a function incorporating the boundary conditions. Applying the

inverse operator L−1 to both sides of (9) yields

u(y) = γ(y)− L−1[Ru(y) +Nu(y)] (10)

with γ(y) = Φ + L−1f.

The Adomian decomposition method now assumes a series solution
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u =
∞∑

n=0

un (11)

while assuming a decomposition of the form

Nu =
∞∑

n=0

An (12)

for the nonlinear term. In the above, the coefficients An are called the Adomian

polynomials which are given by

An =
1

n!

∂dn

∂λn

[
N

(
∞∑

k=0

ukλ
k

)]
λ=0

for n = 0, 1, 2, ... Now plugging in the decompositions (11) and (12) into (10),

we obtain

u =
∞∑

n=0

un = γ(y)− L−1

(
R

∞∑
n=0

un +
∞∑

n=0

An

)
. (13)

By choosing u0(y) = γ(y) we obtain the solution components un through the

classical Adomian recursive scheme

u0(y) = γ(y), (14)

un+1(y) = −L−1(Run + An), n ≥ 0. (15)

Subsequently, the n-th order approximation of the solution of (9) can be ob-

tained as

ψ(y) =
n−1∑
i=0

uk(y). (16)

2.3.1 Application to Problem (2)

To apply the decomposition method described above to (2), we choose

Lu =
d2u

dy2
, Ru = −s2u, Nu = Fsu2, f =

1

M

so that

L−1(·) =

∫ y

−1

∫ y

−1

(·) dydy.
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The term Φ incorporating the boundary condition is obtained by employing

the condition u(−1) = 0 as

Φ = u(−1) + (y + 1)u′(−1) = (y + 1)A

where A := u′(−1), a constant to be determined later on using the other

boundary condition u(1) = 0. Consequently,

u0 = γ(y) = A(y + 1)−
∫ y

−1

∫ y

−1

(
1

M

)
dydy.

The solution components are then computed using the iteration (14), for ex-

ample

u1(y) = −
∫ y

−1

∫ y

−1

(
−s2u0 + Fsu2

0

)
dydy

and n-th order approximation of the solution is obtained using (16). In Section

3, we will report on numerical results of the above implementation as computed

in [10].

2.4 Finite Difference Method

The finite difference method is a popular method for approximating so-

lutions of boundary value problems. The basic idea of the finite difference

method for boundary value problems is to approximate the differential oper-

ator(s) occurring in the equation by appropriate difference schemes that are

easily derived via Taylor expansion of the solution u.

Let us briefly describe the finite difference method for a general nonlinear

two-point boundary value problem of the form

u′′ = f(y, u, u′), a ≤ y ≤ b, u(a) = α, u(b) = β. (17)

In the above, it is assumed that the function u is smooth enough to allow a

valid Taylor expansion. Firstly, we discretize the interval [a, b] by inserting

N equally spaced grid points or nodes yi = a + iτ, i = 0, 1, .., N + 1 in the

interval [a, b] where the step size τ = b−a
N+1

. As a next step, we approximate

the differential operator(s) appearing in the equation, namely here, the first

and second derivatives u′ and u′′ respectively. If we assume that the solution
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u possess a bounded fourth derivative, then simple algebraic manipulations of

the Taylor expansions of u(y ± τ)

u(y + τ) = u(y) + τu′(y) +
τ 2

2
u′′(y) +

τ 3

3!
u′′′(y) +

τ 4

4!
u′′′′(η), η ∈ (y, y + τ),

u(y − τ) = u(y)− τu′(y) +
τ 2

2
u′′(y)− τ 3

3!
u′′′(y) +

τ 4

4!
u′′′′(η), η ∈ (y, y + τ)

yield different approximations of the first and second derivatives of function

u e.g. forward difference scheme, backward difference scheme and centered

difference scheme.

Typically, the first and second derivatives are approximated by the centered

difference formula. This common choice is mostly due to its second order

convergence in the error. That is

u′ =
du

dy
=
ui+1 − ui−1

2τ
− τ 2

6
y′′′(ηi), ηi ∈ (yi−1, yi+1) (18)

u′′ =
d2u

dy2
=
ui+1 − 2ui + ui−1

τ 2
− τ 2

6
y′′′′(εi), εi ∈ (yi−1, yi+1) (19)

where we have adopted the notation ui := u(yi) and the index i = 1, 2, .., N+1.

