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The n2 + 1 Fermat and Mersenne

prime numbers conjectures

are resolved

Robert Deloin1

Abstract

In 1912 in Cambridge, the fourth problem mentioned by Landau in
the Fifth Congress of Mathematicians was the conjecture that there are
infinitely many primes p of the form p = n2 + 1.

In 1640, the French mathematician Fermat conjectured that all num-
bers Fn = 22n

+ 1 were prime. Today, this conjecture has become that
there are no Fermat prime numbers greater than F4 = 224

+ 1 = 65537.

In 1644, the French Minim Friar Marin Mersenne conjectured that
the function fn = 2n − 1 generates prime numbers only for n = 2, 3, 5,
7, 13, 17, 19, 31, 67, 127 and 257. Today, we know that this is wrong for
67 and 257 and that 48 Mersenne prime numbers exist. The conjecture
is now that there are infinitely many Mersenne prime numbers.

As of 2015, these three conjectures are unresolved.

The main contribution of this paper is to introduce a new approach
to these questions. The key idea of this new approach is that these
problems can be solved by a system made of an appropriate test and a
congruence with fixed modulus, both dedicated to each kind of number.
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1 Introduction

In 1640, in a letter to his friend Frenicle, the French mathematician Pierre

de Fermat(1601-1665) conjectured that all numbers Fn = 22n
+ 1 were prime.

But Fermat did not prove it. Euler, a century later, showed that F5 = 225
+ 1

is divisible by 641. In 2015, only F0 to F4 (3, 5, 17, 257, 65537) are known to

be prime, F5 to F32 are known to be composite as well as a lot of disparate

other ones and the conjecture about Fermat prime numbers is now that there

are no Fermat prime numbers Fn > F4.

In 1644, the French Minim Friar Marin Mersenne (1588-1648) conjectured

that the function fn = 2n− 1 generates prime numbers only for n = 2, 3, 5, 7,

13, 17, 19, 31, 67, 127 and 257.

Today, we know that 67 and 257 are wrong and that 61, 89 and 107 have

to be added to this list as well as others up to a list of 48 numbers. The

conjecture is now that there are infinitely many Mersenne prime numbers.

In 1912, the conjecture that there are infinitely many primes p of the form

p = n2 + 1 was still an open problem as mentionned by Landau [1]. As this

problem involves a polynomial, the conjecture [2] of the Polish mathematician

Bunyakovsky (1804-1889) about the general integer polynomial function is

important for its definition of the indivisibility of such functions.

2 Preliminary notes

2.1 The composite numbers

According to the fundamental theorem of arithmetics and to the convention

that the number 1 is not prime, each composite number N greater than 1 can

be factorized in only one way by powers of increasing primes:

N =
∏

i p
αi
i
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A consequence of it is that any natural number greater than 1 is either a prime

(2 or an odd prime) or a multiple qp of any prime p of its factorization.

2.2 The composite values of an integer function

The last section applies to the integer values generated by any indivisible

integer polynomial function, the word indivisible being taken with the meaning

of Bunyakovsky [2]:

gcd (coefficients of polynomial) = 1,

no fixed divisor divides all values of the function,

the function is irreducible.

We have to notice here that when there exists no formula giving a direct

factorization for a given polynomial integer function f(n) of degree m>1 as,

by instance, the well known relation n2-a2 = (n-a)(n+a), or the aurifeuillean

factorization, the only remaining reference for the factorization of each value

fn is the infinite table of factorization of all natural numbers, whose existence

is proved by the above cited fundamental theorem of arithmetics, a table that

cannot entirely exist due to its infinite dimension but that can be refered to

via mathematical softwares dealing with very big numbers.

2.3 A method to isolate prime values of a function

The core of the method is based on the fact that if a statement is true for

all the n values in the set of congruences:

n = {1, ..., µ} mod µ

where µ is an explicit integer number, indeed the statement is true for all

natural numbers n, and this set of congruences modulo µ is a covering system

of the set N.

