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1  Introduction  

In recent few decades, the fractional integro-differential equations attracted 

attention of the scientific community because of its play an important role in many 

branches of linear and nonlinear functional analysis and their applications in the 

theory of engineering, mechanics, physics, chemistry, astronomy, biology, 

economics, potential theory and electro statistics [5]. 

There are many of techniques for the solution of fractional integro-differential 

equations, since it is relatively a new subject in mathematics, for example, 

Homotopy Perturbation Methods ([17],[19]), Variational iteration method 

([18],[20]), Adomian decomposition method [13], Collection method [16], Legendre 

Wavelet method [19].   

We will consider fractional order integro-differential equations of the form: 

   

x

0

))t(y(F)t,x(k)x()x(yD  (1.1) 

and 

   


1

0

))t(y(F)t,x(k)x()x(yD

 

(1.2) 

with the initial condition 

   y(0)= β ,  Nn,n1n   (1.3) 

for ]1,0[t,x  , λ is a numerical parameter, where the function )t,x(k),x( are 

known and )x(y is the unknown function, D  is Caputo’s fractional derivative and 

α is a parameter describing the order of the fractional derivative and 

1q,))t(y(f))x(y(F q  , is a nonlinear continuous function. 

The Homotopy perturbation method was established in 1998 by He ([7],[9-12]). 

The method is a powerful and efficient technique to find the solutions of nonlinear 

equations. The coupling of the perturbation and homotopy methods is called 

homotopy perturbation method. This method can take the advantages of the 

conventional perturbation method while eliminating its restrictions. In this method 



Firas A. Al-Saadawi and Ammar Muslim Abdulhussein  
 

107  

the solution is considered as the summation of an infinite series, which usually 

converges rapidly to the exact solutions.  

The Variational iteration method was first proposed 1998 by He ([1-3], [6, 8], 

[14-15], [20]) and has found a wide application for the solution of linear and 

nonlinear differential equations, and was been worked out over a number of years by 

many authors. This method has been shown to effectively, easily and accurately 

solve a large class of nonlinear problems. Meanwhile, the Variational iteration 

method has been modified by many authors [1]. 

In this Paper, we will find approximate solution to the nonlinear fractional 

integro-differential equations by using modified of He's Variational Iteration Method 

and He's Homotopy Perturbation Methods. It will show these methods are a useful 

and simplify tools to solve nonlinear fractional integro-differential equations as used 

in other fields. 

 

2  Preliminaries 

In this section we present some basic definitions and properties of the fractional 

calculus theory, which are utilized in this paper [4, 19]. 

Definition 2.1 A real function 0x),x(y   , is said to be in the space R,C   if 

there exists a real number p , such that )x(yx)x(y 1

p  where ),0[C)x(y1  , 

and it is said to be in the space Nk,RyifC kk   . 

Definition 2.2 The Riemann-Liouville fractional integral operator of order 0   

of a function 1,Cy    is defined as:  












 





0,)t(y

0t,0,dt
)tx(

)t(y

)(

1

)x(yI
0

1  (2.1) 

for β>0 and 1 , some properties of the operator   

 )x(yI)x(y    
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 )x(yI)x(y    

 




 x

)1(

)1(
x y  

Definition 2.3 The Caputo fractional derivative of Nk,C)x(y k

1  
 is defined as: 
























Nk,
dx

)x(yd

k1k0,dt
)tx(

)t(y

)k(

1

)x(yI

k

k
0

1k

)k(

 (2.2) 

for 0  and 1 , some properties of the operator D  

 )x(yD)x(yDD    

 )x(yDD)x(yDD    

 



  ,x

)1(

)1(
xD y  

Lemma If 1,Cy,Nk,k1k k    then the following two properties 

hold 

 )x(y)x(yD   

 




 
1n

0k

k
)k(

!k

x
)0(y)x(y)x(yD  

 

3  Analysis of the Modified Variational Iteration Method 

For solving nonlinear fractional integro-differential equations withe initial 

conditions by constructing an initial trial-function without unknown parameters, we 

consider the following fractional functional equation 

( )Ly Ry Ny g x    (3.1) 

where L is the fractional order derivative, R is a linear differential operator, and g  

is the source term. By using the inverse operator 1

xL  to both sides of (3.1), and 

using the given conditions, we obtain 
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1 1[ ] [ ]x xy f L Ry L Ny     (3.2) 

where 1 a

xL l  , and the function f represents the terms arising from integrating the 

source term g and from using the given conditions, all are assumed to be prescribed. 

