
Theoretical Mathematics & Applications, vol. 6, no. 1, 2016, 151-161 
ISSN: 1792- 9687 (print), 1792-9709 (online) 
Scienpress Ltd, 2016 

 
A New Theory of Error Correction Coding 

Louis M. Houston1 

 

 

Abstract 

We have derived a new theory of error correction coding. For a given rate, R, we 

can construct a codeword with greater error correction than that predicted by the 

traditional theoretical limit. The maximum improvement is 33%. The new theory 

incorporates the concept of an analytic message or a message with a non-zero 

level of predictability. We show that error correction is based on both redundancy 

and predictability and we focus on a special case in which the message is a digital 

root 9 number. 
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1  Introduction  

Error correction coding [1] is the means whereby errors that may be 

introduced into digital data as a result of transmission through a communication 
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channel [2] can be corrected based upon received data. Alternatively, error 

correction may be used to correct data that has deteriorated in storage.  

The idea behind error correcting codes is conceptually simple: add 

redundancy [3] to the information so that even if the resulting data gets corrupted, 

e.g. packets get corrupted during routing or the DVD gets some scratches, the 

original information can still be recovered. Error-correcting codes are one of the 

glories of the information age: They are what guarantees the accurate 

transmission of digital information over the airwaves or through copper wire, 

even in the presence of corrupting influences that represent noise.  

Error correction coding is referred to as coding theory [4]. Coding theory, 

sometimes called algebraic coding theory, deals with the design of error 

correcting codes. It makes use of classical and modern algebraic techniques 

involving finite fields, group theory, and polynomial algebra [5]. It has 

connections with other areas of discrete mathematics, especially number theory [6] 

and the theory of experimental designs [7]. 

Error correction coding is essentially based on a repetition scheme. The 

disadvantage of the repetition scheme is that it multiplies the number of bits 

transmitted by a factor that may prove unacceptably high. In 1948, Claude 

Shannon, working at Bell Laboratories in the USA, inaugurated the whole subject 

of coding theory by showing that it was possible to encode messages in such a 

way that the number of extra bits transmitted was as small as possible [7]. 

Unfortunately, his proof did not give any explicit recipes for these optimal codes. 

It was two years later that Richard Hamming, also at Bell Labs, began studying 

explicit error correcting codes with information transmission rates more efficient 

than simple repetition [8]. His first attempt produced a code in which four data 

bits were followed by three check bits that allowed not only the detection, but the 

correction of a single error. The repetition code would require nine check bits to 

achieve this. 

The value of error correction codes for information transmission, both on 
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Earth and from space, was immediately apparent, and a wide variety of codes 

were constructed that achieved both economy of transmission and error correction 

capacity. 

A code C  is given by an encoding map of the form: 

: (for int egers )k nC k n→ <∑ ∑       

which encodes a sequence of k  symbols (the message) from ∑ into a larger 

sequence of n  symbols (the codeword) [9]. 

The rate of C  is the ratio R = k / n  [10]. Note that R  exactly captures the 

amount of information contained per bit of a codeword.  

The question of interest is as follows: given a code C of rate R, what is the 

maximum fraction of errors, ρ  [11], that can be tolerated by C?  Now as every 

codeword has k symbols of information, it is intuitive that in the worst case at 

least k symbols of a codeword should be uncorrupted to have any hope of 

recovering the original information. In other words, we can only 

have ρ ≤ (n − k) / k = 1− R , irrespective of the computational power of the 

decoder. Therefore, ρ = 1− R  is accepted as the theoretical limit of error 

correction [12]. 

Current error correction theory treats messages as purely random [13], but in 

this paper we demonstrate that the more general theory must also incorporate 

messages with some level of predictability that we refer to as analytic messages. 

By including both redundancy and predictability into error correction, we can 

show that the theoretical limit for error correction is, in fact, incorrect and that the 

true limit is actually greater.  