So, the practical method will be to search for a maximum of possible con-

gruences for which the statement:

fn is always divisible by an odd divisor µj >1
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apply to a function fn.

These congruences can be of two kinds:

- congruences with a zero residue and a fixed modulus µj; as they define

composite numbers, their number will be named c;

- congruences with a non zero or variable residue and a fixed or variable

modulus; as they can contain prime numbers, their number will be named p.

As the c disparate congruences with a zero residue cover composite values

of the function, for a modulus µ = lcm(µj), they are the solution of the

statement:

fn is always divisible by an odd divisor µj >1

This search for congruences will always end into one of the following three

cases:

• c>0 and p=0: if this set of c congruences is a covering system of modulus

µ of all the values of the function, all these values are composite and

divisible by a finite set of divisors dj named the covering set of the

divisors of the function values, this set being used repeatedly, infinitely

many times by the function with the µ period. This is the case of the

functions fn = R2n − 1 and fn = S2n + 1 using the Riesel (R) and

Sierpiński (S) numbers as shown in [3] [4] and used in [5].

• c>0 and p>0: if this set of c+p congruences is a covering system of

modulus µ of all the function values with c congruences of modulus µ

containing only composite values and p congruences, also of modulus µ,

containing infinitely many composite values and according to Dirichlet

theorem, infinitely many primes, the function generates infinitely many

primes unless a limit exists that prevents it.

• c=0 and p>0: no µ modulus can be found for the set of p congruences.

No instance of this case has been encountered so that this case has not

been studied here.
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3 Proof of n2+1 prime numbers conjecture

The conjecture to be proved is that the integer function n2+1 generates

infinitely many prime numbers.

3.1 A first set of congruences with fixed modulus

To study the integer function f(n)=n2+1, we first look at the factorizations

of fn for n varying from 1 to some value that we will take here, by instance, to

be 21 (it has to be big enough to be able to show congruences):

Table 1. Factorizations of fn=n2+1 for n=1,21

Function f Value Factorization

f=12+1 = 2 prime

f=22+1 = 5 prime

f=32+1 = 10 = 2×5

f=42+1 = 17 prime

f=52+1 = 26 = 2×13

f=62+1 = 37 prime

f=72+1 = 50 = 2×52

f=82+1 = 65 = 5×13

f=92+1 = 82 = 2×41

f=102+1 = 101 prime

f=112+1 = 122 = 2×61

f=122+1 = 145 = 5×29

f=132+1 = 170 = 2×5×17

f=142+1 = 197 prime

f=152+1 = 226 = 2×113

f=162+1 = 257 prime

f=172+1 = 290 = 2×5×29

f=182+1 = 325 = 52×13

f=192+1 = 362 = 2×181

f=202+1 = 401 prime

f=212+1 = 442 = 2×13×17

from which it can be easily proved, repetitions of numbers being allowed, that
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with no limit on n, we have a set of 7 congruences for the composite values of

the function f(n)=n2+1:

when n = 1+2α, fn ≡ 0 mod 2

when n = {2,3,7,8}+10α, fn ≡ 0 mod 5

when n = {5,8}+13α, fn ≡ 0 mod 13

By instance, to prove the last one for unlimited n=8+13α:

fn = (8+13α)2 +1

fn = (132α2 + 2× 8× 13α + 64) +1

fn = 132α2 + 2× 8× 13α + 5× 13

fn ≡ 0 mod 13

3.2 A covering system of congruences with fixed mod-

ulus

Now, without repetitions and using the least common multiple µ=130 of the

moduli 2, 10 and 13 of the above congruences, we see that these congruences

cover:

n = {1,2,3,-,5,-,7,8,9,-,11,12,13,-,15,-,17,18,19,-,...,129,-} mod 130

and not:

n = {4,6,10} mod 10

So, for a better understanding of what happens when n = {4,6,10} mod 10,

we use only these values in the extended Table 2 which follows.