The basic character of He's method is the construction of a correction functional for 

(3.1), which reads 

 

x

0

nnnn1n di)]i(g)i(y~N)i(y~R)i(Ly)[i()x(y)x(y  (3.3) 

Where λ is a Lagrange multiplier which can be identified optimally via variational 

theory [20], nu  is the nth approximate solution, and nu~  denotes a restricted 

variation, i.e., 0y~n  : to solve (3.1) by He's VIM, we first determine the Lagrange 

multiplier λ that will be identified optimally via integration by parts. Then the 

successive approximations ;0n);x(yn   of the solution y(x) will be readily 

obtained upon using the obtained Lagrange multiplier and by using any selective 

function 
0u . The approximation 

0u  may be selected by any function that just 

satisfies at least the initial and boundary conditions, with determined λ; then several 

approximations ;0n);x(yn   follow immediately. 

Consequently, the exact solution may be obtained by using 

)x(y)x(ylim n
n




 (3.4) 

In summary, we have the following variational iteration formula for (3.2) 









  di)]i(g)i(y~N)i(y~R)i(Ly)[i()x(y)x(y

guessinitialarbitraryanis)x(y
x

0

nnnnn

0

 (3.5) 

or equivalently, for (3.2), according to [6]: 





  ]Ny[L]Ry[L)x(f)x(y

guessinitialarbitraryanis)x(y

n

1

xn

1

xn

0
 (3.6) 

where the multiplier Lagrange λ, has been identified. 
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It is important to note that He's VIM suggests that the 
0y  usually defined by a 

suitable trial-function with some unknown parameters or any other function that 

satisfies at least the initial and boundary conditions. This assumption made by He 

([2],[20]) and others will be slightly varied, as will be seen in the discussion. 

 

4 Analysis of the Homotopy perturbation method 

 

We consider the following nonlinear differential equation 

 r,0)r(f)y(A  (4.1) 

with boundary conditions 













 r,0

n

y
,y  (4.2) 

where A is a general differential operator, B is a boundary operator, y is a known 

analytical function, and Γ is the boundary of the domain Ω and A(y) is defined as 

follows: 

A(y)=L(y)+N(y) (4.3) 

where L is linear, while Ν is nonlinear. Therefore (4.1) can be rewritten as follows 

L(y)+N(y)-f(r)=0       (4.4) 

Homotopy-perturbation structure is shown as: 

0)]r(f)v(A[p)]y(L)v(L)[p1()p,v(H 0   (4.5) 

where r and ]1,0[p  is an embedding parameter, 0y  is an initial 

approximation of (4.1), which satisfies the boundary conditions. By (4.5), it easily 

follows that  

0)y(L)v(L)0,v(H 0   (4.6) 

0)r(f)v(A)1,v(H   (4.7) 

and the changing process of p from zero to unity is just that of H(v,p) from 

)y(L)v(L 0 to )r(f)v(A  . In topology, this is called deformation, )y(L)v(L 0  

and )r(f)v(A  are called homotopic. The embedding parameter p is introduced 
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much more naturally, unaffected by artificial factors. Furthermore, it can be 

considered as a small parameter for 1p0  . By applying the perturbation 

technique used in [12], we assume that the solution of (4.5) can be expressed as: 

...vppvvv 2

2

10   (4.8) 

Therefore, the approximate solution of (4.1) can be readily obtained as follows: 

...vvvvlimy 210
1p




 (4.9) 

Equation (4.9) is the solution of equation (1) obtained by Homotopy perturbation 

method. 

 

5 Numerical examples 

 

In this section, two examples are presented. The examples are nonlinear volterra 

integro-differential equations that using HPM and the results are compared with the 

exact solutions. 

 

Example 5.1 

Consider the following nonlinear fractional integro-differential equation: 



x

0

33

2

dt))t(y(xt)x()x(yD  (5.1.1) 

where 4

15

12

5
x

11

4

x
12

7
4

4

1

)x( 





















  with the initial condition y(0)=0, and exact 

solution 4 x)x(y  . 

