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                                                        Abstract 

Autoregressive processes of order 1 (or AR(1) processes) have been extensively 

used in econometrics and time series literature. Noting that an early important 

result  concerning the sample mean 𝑈� and variance 𝑆𝑈2   of independent normally 

distributed random variables 𝑈 with equal means and variances is that 𝑈� and 𝑆𝑈2 

are independent, the present article investigates whether this result can be 

extended to AR(1) non-stationary processes as the sample size becomes very 

large. To this end, a property called “asymptotic stationarity”  is used for algebraic 

calculations.  A result for asymptotic independence concerning the sample mean 

and variance is then adequately derived for these types of processes.   
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1   Introduction 

In the present work we consider AR(1) autoregressive random processes of 

the form 

                                                            𝑋𝑛+1 = 𝑎𝑋𝑛 + 𝑠𝜀𝑛+1                                        (1) 

where 𝜀𝑖 are independently 𝑁(0,1) distributed so that 𝑠𝜀𝑖~𝑁(0, 𝑠2), s is a 

positive constant, and |𝑎|<1. 

The above process is usually encountered in econometrics; in this case 𝑋𝑛 

could represent the error terms of a regression model, also called innovations, 

which are then correlated with each other, and this creates a serious problem 

known as autocorrelation problem. On the other hand the AR(1) process is also 

encountered in time series analyses where 𝑋𝑛 denotes an economic variable and 

index 𝑛 represents time; the process is then very useful for forecasting future 

values of  𝑋. As noted by Davidson and MacKinnon 1993 (p.329) “ this is a most 

commonly encountered error process in applied work”. The aforementioned 

condition |𝑎|<1 is called stationarity condition. We now focus on processes like 

(1), setting 𝑋0 = 0 as initial condition for solving the equation defined by (1). 

Condition |𝑎|<1  implies that the variance  

𝑉𝑎𝑟(𝑋𝑛) = 𝑠2(1 − 𝑎2𝑛) (1 − 𝑎2⁄ ) 

 exists as 𝑛 tends to infinity, so that, for large 𝑛, we have 

𝑉𝑎𝑟(𝑋𝑛) ≈ 𝑠2 (1 − 𝑎2⁄ ) = 𝜎2, 

showing that the variance is constant.  Similarly, the covariance  

 𝐶𝑜𝑣(𝑋𝑛,𝑋𝑛+𝑘) = 𝑎𝑘𝑠2(1 − 𝑎2𝑛) (1 − 𝑎2⁄ ) = 𝑎𝑘 Var (𝑋𝑛)  -and  𝑘 > 0 -  exists 

for 𝑛 large, and so,  𝐶𝑜𝑣(𝑋𝑛,𝑋𝑛+𝑘) ≈ 𝑎𝑘𝜎2  (see also [1], pp. 327-328), which 

does not depend on 𝑛 , but only on the lag 𝑘 . Note that a first order autoregressive 

random process {𝑋𝑛} with these properties is called “ asymptotically stationary up 

to order 2” (see [2], p. 119). As argued in the latter reference, instead of 

considering this asymptotically stationary process one could equivalently consider 

the stationary process 𝑋𝑛 = 𝑠 ∑ 𝑎𝑖∞
𝑖=0 𝜀𝑛−𝑖 (see [2], pp. 121-122), which is a 
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moving average representation, noted as MA(∞), where ∞ stands for infinite 

order. Thus the property of  asymptotic stationarity allows for treating the AR(1) 

process in equation (1), with initial condition 𝑋0 = 0, as a “usual” stationary 

process by letting 𝑛 tend to infinity. The reason for considering  the model 

represented by equation (1), with initial condition 𝑋0 = 0, is that, as underlined by 

Spanos (see [3], p. 153), assuming “usual” stationarity is unrealistic, thus  

implying that for econometric modelling it is more useful to consider index 

𝑛 = 0, 1, 2, … (instead of 𝑛 = 0, ±1, ±2, … used for “usual” stationarity). An 

application example about that is provided by Spanos ([3], pp. 279-281). 