Table 2. Values of fn=n2+1 for n={4,6,10}+10α
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Function f Value Factorization

f=42+1 = 17 prime

f=62+1 = 37 prime

f=102+1 = 101 prime

f=142+1 = 197 prime

f=162+1 = 257 prime

f=202+1 = 401 prime

f=242+1 = 577 prime

f=262+1 = 677 prime

f=302+1 = 901 = 17×53

f=342+1 = 1157 = (13)×89

f=362+1 = 1297 prime

f=402+1 = 1601 prime

f=442+1 = 1937 = (13)×149

f=462+1 = 2117 = 29×73

f=502+1 = 2501 = 41×61

f=542+1 = 2917 prime

f=562+1 = 3137 prime

f=602+1 = 3601 = (13)×277

f=642+1 = 4097 = 17×241

f=662+1 = 4357 prime

f=702+1 = 4901 = (13)2×29

f=742+1 = 5477 prime

f=762+1 = 5777 = 53×109

f=802+1 = 6401 = 37×173

f=842+1 = 7057 prime

f=862+1 = 7397 = (13)×569

f=902+1 = 8101 prime

f=942+1 = 8837 prime

f=962+1 = 9217 = (13)×709

f=1002+1 = 10001 = 73×137

where numbers in parenthesis are already found to be periodical:

when n = 5+13α, n=5,18,31,44,57,70,83,96, fn ≡ 0 mod 13
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and when n = 8+13α, n=8,21,34,47,60,73,86,99, fn ≡ 0 mod 13.

This table shows no congruences with new factors but, about the fn values, it

shows that:

when n={4,6}+10α, fn ≡ 7 mod 10 for n > 3

when n=10+10α, fn ≡ 1 mod 10 for n > 3

So:

- when n = {1,2,3,-,5,-,7,8,9,-}+10α we found that fn is always a multiple of

2, 5 or 13,

- but when n={4,6,10}+10α, we found that fn cannot be a multiple of a peri-

odical factor.

This proves that this sytem of congruences is a covering system of N but

that the covering set of prime divisors dj of fn is infinite due to the presence

of the congruences:

when n={4,6}+10α, fn ≡ 7 mod 10 for n > 3

when n=10+10α, fn ≡ 1 mod 10 for n > 3

3.3 The appropriate test for general primes

In 1967, improving the tests proved by Lucas in 1876 and 1891, Brillhart

and Selfridge [6] have proved the following theorem:

With N>1, it is supposed that for any prime factor q of N − 1,

there exists an integer c = c(q) > 1 such that:

(i) cN−1 ≡ 1 mod N

(ii) c(N−1)/q not ≡ 1 mod N

then, N is prime.

With N = n2 + 1, this test becomes:

With n> 0, it is supposed that for any prime factor q of n2,

there exists an integer c = c(q) > 1 such that:

(i) cn2 ≡ 1 mod (n2 + 1)

(ii) c(n2)/q not ≡ 1 mod (n2 + 1)

then, n2 + 1 is prime.
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3.4 Proof of n2 + 1 prime numbers conjecture

When n={4,6,10}+10α (always even), we found that for n > 3, fn ≡ {1,7}
mod 10 cannot be a multiple of a periodical factor.

Now, from all these fn values, by Eratosthenes’ sieve, we keep only those

that are prime, whose number is unknown but whose we know that they all

verify Brillhart and Selfridge’s test.

As all the prime values fn > 5, whose number is unknown, belong to the

congruences fn ≡ {1, 7} mod 10 for n > 3 which, according to Dirichlet’

theorem, contain infinitely many primes, this proves that the function fn =

n2 + 1 generates primes that are solutions of the system of congruences:

(i) cn2 ≡ 1 mod (n2 + 1)

(ii) c(n2)/q not ≡ 1 mod (n2 + 1)

for q=2 or any odd prime factor q of n2

and:

n2 + 1 ≡ {1,7} mod 10 for n > 3

As n2 = fn − 1, for the prime values of fn = n2 + 1 and according to Fermat’s

little theorem, relation (i) is always verified if fn does not divide c.