The solution according to (MVIM) 
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























x

0

34

15

12

5

3

2

dt))t(y(xtx
11

4

x
12

7
4

4

1

)x(yD  (5.1.2) 

We take the operator 3

2

I on both sides of equation (5.1.1) we obtain: 











































 
x

0

34

15

12

5

3

2

3

2

dt))t(y(xtx
11

4

x
12

7
4

4

1

I)0(y)x(yD  (5.1.3) 

According to the original VIM (3.3) and corresponding the recursive scheme (3.5), 

we obtain: 











































 4

15

12

5

3

2

10 x
11

4

x
12

7
4

4

1

I)x(f)x(f)x(f  (5.1.4) 

12

53

4 x1316930145.0x)x(f   (5.1.5) 

by assuming 

4
0 x)x(f  and 12

53

1 x1316930145.0)x(f   

with starting of the initial approximation, 4
00 x)x(f)x(y  , we obtain, 

 )x(yLx1316930145.0x)x(y 0

1

x
12

53

4
1

  (5.1.6) 

4

x

0

343

2

12

53

4
1 xdt)x(xtIx1316930145.0x)x(y 














    

  1n,x)x(yLx1316930145.0x)x(y 4
n

1

x
12

53

4
1n  

  

in similarly view equation (5.1.6) it is obtained 4 x)x(y  where it is the exact 

solution of equation (5.1.1). 

Now applying Homotopy perturbation method   
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























x

0

34

15

12

5

3

2

dt))t(y(xtx
11

4

x
12

7
4

4

1

)x(yD   

According to (1) we construct the following homotopy: 














 

x

0

33

2

dt))t(y(xt)x(p)x(yD  (5.1.7) 

0)x(yD:p 0
3

2

0   



x

0

3

01
3

2

1 dt))t(y(xt)x()x(yD:p  


x

0

1

2

02
3

2

2 dt)]t(y)t(y3[xt)x(yD:p  

 

x

0

2

102

2

03
3

2

3 dt])t(y)t(y3)t(y)t(y3[xt)x(yD:p  

 

x

0

2

32103

2

04
3

2

4 dt])t(y)t(y)t(y)t(y6)t(y)t(y3[xt)x(yD:p , … 

by applying the operators 3

2

I to the above sets we obtain: 

0)x(y0   

12

51

4
1 x1316930145.0x)x(y   

...,0)x(y,0)x(y,0)x(y 432   







0i

i )x(y)x(y . Therefore the approximate solution of (5.1.1), 

12

51

4 x1316930145.0x)x(y   
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Table 1: The error and numerical results of the example 5.1 by using MVIM and HPM 
3

2
   

x Exact 
Approximant 

by MVIM 

Error by 

(MVIM) 

Approximant 

by (HPM) 

Error by 

(HPM) 

0.1 0.562341325 0.562341325 0 0.562336280 5.04541E-06 

0.2 0.668740305 0.668740305 0 0.668632548 0.000107757 

0.3 0.740082804 0.740082804 0 0.739436880 0.000645924 

0.4 0.795270729 0.795270729 0 0.792969317 0.002301412 

0.5 0.840896415 0.840896415 0 0.834730272 0.006166143 

0.6 0.880111737 0.880111737 0 0.866316449 0.013795288 

0.7 0.914691219 0.914691219 0 0.887438338 0.027252881 

0.8 0.945741609 0.945741609 0 0.896589346 0.049152263 

0.9 0.974003746 0.974003746 0 0.891311050 0.082692697 

1 1 1 0 0.868306986 0.131693015 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Comparison numerical results obtained by MVIM and HPM of example 5.1 
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Example 5.2 

 

Consider the following nonlinear fractional integro-differential equation: 

 

1

0

28.0 dt))t(y)(t3x()x()x(yD  (5.2.1) 

where
400

351
x

70

365

4

5
sinx125

)x(

5

11



















 

 with the initial condition 

10

1
,2)0(y  , and exact solution 3x2)x(y  . 