Also note that considering the fact that  𝐸(𝑋𝑛) = 0 in (1) will not affect 

covariance properties since if  𝐸(𝑋𝑛) = 𝜇 ≠ 0  one can write 𝑋𝑛 − 𝜇 =

𝑎(𝑋𝑛−1 − 𝜇) +  𝑠𝜀𝑛 , with E(𝑋𝑛 − 𝜇) = 0  (see [4], p. 13). 

The development of the theory provided in the next sections aims at 

investigating whether a well known and important result from statistical theory 

concerning independently normally distributed random variables is still 

asymptotically valid. This result is given (for instance) by the first part of 

Theorem (1) of [5], p. 119), namely that if  𝑈𝑖  are independently normally 

distributed random variables (𝜇,𝜎2 ), then their sample mean  𝑈� and variance 

𝑆𝑈2 = ∑ (𝑈𝑖 − 𝑈�)2𝑛
𝑖=1 (𝑛 − 1⁄ ) are independent. Noting that since the case where 

 𝑈𝑖  are independent can be considered as a particular case of the AR(1) process 

previously presented, for it simply amounts to taking 𝑎 = 0 in (1), the aim of the 

present article will be to extend the independence result concerning 𝑈� and 𝑆2 to an 

asymptotic independence for the process generated by (1), with initial condition 

𝑋0 = 0, since, to the best of our knowledge, this result does not  appear in existing 

literature.  

In section 2, approximate expressions for some useful covariances are 

calculated when 𝑛 is large. Section 3 provides approximate results, for 𝑛 large, 

concerning  independence properties. 
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2   Asymptotic Theory for Second Order Moments 

Lemma 1   For large 𝑛, the covariance  Cov (𝑋� ,  𝑋𝑖 − 𝑋�) is 𝑂(1
𝑛

), and hence 

Cov�𝑋�,  𝑋𝑖−𝑋�

√𝑛−1
� is 𝑂( 1

𝑛√𝑛
). 

Proof. Since according to the AR(1) random process 

 𝑋𝑖 = 𝑎𝑖−1𝑠𝜀1 + 𝑎𝑖−2𝑠𝜀2 + ⋯𝑎𝑠𝜀𝑖−1 + 𝑠𝜀𝑖, we now compute 𝑋�  as follows. 

∑ 𝑋𝑖 = (1 + 𝑎 + ⋯+ 𝑎𝑛−1𝑛
𝑖=1 )𝑠𝜀1 + (1 + 𝑎 + ⋯+ 𝑎𝑛−2)𝑠𝜀2 + ⋯+

(1 + 𝑎)𝑠𝜀𝑛−1 + 𝑠𝜀𝑛    

=1−𝑎
𝑛

1−𝑎
𝑠𝜀1 + 1−𝑎𝑛−1

1−𝑎
𝑠𝜀2 + ⋯+ 1−𝑎2

1−𝑎
𝑠𝜀𝑛−1 + 1−𝑎

1−𝑎
𝑠𝜀𝑛= 𝑠

1−𝑎
[(1 − 𝑎𝑛)𝜀1 +

(1 − 𝑎𝑛−1)𝜀2 + ⋯+ (1 − 𝑎2)𝜀𝑛−1 + (1 − 𝑎)𝜀𝑛],  

and thus  

 𝑋� = 𝑠
(1−𝑎)𝑛

  [(1 − 𝑎𝑛)𝜀1 + (1 − 𝑎𝑛−1)𝜀2 + ⋯+ (1 − 𝑎2)𝜀𝑛−1 + (1 − 𝑎)𝜀𝑛].  (2) 