But the n’s that make fn prime still have to verify relation (ii) of Brillhart

and Selfridge’s test.

Now, we will prove that (ii) has infinitely many integer solutions n that

make n2 + 1 prime.

Proof. Hypothesis If (ii) has infinitely many integer solutions n that make

n2 + 1 prime, it means that there exists no limit L beyond which (if n > L),

fn = n2 + 1 is never a prime and (ii) of Brillhart and Selfridge’s test is never

verified.

As n = {4, 6, 10} + 10α > L is always even, n2 will always be divisible by

4 so that for q = 2, n2/q will always be even. Let’s set: n2/2 = 2α and we

have, using the definition of quadratic residues for prime numbers n2 + 1 and

Euler’s congruence for Legendre’s symbol:(
cn2/2

n2 + 1

)
=

(
c2α

n2 + 1

)
=

(
(cα)2

n2 + 1

)
= 1 ≡ cn2/2 mod (n2 + 1)

and (ii) of Brillhart and Selfridge’s test will never be verified when q=2, on

one hand.
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On the other hand, n2/q is always integer when q is an odd divisor of n.

So, if q is any odd divisor of n, we can set y = n/q so that n2/q = ny and we

have:

cn2/q ≡ cny mod (n2 + 1)

As n = {4, 6, 10}+10α is always even, let’s set n = 2β, and we have, using the

definition of quadratic residues for prime numbers n2+1 and Euler’s congruence

for Legendre’s symbol:

(
cn2/q

n2 + 1

)
=

(
cny

n2 + 1

)
=

(
c2βy

n2 + 1

)
=

(
(cβy)2

n2 + 1

)
= 1 ≡ cn2/q mod (n2 + 1)

and (ii) of Brillhart and Selfridge’s test will never be verified when q is any

odd divisor of n.

As we get the impossibility for (ii) of Brillhart and Selfridge’s test to be

verified when q = 2 or any odd divisor of any n > 3, we also get the contra-

diction to our hypothesis that there would exist a limit L beyond which there

would be no more n2 + 1 primes.

We will now show that this is a wrong contradiction because it does not

take into account the fact that the prime values of fn have to verify fn =

n2 + 1 ≡ {1, 7} mod 10 or fn = {1, 7}+ 10k.

As congruence (ii) is:

(ii) c(n2)/q not ≡ 1 mod (n2 + 1)

for k = 10m, fn = {1, 7}+ 10k = {1, 7}+ 10m+1 and n2 = fn − 1, we have:

(ii) c({0,6}+10m+1)/q not ≡ 1 mod (n2 + 1)

or, elevating both sides of this congruence at power q:

c{0,6}c10m+1
not ≡ 1 mod (n2 + 1)

As fn > 3 never divides 3, we can now choose c = 3 in Brillhart and Selfridge’s

test. We have then on one hand, for the left side with a direct calculus:
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As: 30 = 1, 36 = 729, 310 = 59049,

and: 310m ≡ 1 mod 10 for m > 1

3{0,6}+10m+1 ≡ {1, 9} mod 10 for m > 1

3{0,6}+10m+1
mod fn ≡ {1, 9} mod 10 mod fn for m > 1

and, on the other hand, for the right side:

fn ≡ {1, 7} mod 10

fn + 1 ≡ {2, 8} mod 10

1 mod fn ≡ {2, 8} mod 10 mod fn

and, as we always have:

{1, 9} mod 10 mod fn 6= {2, 8} mod 10 mod fn.

(ii) is always verified for any n > 3.

This proves that no fixed limit L exists beyond which there is no more

prime values of fn = n2 + 1 = {1, 7} mod 10 for n > 3.

The non-existence of such a limit proves that the function fn = n2 + 1

generates infinitely many primes.

In the next section, the existence of a limit will prove that Fermat primes

are not infinitely many.