Finally, by omitting the error terms, the relations (18)-(19) become approxima-

tions to the first and second derivatives of u and are inserted into the equation

(17) to obtain a differencing scheme

ui+1 − 2ui + ui−1

τ 2
− f

(
yi, ui,

ui+1 − ui−1

2τ

)
= 0, i = 1, 2, .., N (20)

with u0 = α, uN+1 = β. Equation (20) is a system of N+1 nonlinear equations

which can be solved, for example by Newton’s method, to obtain the unknown

solutions ui, i = 1, 2, .., N. The nonlinear finite difference scheme (20) has been

established to be second order convergent, see [9, p. 433].

Let us write (20) as F (ũ) = 0 where ũ = (u1, u2, ..., uN)T . With a good

choice of the initial value ũ0, Newton’s method solves (20) iteratively by the

scheme

ũk+1 = ũk + J(ũk)
−1F (ũk) (21)

where J represents the Jacobian of the nonlinear system (20). It is a well

known fact that the Newton’s iterative scheme above converges to the zero of

the nonlinear function F as stated below.
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Proposition 2.1. Let the initial condition be chosen close enough to the

true solution and assume that J(ũ0), the Jacobian of the system at ũ0 is non-

singular, then the approximate solutions obtained via the iterative formula (21)

converge to the true solution of (17).

For the proof of the above proposition, we refer the reader to [9, Section

3.2].

2.5 Application to the Brinkman-Forscheimer BVP

Comparing the Brinkman-Forscheimer model (2) with (17) gives

f(y, u, u′) = Fsu2 + s2u− 1

M
,

with α = β = 0, a = −1, b = 1. Therefore, the corresponding difference

scheme based on (20) is obtained as

ui+1 − 2ui + ui−1

τ 2
− Fsu2

i − s2ui +
1

M
= 0, i = 1, 2, ..., N (22)

with u(−1) = u0 = 0, u(1) = uN+1 = 0. This translates to the system

2u1 − u2 + τ 2Fsu2
1 + τ 2s2u1 −

τ 2

M
= 0,

−u3 + 2u2 − u1 + τ 2Fsu2
2 + τ 2s2u2 −

τ 2

M
= 0,

...

−uN + 2uN−1 − uN+2 + τ 2Fsu2
N−1 + τ 2s2uN−1 −

τ 2

M
= 0,

−uN+1 + 2uN − uN−1 + τ 2Fsu2
N + τ 2s2uN −

τ 2

M
= 0

whose Jacobian is given by

J(ũ) =



ju1 −1 0 · · · · · · 0

−1 ju2 −1 0 · · · ...

0
. . . . . . 0

... juN−1
−1

0 · · · 0 −1 juN


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where

juk
:= 2 + τ 2(2Fsuk + s2).

In view of Proposition 2.1, it is obvious that the choice of the initial condition

for (22) is important for the convergence or otherwise of the approximate

solutions ui’s. In general for the BVP (17), we choose ũ0 = (ui,0), i = 1, 2, .., N

where ui,0 = α + i
(

β−α
b−a

)
τ. This translates to ũ0 = (0, 0, ..., 0). It is then clear

that the Jacobian for the above system of equations is non-singular at ũ0.

3 Numerical Results and Discussion

Here, we shall report on the numerical implementation of the methods

described in the previous section. For the purpose of comparison and as a

reference solution, problem (2) is also solved using the Matlab package bvp4c

which is a collocation method based on the implementation of the three-stage

Lobatto formula. The method produces a continuously differentiable approxi-

mate solution that is fourth-order accurate.

The first step in solving (2) by bvp4c is writing (2) as a system of first-order

differential equations which is achieved by setting u(y) = p1,
du
dy

= p2 so that

dp1

dy
= p2,

dp2

dy
= s2p1 + Fsp2

1 −
1

M

subject to the boundary conditions p1(±1) = 0. The resulting system of first-

order ordinary differential equation is then solved with Matlab.

Let us now report on our numerical implementations.