Thus 𝐸(𝑋�2)= 𝑠2

(1−𝑎)2𝑛2
[(1 − 𝑎𝑛)2 + ⋯+ (1 − 𝑎)2], since 𝐸�𝜀𝜄𝜀𝑗� = 0 for  

 𝑖 ≠ 𝑗 and 𝐸(𝜀𝑖2) = 1. A direct development of (1 − 𝑎𝑛)2 + ⋯+ (1 − 𝑎)2 leads 

then to   𝑛 − 2𝑎(1−𝑎𝑛)
1−𝑎

+ 𝑎2(1−𝑎2𝑛)
1−𝑎2

, and so 

𝐸(𝑋�2) =
𝑠2

(1 − 𝑎)2𝑛2
�𝑛 −

2𝑎(1 − 𝑎𝑛)
1 − 𝑎

+
𝑎2(1 − 𝑎2𝑛)

1 − 𝑎2
�, 

and thus, for large 𝑛,  𝐸(𝑋�2) ≈ 𝑠2

(1−𝑎)2𝑛
. 

On the other hand we have 

𝐶𝑜𝑣(𝑋�,  𝑋𝑖 − 𝑋�) = 𝐸(𝑋�.  (𝑋𝑖 − 𝑋�)) − 𝐸( 𝑋𝑖 − 𝑋�)𝐸(𝑋�), with 𝐸(𝑋�)  =0 , 

since this is a linear combination of 𝐸(𝜀𝑖) which all equal 0  (𝑖 =1,…, 𝑛). 

It results that  𝐶𝑜𝑣(𝑋�,  𝑋𝑖 − 𝑋�) = 𝐸(𝑋�.  (𝑋𝑖 − 𝑋�))=  𝐸(𝑋𝑖𝑋� − 𝑋�2). We now 

compute  𝐸(𝑋𝑖𝑋�), using (2).  

 𝐸(𝑋𝑖𝑋�) =
𝑠2

(1 − 𝑎)𝑛
𝐸{�𝑎𝑖−1𝜀1 + ⋯+ 𝑎𝜀𝑖−1 + 𝜀𝑖���1 − 𝑎𝑖�𝜀1 + ⋯

+ (1 − 𝑎2)𝜀𝑖−1 + (1 − 𝑎)𝜀𝑖�} 
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                  = 𝑠2

(1−𝑎)𝑛
�𝑎𝑖−1�1 − 𝑎𝑖� + 𝑎𝑖−2�1 − 𝑎𝑖−1�… + 𝑎(1 − 𝑎2) + (1 − 𝑎)�   

 since 𝐸�𝜀𝜄𝜀𝑗� = 0 for  𝑖 ≠ 𝑗 and 𝐸(𝜀𝑖2) = 1. It results that 

                   𝐸(𝑋𝑖𝑋�) = 𝑠2

(1−𝑎)𝑛
�1−𝑎

𝑖

1−𝑎
− 𝑎 1−𝑎2𝑖

1−𝑎
� = 𝑠2

(1−𝑎)2𝑛
��1 − 𝑎𝑖� − 𝑎�1 − 𝑎2𝑖��. 

 We finally obtain 𝐶𝑜𝑣(𝑋�,  𝑋𝑖 − 𝑋�), for large 𝑛, 

 𝐶𝑜𝑣(𝑋�,  𝑋𝑖 − 𝑋�) =  𝐸(𝑋𝑖𝑋�) − 𝐸(𝑋�2) ≈ 𝑠2

(1−𝑎)2𝑛
��1 − 𝑎𝑖� − 𝑎�1 − 𝑎2𝑖�� −

𝑠2

(1−𝑎)2𝑛
    = 𝑠2

(1−𝑎)2𝑛
(𝑎2𝑖+1 − 𝑎𝑖 − 𝑎). 

Since |a|<1, It results that  𝐶𝑜𝑣(𝑋�,  𝑋𝑖 − 𝑋�)  is 𝑂(1
𝑛

),  and thus Cov(𝑋�,  𝑋𝑖−𝑋�

√𝑛−1
)    is 

𝑂( 1
𝑛√𝑛

). This completes the proof of Lemma 1.   