4 Fermat prime numbers conjecture

Fermat prime numbers Fn [7] are the prime numbers generated by the

function:

fn = 22n
+ 1

4.1 A first set of congruences with fixed moduli

There is an obvious recurrence relation between Fermat numbers:

from: fn+1 = 22n+1
+ 1

fn+1 − 1 = (22n
)2

fn+1 = (fn − 1)2 + 1
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From this relation, we can find the following general relation:

fn+1 = f 2
n − 2fn + 2

= fn(fn − 2) + 2

= fn(fn−1(fn−1 − 2)) + 2

= fnfn−1(fn−2(fn−2 − 2)) + 2

· · ·
= fnfn−1fn−2...f1f0 + 2

fn+1 = 2 +
∏n

k=0 fk

From this relation, the first set of congruences is:

fn+1 ≡ 2 mod fk=0,n

which proves that all fn values are relatively prime with all their previous values

fk. Making n tend to infinity, this proves that all fn values are relatively prime.

4.2 A second set of congruences with variable moduli

As fn+1 = 2 +
∏n

k=0 fk, we also have:

fn+1 − 2 =
∏n

k=0 fk

or:

fn − 2 =
∏n−1

k=0 fk

so that:

fn+1 − 2

fn − 2
= fn

fn+1 − 2 = fn(fn − 2)

hence, the second set of congruences:

fn+1 ≡ 2 mod fn (already found in the first set)

fn+1 ≡ 2 mod (fn − 2)
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4.3 A congruence with a fixed modulus

For fn > 5 or n>1 let’s set: n=2+k. We thus have:

fn = f2+k

= 222+k
+ 1

= 222×2k
+ 1

= 162k
+ 1

= (6 + 10)2k
+ 1

hence, the congruence with the fixed modulus 10:

fn ≡ 62k
+ 1 mod 10

or simply:

fn ≡ 7 mod 10 for n>1

So, for the function fn = 22n
+1 with n>1, we found only one congruence with

a fixed modulus covering all Fermat numbers but F0 = 3 and F1 = 5, so that

the set {fn ≡ 7 mod 10} is a covering system of modulus µ = 10 of all Fermat

numbers > 5. According to Dirichlet theorem, this covering system contains

infinitely many primes but all these primes are not Fermat primes.

4.4 The appropriate test for Fermat numbers

As Fermat little theorem misses a true reciprocal, this little theorem cannot

be used to characterize Fermat prime numbers and we have to find and use a

true theorem to do that.

In 1877, The French mathematician Pépin (1826-1904) proved [8] [9] a

theorem dedicated to Fermat numbers, today called Pépin’s test:

Theorem. Let’s consider k > 2 and Fn = 22n
+1 with n > 2. Then, the two

following propositions are equivalent:

(i) k(Fn−1)/2 ≡ −1 mod Fn,

(ii) Fn is prime and

(
k

Fn

)
= −1

where

(
k

Fn

)
is Legendre’ symbol.

To have Pépin’s test become explicit, k must be explicitly chosen among

several values (3,5,10) to have:
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(
k

Fn

)
= −1

We have shown that fn+1 ≡ 2 mod fk=0,n, therefore we have Fn ≡ 2 mod 3

when n > 1. Choosing k=3 and using Gauss’ law of reciprocity, we have then:
(

3

Fn

)
=

(
Fn

3

)
(−1)

3−1
2
×Fn−1

2 =

(
Fn

3

)
=

(
2

3

)
= −1

And we can now proceed with the proof.

4.5 Proof of Fermat primes conjecture

Proof. We have found in section 4.3 the congruence:

fn ≡ 7 mod 10 for n>1

but this congruence makes no distinction between Fermat primes up to f4 =

65537 and the others. To make this distinction, as n=2 gives f2 = 17, for

n > 2, we have:

from: Fn = 22n
+ 1

Fn − 17 = 22n − 16

Fn − 17 = 16(22n−2 − 1)

Fn − 17 = 16(22(n−3)+1 − 1)

Fn − 17 = 16(22×2(n−3) − 1)

Fn − 17 = 16((Fn−3 − 1)2 − 1)

and as for any n > 2 we have the congruence fn ≡ 7 mod 10, we also have:

(Fn − 1)2 − 1 ≡ 0 mod 5

and, for n− 3 > 2 or n > 5:

Fn − 17 = 16× 5

(
(Fn−3 − 1)2 − 1

5

)

Fn = 17 + 80m

Then, as:

3(Fn−1)/2 = 3(16+80m)/2 = 38+40m = 38(340)m

Pépin’s test can be rewritten as follows:

Let’s consider Fn = 22n
+1 with n > 5. So:
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(i) If 38(340)m ≡ −1 mod Fn

then (ii) Fn is prime and

(
3

Fn

)
= −1

and reciprocally.

Then, noticing that the explicit numbers of left member of (i) will not change

modulo Fn if Fn > 340 and that:

F5 = 4294967297

340 = 12157665459056928801

F6 = 18446744073709551617

we have:

F5 < 340 < F6,

and:

Fn = 17+80m > 340 implies that: Fn > F5

Hypothesis. If Pépin’s test is verified for any prime Fn > F5, we should have:

(i) 3(Fn−1)/2 ≡ −1 mod Fn

and, as Fn = 17+80m:

(i) 38+40m ≡ −1 mod Fn

But we have on one hand:

34 = 81 ≡ 1 mod 80

38+40m = 34(2+10m)

= (34)2+10m

38+40m ≡ 1 mod 80

38+40m mod Fn ≡ 1 mod 80 mod Fn

and, on the other hand:

Fn = 17+80m

Fn − 1 ≡ 16 mod 80

−1 mod Fn ≡ 16 mod 80 mod Fn

and, as we always have:

1 mod 80 mod Fn 6= 16 mod 80 mod Fn.

(i) is never verified for any Fn > F5.

This proves that Fermat prime numbers are not infinitely many.
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5 Mersenne prime numbers conjecture

Mersenne prime numbers Mn are the prime numbers generated by the func-

tion:

fn = 2n − 1

The Mersenne conjecture is that Mersenne primes are infinitely many.

5.1 A first relation between Mersenne numbers

There is an obvious recurrence relation between Mersenne numbers:

fn+1 = 2n+1 − 1 = 2(2n − 1) + 1

fn+1 = 2fn + 1

which means that all fn values are odd and relatively prime with their imme-

diate previous value.

5.2 A second relation between Mersenne numbers

From this relation, we can find the following general relation:

fn+1 = 2fn+1−1 + 1

= 2(2fn+1−2 + 1) + 1 = 22fn+1−2 + 2 + 1

= 2(2(2fn+1−3 + 1) + 1) + 1 = 23fn−3 + 4 + 2 + 1

= 2(2(2(2fn+1−4 + 1) + 1) + 1) + 1 = 24fn+1−4 + 8 + 4 + 2 + 1

· · ·
= 2(2(2(2fn+1−k + 1) + 1) + 1) + 1 = 2kfn+1−k + (2k − 1)

or, for any 0 < k < n, fn−k < fn, fk < fn and replacing n+1 by n:

fn = 2kfn−k + fk

which proves that all fn values are relatively prime with all their previous

values fn−k. Making n tend to infinity, this proves that all fn values are

relatively prime.



Robert Deloin 31

5.3 Composite Mersenne numbers

As when n is even (n=2k), we have from the last relation:

f2k = 2kfk + fk

f2k = fk(2
k + 1)

f2k = fk(fk + 2)

this proves that f2k is always composite.

A more general result is also available:

fn is prime if and only if n is prime.

Proof. If n is an odd composite (n=ab), we have:

fn = fab = 2ab − 1

= (2a − 1)(1 + 2a + 22a + 23a + ... + 2(b−1)a)

= (2b − 1)(1 + 2b + 22b + 23b + ... + 2(a−1)b)

so that fab is always composite and fn is prime if and only if n is prime.