In this paper, we derive the new theoretical error correction limit and focus 

on a special case that involves messages that consist of digital root 9 numbers 

[14]. 
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2  Theory 

2.1 The essential elements of the theory 

A code C  is defined as the mapping: 

: , , ,k nC k n k n +→ ≤ ∈∑ ∑  ,                           (1) 

∑ is the alphabet. 

The length of the message is k and the length of the codeword is n. In the 

traditional theory, k < n , but in the new theory, k ≤ n . 

We define an analytic message as a message that contains predictable 

symbols. 

We define α  as the number of predictable symbols in the message. We define 

β  as the rule for predicting symbols in the message. We define µ  as the mass 

of the message. 

(For a completely random message, α = 0  and β = ∅ .) The code rate is 

R =
k
n

.                                             (2) 

The mass is 

µ =
k

α +1
∑ .                            (3) 

The mass is a measure of the complexity of the message. The mass generally 

increases with the length of the message. A completely analytic message can still 

have mass. However, in general, the more predictable a message, the less is its 

mass. 

The theoretical limit for the fractional error tolerance, ρ  is 

1 R
n
αρ = − + .                               (4) 

Observe that for purely random messages, ρ ρ→  consistent with the traditional 

theory. 

It is clear that error correction improves as predictability increases, but also note 
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that as predictability increases, mass (i.e. complexity) decreases. 

Let us consider a simple case that demonstrates the relative error correction 

performance limits of a random message and an analytic message. Without loss of 

generality, let the alphabet, ∑ consist of base 10 digits. Suppose that a random 

message is 22 and the codeword is 2222, so that 2k =  and 4n = . In this case 

α = 0  and β = ∅ . The error correction limit is 1− R = 1− 2 / 4 = 1 / 2 . Now 

consider a case for whichβ = ”the digits of the message are sequential”. In this 

case the message is predictable such thatα = k −1. Let the message be 12 and the 

codeword be 1212. Once again, 2k =  and 4n = . The error correction limit is 

1− R +1 / 4 = 1− 2 / 4 +1 / 4 = 3 / 4 . The logic of this increase in error correction 

is simple. In the random message case, we need at least two digits to recover the 

message. In the analytic case, if we only had one digit and β , we could recover 

the entire message. However, observe that the mass of the random message is 

µ = 20 , while the mass of the analytic message is µ = 10 . Therefore, the random 

message has twice the complexity of the analytic message. 

 

 

2.2 Four major messages types 

There are four major message types. 

The completely analytic message (i.e. completely predictable): 

α = k .                          (5) 

The message that has k-1 predictable digits: 

α = k −1.                         (6) 

The message that has one predictable digit: 

α = 1.                          (7) 

The random message: 

α = 0 .                          (8) 

It is clear to see that for the completely analytic message (5), there is complete 
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error correction: 1 / 1R k nρ = − + = . 

For (6), we have 1 ( 1) / ( 1) /R k n n nρ = − + − = − .  

For (7), we have 1 1/ ( 1) /R n n k nρ = − + = − + .  

For (8), we have 1 ( ) /R n k nρ ρ→ = − = − . 

The mass of a completely analytic message is 

µ =
k

k +1
∑ .                         (9) 

We see that µ ∈[ 1 / 2( )∑ , ∑ ) . 

The mass of a message with 1k −  predictable digits is 

µ = ∑ .                            (10) 

The mass of a message with one predictable digit is 

µ =
k
2
∑ .                        (11) 

 

The mass of a random message is 

µ = k ∑ .                            (12) 

It is interesting to compare the random message with the message that has 

one predictable digit. Given the same alphabet size, if the message that has one 

predictable digit is twice as long as the random message, then they have the same 

mass. This normalizes the complexity so that we can compare the error correction. 