 

Lemma 2   For large 𝑛, the covariance  

𝐶𝑜𝑣 � 𝑋𝑖−𝑋�

√𝑛−1
,  𝑋𝑗−𝑋�

√𝑛−1
 � = 1

𝑛−1
 𝐶𝑜𝑣� 𝑋𝑖,  𝑋𝑗� + 𝑂( 1

𝑛2
), 𝑓𝑜𝑟  𝑖 ≠  𝑗 , 

and thus   � 𝑋𝑖−𝑋�

√𝑛−1
,  𝑋𝑗−𝑋�

√𝑛−1
 � ≈ 1

𝑛−1
 𝐶𝑜𝑣� 𝑋𝑖,  𝑋𝑗� . 

Proof.  𝐶𝑜𝑣� 𝑋𝑖 − 𝑋�,  𝑋𝑗 − 𝑋�� = 𝐸� 𝑋𝑖 − 𝑋�,  𝑋𝑗 − 𝑋�� − 𝐸� 𝑋𝑖 − 𝑋�)𝐸( 𝑋𝑗 − 𝑋�� =

𝐸� 𝑋𝑖 − 𝑋�,  𝑋𝑗 − 𝑋�� 

since   𝐸( 𝑋𝑖) = 𝐸� 𝑋𝑗� = 𝐸(𝑋�) = 0.  Hence 

𝐶𝑜𝑣� 𝑋𝑖 − 𝑋�,  𝑋𝑗 − 𝑋�� = 𝐸( 𝑋𝑖𝑋𝑗) − 𝐸( 𝑋𝑖𝑋�) − 𝐸� 𝑋𝑗𝑋�� + 𝐸(𝑋�2). 

From the results obtained in the previous lemma,  𝐸( 𝑋𝑖𝑋�), 𝐸� 𝑋𝑗𝑋��, and 𝐸(𝑋�2) 

are all 𝑂(1
𝑛

) for large 𝑛, whereas 𝐸(𝑋𝑖 𝑋𝑗) = 𝑎𝑘(1 − 𝑎2𝑖)𝑠2 (1 − 𝑎2⁄ ), for 𝑖 < 𝑗,  

which does not depend on 𝑛 , and the lemma is proved. 

 

Lemma 3   For large 𝑛, the variance   𝑉𝑎𝑟(𝑋𝑖−𝑋
�

√𝑛−1
) = 1

𝑛−1
 𝑉𝑎𝑟( 𝑋𝑖) + 𝑂( 1

𝑛2
), and 

thus   

𝑉𝑎𝑟( 𝑋𝑖−𝑋�

√𝑛−1
) ≈ 1

𝑛−1
 𝑉𝑎𝑟( 𝑋𝑖) . 
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Proof. 

𝑉𝑎𝑟 �
 𝑋𝑖 − 𝑋�

√𝑛 − 1
� = 𝐸 �

( 𝑋𝑖 − 𝑋�)2

𝑛 − 1
� 

since  𝐸( 𝑋𝑖 − 𝑋�) = 0. Thus 
1

𝑛−1
𝑉𝑎𝑟( 𝑋𝑖 − 𝑋�) = 1

𝑛−1
𝐸(𝑋𝑖2) − 2

𝑛−1
 𝐸( 𝑋𝑖𝑋�)+ 1

𝑛−1
𝐸(𝑋�2). The lemma follows 

since, as obtained for the previous lemmas,  𝐸(𝑋𝑖𝑋�) and 𝐸(𝑋�2) are �1
𝑛
�  , for large 

𝑛 , and  𝐸(𝑋𝑖2) = 𝑉𝑎𝑟(𝑋𝑖) = (1 − 𝑎2𝑖)𝑠2 (1 − 𝑎2⁄ ), which does not depend on 𝑛. 