5.4 A glimpse of Mersenne numbers

As we have seen that fn is prime if and only if n is prime, let’s build the

following table for only prime n’s up to 61.
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Table 5. Factorizations of fn=2n-1 for prime n=2,61

Function f Value Factorization

f=22-1 = 3 prime

f=23-1 = 7 prime

f=25-1 = 31 prime

f=27-1 = 127 prime

f=211-1 = 2047 = 23×89

f=213-1 = 8191 prime

f=217-1 = 131071 prime

f=219-1 = 524287 prime

f=223-1 = 8388607 = 47×178481

f=229-1 = 536870911 = 233×1103×2089

f=231-1 = 2147483647 prime

f=237-1 = = 223×616318177

f=241-1 = = 13367×164511353

f=243-1 = = 431×9719×2099863

f=247-1 = = 2351×4513×13264529

f=253-1 = = 6361×69431×20394401

f=259-1 = = 179951×3203431780337

f=261-1 = prime

This proves that even when n is prime, fn is not automatically prime. As

of 2014, only 44 consecutive Mersenne prime numbers are known among the

2,007,537 prime numbers p up to 32,582,657 which gives the 44th Mersenne

prime.

5.5 The appropriate test for Mersenne numbers

As Fermat numbers Fm = 22m
+ 1 are a similar case of Mersenne numbers

Mn = 2n − 1 where n = 2m and +1 becomes −1, the idea to build a test for

Mersenne numbers is that this test must be based on Pépin’s test of section

4.4.

Adapting Pépin’s test to Mersenne numbers, we get in a first step:

With fn = 2n − 1 >1, it is supposed that for any prime factor q of

fn − 1 = 2n − 2 = 2(2n−1 − 1) = 2fn−1,
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there exists an integer k = k(q) > 1 such that:

if (i) k2fn−1/q ≡ −1 mod Mn

then (ii) fn is prime and

(
k

Mn

)
= −1

and reciprocally.

where

(
k

Mn

)
is Legendre’ symbol.

But here, relation (i) implies that we must only consider q=2 because when

q is an odd prime, we have, according to the definition of quadratic residues

and Euler’s congruence for Legendre’s symbol:
(

k2fn−1/q

Mn

)
=

(
(kfn−1/q)2

Mn

)
= 1 ≡ k2fn−1/q mod Mn

so that relation (i) is then never verified for any k and any odd prime q.

With q=2, relation (i) becomes:

(i) kfn−1 ≡ −1 mod Mn

and as for n > 2, the number Mn never divides 3, we choose k=3. So, with

q=2 and k=3, relation (i) becomes:

(i) 3fn−1 ≡ −1 mod Mn

and the test for Mersenne numbers > f2 = 3 is:

With n > 2 and Mn = 2n − 1 > 3,

(i) If 3fn−1 ≡ −1 mod Mn

then (ii) fn = Mn is prime and

(
3

Mn

)
= −1

and reciprocally.

where

(
3

Mn

)
is Legendre’ symbol. In a second step, we have to prove that

this test is valid.

Proof. For (i): Using Legendre’s symbol and the definition of quadratic residues,

we have:
(

3fn−1

Mn

)
=

(
3(3fn−1−1)

Mn

)
=

(
3(32n−1−2)

Mn

)
=

(
3(32n−2−1)2

Mn

)
=

(
3

Mn

)

and, as (ii) is verified and with Euler’s congruence for Legendre’s symbol:(
3fn−1

Mn

)
= −1 ≡ 3fn−1 mod Mn
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which proves (i).

For (ii): From the law of reciprocity, we have:
(

3

Mn

)
=

(
Mn

3

)
(−1)

3−1
2
× fn−1

2 =

(
Mn

3

)
(−1)fn−1 = −

(
Mn

3

)

For Mn = Mp = 2p − 1 where p and Mp are odd primes, we have:

Mn ≡ 2p − 1 ≡ (−1)p − 1 ≡ −2 ≡ 12 mod 3

or:(
Mn

3

)
= 1

and, as looked for:
(

3

Mn

)
= −

(
Mn

3

)
= −1

which proves (ii).

To visualize the results of this test, we can build the following table.