The solution according to (MVIM) 

 

















 



1

0

2

5

11

8.0 dt))t(y)(t3x(
400

351
x

70

365

4

5
sinx

11

125
)x(yD  

(5.2.2) 

We take the operator 8.0I on both sides of equation (5.2.1) we 

obtain:














 

1

0

25

11

8.0 dt))t(y)(t3x(x1142857143.02775.0x475282775.2I2)x(y  

According to the original VIM (3.3) and corresponding the recursive scheme (3.5), 

we obtain: 














 x1142857143.02775.0x475282775.2I2)x(f)x(f)x(f 5

11

8.0

10 , 

5

9

5

4

3 x10681696047.0x2979437785.0x2)x(f   (5.2.3) 

by assuming 3

0 x2)x(f   and 5

9

5

4

1 x10681696047.0x2979437785.0)x(f    

with starting of the initial approximation, 3

00 x2)x(f)x(y  , we obtain, 

))x(f(Lx10681696047.0x2979437785.0x2)x(y 0

1

x
5

9

5

4

3

1

  (5.2.4) 
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3

x

0

238.0

5

9

5

4

3

1

x2dt)t2)(t3x(I

x10681696047.0x2979437785.0x2)x(y





















...,0)x(y,0)x(y,0)x(y 432 

1n,x2

))x(y(Lx10681696047.0x2979437785.0x2)x(y

3

n

1

x
5

9

5

4

3

1n



 

  

Then 





0i

i )x(y)x(y in similarly view equation (5.2.4) it is obtained 3x2)x(y  , 

where it is the exact solution of equation (5.2.1). 

Now applying Homotopy perturbation method  

 

















 



1

0

23

5

11

8.0 dt)t2)(t3x(
10

1

400

351
x

70

365

4

5
sinx

11

125
)x(yD  

(5.2.5) 

According to (2) we construct the following homotopy: 














 

1

0

238.0 dt)t2)(t3x(
10

1
)x(p)x(yD  (5.2.6) 

0)x(yD:p 0

8.00   

x1142857143.02775.0x475282775.2

10

6
x

10

4

400

351
x

70

365

4

5
sinx

11

125

dt))t(y)(t3x(
10

1
)x()x(yD:p

5

11

5

11

1

0

2

01

8.01





















 



 

 

3461629472.0x1564712113.0

dt)]t(y)t(y2)[t3x(
10

1
)x(yD:p

x

0

102

8.02



 

x50425227802.030625075693.0

dt])t(y)t(y)t(y2)[t3x(
10

1
)x(yD:p

x

0

2

1203

8.03



   
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x480068195091.010216658341.0

dt)]t(y)t(y2)t(y)t(y2)[t3x(
10

1
)x(yD:p

x

0

21304

8.04



  , … 

by applying the operators 8.0I  to the above sets we obtain: 2)x(y0  , 

5

9

5

4

3

1 x0681696047.0x2979437785.0x)x(y   

5

9

5

4

2 x10933325818.0x3716652125..0)x(y   

5

9

5

4

3 x90253641597.0x90671125815.0)x(y   

5

9

5

4

4 x750040677283.0x10232619837.0)x(y   







0i

i )x(y)x(y . Therefore the approximate solution of (5.2.1),  

5

9

5

4

3 x60042689110.0x90166531312.0x2)x(y   

 

Table 2: The error and numerical results of the example 5.2 by using MVIM and HPM  α= 0.8 

x Exact 
Approximant by 

MVIM 

Error by 

(MVIM) 

Approximant by 

(HPM) 

Error by 

(HPM) 

0.1 2.001 2.001 0 2.003571686 0.0025717 

0.2 2.008 2.008 0 2.012359766 0.0043598 

0.3 2.027 2.027 0 2.032867327 0.0058673 

0.4 2.064 2.064 0 2.071180594 0.0071806 

0.5 2.125 2.125 0 2.133338790 0.0083388 

0.6 2.216 2.216 0 2.225364552 0.0093646 

0.7 2.343 2.343 0 2.353272702 0.0102727 

0.8 2.512 2.512 0 2.523073743 0.0110737 

0.9 2.729 2.729 0 2.740775540 0.0117755 

1 3 3 0 3.012384220 0.0123842 
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Figure 2: Comparison numerical results obtained by MVIM and HPM of example 5.2 

 

6 Conclusions 

In this work, we employed techniques MVIM and HPM to solve nonlinear 

fractional integro-differential equations successfully. The numerical results show 

that these methods have higher accuracy, good convergence with the exact solution 

and the results in MVIM are better than the results in HPM. 
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