 

Lemma 4   For large  , the variance  𝑉𝑎𝑟(𝑋�) = 𝑠2

(1−𝑎)2𝑛
+ 𝑂( 1

𝑛2
) and thus  

𝑉𝑎𝑟(𝑋�) ≈ 𝑠2

(1−𝑎)2𝑛
. 

Proof. 

The proof has already been obtained in Lemma 1. Indeed we found that  

𝐸(𝑋�2)= 𝑠2

(1−𝑎)2𝑛2
�𝑛 − 2𝑎(1−𝑎𝑛)

1−𝑎
+ 𝑎2�1−𝑎2𝑛�

1−𝑎2
� = 𝑠2

(1−𝑎)2𝑛
 + 𝑂( 1

𝑛2
). 

 

 

3   Asymptotic Independence Results 

Theorem 1   For large 𝑛, the sample mean 𝑋� is independent of the vector random 

variable ( 𝑋1−𝑋�

√𝑛
, … ,  𝑋𝑛−𝑋�

√𝑛
) . 

Proof. 

Lemmas 3 and 2 have respectively shown that, for large 𝑛,  

𝑉𝑎𝑟( 𝑋𝑖−𝑋�

√𝑛−1
) ≈ 1

𝑛−1
 𝑉𝑎𝑟( 𝑋𝑖)  and  𝐶𝑜𝑣 � 𝑋𝑖−𝑋�

√𝑛−1
,  𝑋𝑗−𝑋�

√𝑛−1
 � ≈ 1

𝑛−1
 𝐶𝑜𝑣� 𝑋𝑖,  𝑋𝑗� 

since the differences 

𝑉𝑎𝑟 � 𝑋𝑖−𝑋�

√𝑛−1
� − 1

𝑛−1
 𝑉𝑎𝑟( 𝑋𝑖)    and   𝐶𝑜𝑣 � 𝑋𝑖−𝑋�

√𝑛−1
,  𝑋𝑗−𝑋�

√𝑛−1
 � − 1

𝑛−1
 𝐶𝑜𝑣� 𝑋𝑖,  𝑋𝑗� 
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are both 𝑂( 1
𝑛2

) or, equivalently, 𝑜(1
𝑛

).   In the same spirit  𝐶𝑜𝑣 ( 𝑋�,  𝑋𝑖−𝑋�

√𝑛−1
) can be 

considered as negligible since it has been found to be 𝑂( 1
𝑛√𝑛

) by the result of 

Lemma 1, or equivalently, 𝑜(1
𝑛

).  Furthermore 𝑉𝑎𝑟(𝑋�) is approximately equal to 
𝑠2

(1−𝑎)2𝑛
  by Lemma 4, since the difference 𝑉𝑎𝑟(𝑋�) − 𝑠2

(1−𝑎)2𝑛
 is 𝑂( 1

𝑛2
), or 

equivalently,   𝑜(1
𝑛

).  Theorem 1 then follows using theory of independent 

variables. First note that the vector 𝑽 =( 𝑋�,  𝑋1−𝑋
�

√𝑛−1
, … ,  𝑋𝑛−𝑋�

√𝑛−1
) is normally distributed 

since any linear combination of its components is a linear combination of the  𝑋𝑖  
(see Definition 4.9(7) of [5], p. 118).  Letting Γ be the covariance matrix of  𝑽, the 
characteristic function 𝛷𝑽(𝑡1, 𝑡2,…,

1 𝑡2𝑛)  of 𝑽 is thus 𝑒𝑥𝑝(−1
2
tΓ t’), where 𝑡 =

�𝑡1, 𝑡2,…,
1 𝑡2𝑛� , and prime denotes transpose (see [5], p. 187). Since by Lemmas 1 

and 4 all entries of row 1 and column 1, except for the first one which refers to 
𝑉𝑎𝑟(𝑋�), are approximately equal to 0, for large 𝑛 , the expression 𝑒𝑥𝑝(−1

2
tΓ t’) 

can be written, for large 𝑛, as the approximate product 

𝑒𝑥𝑝 �− 1
2
𝑡12𝑉𝑎𝑟(𝑋�)� . 𝑒𝑥𝑝 �− 1

2
𝑡2𝛴 𝑡2’� , where 𝛴 is the covariance matrix of the 

vector 𝑽, and hence Theorem 1 is proved. 