Table 7: Partial visualization of the test for Mersenne numbers

n Test Results

n=3 3f2 ≡?− 1 mod f3 33 ≡ −1 mod 7: f3 = prime

n=5 3f4 ≡?− 1 mod f5 315 ≡ −1 mod 31: f5 = prime

n=7 3f6 ≡?− 1 mod f7 363 ≡ −1 mod 127: f7 = prime

n=11 3f10 ≡?− 1 mod f11 31023 ≡ 1565 mod 2047

n=13 3f12 ≡?− 1 mod f13 34095 ≡ −1 mod 8191: f13 = prime

n=17 3f16 ≡?− 1 mod f17 365535 ≡ −1 mod 131071: f17 = prime

n=19 3f18 ≡?− 1 mod f19 3262143 ≡ −1 mod 524287: f19 = prime

5.6 A congruence with fixed modulus

To get this congruence, we consider the difference between any couple of

values fp and fn with n > p:

fn − fp = (2n − 1)− (2p − 1) = 2n − 2p = 2p(2n−p − 1)

from which we have the congruence:

fn ≡ fp ≡ 2p − 1 mod 2p
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If we choose p = 5, we have for n > 5:

fn ≡ 31 mod 32

5.7 Proof of Mersenne conjecture

Here, the Mersenne conjecture refered to is that there are infinitely many

Mersenne primes.

Proof. As we have just proved that for n > 5 we have the congruence:

fn ≡ 31 mod 32

or:

fn = 31 + 32k

the relation (i) of the test for Mersenne prime numbers can then be written:

(i) If 315+16k ≡ −1 mod Mn

or: (i) If 315(316)k ≡ −1 mod Mn

Then, noticing that the explicit numbers of left member will not change modulo

Mn if Mn > 316 and that:

M25 = 33, 554, 431 < 316 = 43, 046, 721 < M26 = 67, 108, 863

we have:

Mn > 316 implies that: Mn > M25

Hypothesis. If Mersenne primes were not infinitely many, there would exist

a limit L beyond which there would be no more of them. But we will prove

that no such limit L exists.

The only known limit at this time is L = 316 = 32p−1
which comes from the

congruence fn ≡ 2p − 1 mod 2p with the arbitrarily chosen p = 5 and which

was determined from the maximum explicit number appearing in:

(i) If 315(316)k ≡ −1 mod Mn

With this limit, we would then be able to make the hypothesis that for Mn >

M25, no more Mersenne primes could exist and follow that track.

But we have to remember that in the congruence fn ≡ 2p−1 mod 2p with

p < n, instead of choosing p = 5, we can choose any p < n for any positive

integer n. This means that when n tends to infinity, p can also be chosen
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as tending to infinity, which makes the limit 32p−1
also tend to infinity and

therefore, that there is no limit, up to infinity, that allows to define a domain

where Mersenne primes could not exist.

This proves that the function fn = 2n−1 generates infinitely many Mersenne

prime numbers.

5.8 Double Mersenne primes problem

Double Mersenne primes are the prime numbers defined by:

MMp = 2Mp − 1 where p is a prime

These numbers are generated by the function:

fn = 22n−1 − 1

The first four double Mersenne primes are:

MM2 = f2 = M3 = 7

MM3 = f3 = M7 = 127

MM5 = f5 = M31 = 2147483647

MM7 = f7 = M127 = 170141183460469231731687303715884105727

As the first values of p for which Mp is prime are p = 2, 3, 5, 7, 13, 17, 19, 31,

61, 89, 107, 127 and as for p = 13, 17, 19 and 31, double Mersenne numbers

are known to be composite, the next candidate double Mersenne number to

be prime is MM61 = 22305843009213693951 − 1. It is so huge that, as of 2015, an

unresolved problem is: are double Mersenne primes infinitely many?

Proof. As double Mersenne primes are Mersenne primes and as these last ones

are infinitely many as proved in section 5.7, the solution of this problem is that

double Mersenne primes are also infinitely many.
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