Table 1 shows the result of numerical approximations of u(0) by the finite

difference method (FDM) and the reference solution by the Matlab routine

bvp4c. As can be seen in the table and in Figure 1, the solutions obtained

by FDM compare well with those of the reference solutions. On the other

hand, Table 2 shows comparison of the approximations of u(0) by the FDM

and the Adomian decomposition method (ADM). The table depicts the over-

sensitivity of the ADM to the parameter F, s and M. As can be seen in the

table, for F > 1, ADM iteration failed to converge and therefore, no solution
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Table 1: Comparison of numerical solutions obtained by finite difference

method (FDM) for u(0) with those obtained through bvp4c for different values

of the parameters F, s,M

F M s Approximation of u(0) by FDM Approximation of u(0) by bvp4c

1 1 1 0.32380 0.32383

1.2 1 1 0.31911 0.31915

1.8 1 1 0.30640 0.30642

2.0 1 1 0.30255 0.30258

1 2 1 0.16837 0.16841

1 3 1 0.11384 0.11389

1 4 1 0.08600 0.08606

1 1 2 0.17438 0.17445

1 1 3 0.09754 0.09759

1 1 4 0.05941 0.05941

was returned. Furthermore, for s >> 1 ADM returned a completely mislead-

ing results. However, FDM always return fairly accurate solutions for various

choices of the parameters as seen in Table 1. The solution profile for the case

case F = 2,M = 1 and s = 1 is shown in Figure 2.

Therefore, in view of the failed implementation of the variational iteration

method for (2) and oversensitivity of the preferred semi-analytical method

Adomian decomposition method, it appears that finite difference based meth-

ods are method of choice for this nonlinear problem.



40 Approximate Solutions of the Brinkman-Forscheimer Model

Table 2: The obtained approximations to u(0) as computed by finite difference

method, compared with solutions obtained through Adomian Decomposition

method (ADM).

F M s Approximation of u(0) by FDM Approximation of u(0) by ADM [10]

1 1 1 0.32380 0.32385

1.2 1 1 0.31911 −
1.8 1 1 0.30640 −
2.0 1 1 0.30255 −
1 2 1 0.16837 0.16840

1 3 1 0.11384 0.11385

1 4 1 0.08600 0.08601

1 1 2 0.17438 0.17443

1 1 3 0.09754 −5.00495

1 1 4 0.05941 −4.87769
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Numerical solution by bvp4c

Numerical solution by the finite difference method

Figure 1: Velocity profile for the case F = 1, M = 1, s = 4
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Numerical solution by bvp4c

Numerical solution by the finite difference method

Figure 2: Velocity profile for the case F = 2, M = 1, s = 1

References

[1] G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press,

San Diego, CA, 1986.

[2] G. Adomian, A review of the decomposition method in applied mathe-

matics, Journal of Mathematical Analysis and Applications, 135, (1988),

501- 544.

[3] G. Adomian, A review of the decomposition method and some recent

results for nonlinear equations, Computers & Mathematics with Applica-

tions, 21, (1991), 101 - 127.

[4] G. Adomian, Solving Frontier Problems of Physics: The Decomposition

Method, Kluwer, Boston, MA, 1994.

[5] S. Deeba, E., Khuri, S., and Xie, An Algorithm for solving boundary value

problems, Journal of Computational Physics, 159, (2000), 125 - 138.



42 Approximate Solutions of the Brinkman-Forscheimer Model

[6] J.-H. He, Variational iteration method a kind of non-linear analytical

technique: some examples, International Journal of Non-Linear Mechan-

ics, 34, (1999), 699 - 708.

[7] J.-H. He, Variational iteration methodSome recent results and new in-

terpretations, Journal of Computational and Applied Mathematics, 207,

(2007), 3 - 17.

[8] K. Hooman, A perturbation solution for forced convection in a porous-

saturated duct, Journal of Computational and Applied Mathematics, 211,

(2008), 57 - 66.

[9] H. Isaacson, E. and Keller, Analysis of Numerical Methods, Dover Publi-

cations, 1994.

[10] M. Madoda, The spectral Adomian decomposition method and its higher

order based iterative schemes for solving highly nonlinear two-point bound-

ary value problems, M.Sc., University of Johannesburg, 2013.