 

Theorem 2   For large 𝑛,   𝑋�2 is independent of  𝑆𝑋2 = 1
𝑛−1

∑ ( 𝑋𝑖 −𝑛
𝑖=1 𝑋�)2 . 

Proof.  The proof is based on well known general results from theory of 

independent random variables and on Theorem 1. We use functions 𝑔 and ℎ, 

   𝑔: ℝ → ℝ  and  ℎ: ℝ𝑛 → ℝ , with 𝑔(𝑋�) = 𝑋�2 , and for 𝒀 = � 𝑋1−𝑋�

√𝑛−1
, … ,  𝑋𝑛−𝑋�

√𝑛−1
� , 

 ℎ(𝒀) = 1
𝑛−1

∑ ( 𝑋𝑖 −𝑛
𝑖=1 𝑋�)2, where 𝑔(𝑋�) maps the sample space Ω  into ℝ  by  

𝑔(𝑋�)(𝜔) = 𝑔�𝑋�(𝜔)� = 𝑋�2(𝜔),  for 𝜔 ∊ 𝛺, and  ℎ(𝒀) maps  Ω=𝛺1x𝛺2x … x𝛺𝑛 

into ℝ by  ℎ(𝒀)(𝝎) = ℎ�𝒀(𝝎)� = 1
𝑛−1

∑ [ 𝑋𝑖(𝜔𝑖) −𝑛
𝑖=1

1
𝑛
∑  𝑋𝑖(𝜔𝑖)𝑛
𝑖=1 ]2 , for  

𝝎 = (𝜔1,𝜔2, … ,𝜔𝑛) ∊ 𝜴. Let 𝑔−1�(−∞,𝑥]� and ℎ−1�(−∞,𝑦]� denote the 

preimages of  (−∞,𝑥] and (−∞,𝑦]  under 𝑔  and ℎ respectively, and consider the 

joint distribution function of the random vector �𝑔(𝑋�),ℎ(𝒀)� , that is, 𝑃(𝑔(𝑋�) ≤

𝑥,ℎ(𝒀) ≤ 𝑦), with 𝑥 ∊ ℝ and 𝑦 ∊ ℝ. Then,  𝑃(𝑔(𝑋�) ≤ 𝑥,ℎ(𝒀) ≤ 𝑦) = 𝑃{𝑔(𝑋�) ∊
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(−∞,𝑥]),ℎ(𝒀) ∊ (−∞,𝑦])} = 𝑃{𝑋� ∊ 𝑔−1(−∞,𝑥]),𝒀 ∊ ℎ−1(−∞,𝑦]} which, for 

large 𝑛, is approximately equal to 𝑃{𝑋� ∊ 𝑔−1(−∞,𝑥])}.𝑃{𝒀 ∊ ℎ−1(−∞,𝑦]}, by 

the result of Theorem 1.  

Finally 𝑃{𝑋� ∊ 𝑔−1(−∞, 𝑥])}.𝑃{𝒀 ∊ ℎ−1(−∞,𝑦]} = 𝑃{𝑔(𝑋�) ∊ (−∞, 𝑥]}. 

𝑃{ℎ(𝒀) ∊ (−∞,𝑦]} = 𝑃(𝑔(𝑋�) ≤ 𝑥).𝑃(ℎ(𝒀) ≤ 𝑦). Thus, for large 𝑛, the joint 

distribution of �𝑔(𝑋�),ℎ(𝒀)� is approximately equal to the product of the marginal 

distributions of 𝑔(𝑋�) and ℎ(𝒀), thus proving Theorem 2. 
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