As stated earlier, we can write the error correction of the random message as 

0
( )n k

nαρ =

−
= .                       (13) 

For the message that has one predictable digit, the error correction becomes 

1
(2 2 1) ( 1/ 2) ( ) 1

2 2
n k n k n k

n n n nαρ =

− + − + −
= = = +  

or 

1 0
1

2nα αρ ρ= == +  .                       (14) 
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Note that in this case, the rates are identical. If 1k =  and 2n = ,  

1
1 1 3
2 4 4αρ = = + = .                       (15) 

The error correction improvement is 

0 1100%(1 / ) 100%(1 0.5 / 0.75) 33%α αρ ρ= =− = − =   

 

 

3  The Case of Digital Root Nine Messages  

3.1 The digital root nine theorem 

Based on a mathematical theorem, all numbers 9m
2n  or 9m

5n , where m  

and n  are positive integers have a digital root of 9. A digital root is the single 

digit result of successive digit sums [14]. For example, the digital root of 225 is 9 

or the digital root of 3.14 is 8. A digital root 9 number is an analytic message with 

α = 1. The rule is: β = ”the digital root of the message is 9”. The theorem is as 

follows. 

Theorem I. dr 9m
2n






= dr 9m

5n





= 9 , { }, 0m n+ +∈ ∈ ∪  . 

Proof. The digits aj{ } of an arbitrary positive number x  are given by the 

equation: 

aj =
x

10 j−1





−10

x
10 j






. 

Therefore, we can perform the digit sum as follows: 

aj
j
∑ =

x
10 j−1





−10

x
10 j










j

∑ . 

Let toj = − +  . 
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1 110 10
10 10 10 10j

j

x x x xa − − − − − +

       = − + − +              
∑

   

  

1 1 210 9 10 9 10 9 10j
j

a x x x x+ − −       = − − − −       ∑    

  

Let x = 9y . 

1 1 210 (9 ) 9 10 (9 ) 9 10 (9 ) 9 10 (9 )j
j

a y y y y+ − −       = − − − −       ∑    

 

Let 110 (9 )y+ +∈

 . 

1 1 210 (9 ) 9 10 (9 ) 9 10 (9 ) 9 10 (9 )j
j

a y y y y+ − −     = − − − −     ∑    

  

1 1 29 10 10 (9 ) 10 (9 ) 10 (9 )j
j

a y y y y+ − −      = − − − −      ∑    

 . 

∴dr aj
j
∑






= 9 , since the digital root of 9b, where b is a positive integer, is 9. 

Let y = m
2n or m

5n . Since 2 and 5 are factors of 10, dr 9m
2n






= dr 9m

5n





= 9 . □            

 

 

3.2 A demonstration of error recovery for a digital root nine 

number 

A combination of digital root 9 numbers is also a digital root 9 number. 

Given the number 9m
2n , 10n 9m

2n






 is a digital root 9 integer.  

Suppose we want to generate a digital root 9 number that has 16 digits. We find a 

combination of  

105 9 563( )
25







 and 105 9 933( )
25







 

= 15834375 and 26240625. 

We then replace all occurrences of 9 with 0. This essentially makes the number 
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base 9. 

This 16 digit digital root 9 number becomes D = 1583437526240625 . 

After long storage, we retrieve the number and find 

D =  158x4375 26240625,                     (16) 

where x  is a corrupted digit. Observe that D  is a codeword for which k n= , 

so there is no redundancy. 

To recover x , we simply use the equation: 

dr(D) = D − 9
D −1

9






                      (17) 

to calculate the digital root of D  while varying x from 0 to 8 until  

dr(D) = 9 .                        (18) 

We find that 3x = . 

[In the above equation,    represents the greatest integer function]. In this case, 

for the error correction of ,D  we have demonstrated that 

1 1 1/ ( 1) /R n n k nαρ = = − + = − +  which, in this case, is 1 1/ 1/16nαρ = = = . 

 

 

4  Conclusion 

The traditional error correction coding theory is based, essentially, on the 

redundancy of the message and has neglected the impact of message predictability 

on error correction. When predictability is included in the theory, in the form of 

analytic messages, the error correction can be significantly improved. That is, the 

theoretical limit for error correction is significantly increased for analytic 

messages in comparison to random messages. Current error correction methods 

have come near to the traditional theoretical limit, but with the new theory and 

analytic messages such as digital root 9 messages, error correction codes can 

reach a new level of performance that outstrips the old theoretical limit.  
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