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Packing dimension for (-shifts

Zheng Yin' and Xiucheng Hong?

Abstract
This article is devoted to the study of the packing entropy for maps

with g-almost product property, a weak form of specification property.
In particular, our result can be applied to the packing dimension for
(-shifts.
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1 Introduction

(X,d,T) (or (X,T) for short) is a topological dynamical system which
means that (X, d) is a compact metric space together with a continuous self-
map 7" : X — X. Denote by M(X), M(X,T) and E(X,T) the sets of all
Borel probability measures, T-invariant Borel probability measures, and er-
godic measures on X, respectively. It is well known that M (X) and M (X, T)

equipped with weak* topology are both convex, compact spaces.
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For an T-invariant subset Z C X, let M (Z,T") denote the subset of M (X, T')
for which the measures u satisfy u(Z) =1 and E(Z, f) denote those which are
ergodic. For a positive integer n, define the n-th empirical measure &, : X —
M(X) by

1 n—1
gn(l') = E Z&Tkx,
k=0

where J, denotes the Dirac measure at z. Let A(x,) be the set of all limit
points of sequence {x,}.

This investigation uses the framework introduced and developed by Olsen
[3, 4, 5, 6] and Olsen and Winter [7]. Consider the continuous and affine
deformations of &, i.e. pairs (Y,Z) where Y is a vector space with linear

compatible metric and = : M (X) — Y is a continuous and affine map. Let
Ao (C) = {z € X|A(EE,(x)) = C}

and
ANgyp(C) = {z € X]A(EE,(x)) C C}.
where C'is a convex and closed subset of =(M (X, T)).

There are some interesting results about the description of the structure
(Hausdorff dimension or topological entropy or topological pressure) of A, (C)
and Ag,,(C). Recently, Zhou, Chen and Cheng [10] studied the packing en-
tropy of Ay (C) and Ay, (C) for maps with specification property. Pfister
and Sullivan [8] obtained the Bowen entropy in a dynamical system with the
g-almost product property which is weaker than specification. Zhou and Chen
[9] gave topological pressure for maps with g-almost product property.

Motivated by the work of Zhou, Chen and Cheng (see [9, 10]), we study the
packing entropy in a dynamical system with the g-almost product property.

In particular, our result can be applied to the packing dimension for (-shifts.

2 Definitions and main result

Let (X,T) be a topological dynamical system and C(X) the space of contin-
uous functions from X to R. For u,v € M(X), define a compatible metric d

on M(X) as follows:
[t~ [ siaw

d(p,v) = Z 27"

i>1
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where {f;}5°, is the subset of C(X) with 0 < fi(z) < 1,i = 1,2,---. It is
convenient to use an equivalent metric on X, still denoted by d,d(x,y) :=
d(d5,9y).

For every € > 0, denote by B, (x,¢€), B,(z,€) the open and closed balls of

radius € > 0 in the metric d,, around x respectively, i.e.,
By(x,¢) ={y € X : dp(2,y) < e}, Bu(r,€) = {y € X 1 dy(z,y) < e}
Where n € N the n-th Bowen metric d,, on X is defined by

dn(x,y) :max{d(Tkx,Tky):k:O,l,--- ,n—l}.

2.1 Continuous affine deformation =.

Definition 2.1. [1] If Y is a vector space and d' is a metric in Y, then d’

18 linearly compatible if
(1) For all xy,z9,y1,y2 € Y,d (21 + z2,y1 + y2) < d' (w1, y1) + d' (22, 12);

(2) For allz,y € Y and all A € R, d'(\x, \y) < |\|d'(z,y).

2.2 Packing entropy

Given Z C X,e > 0and N € N, let P*(Z, N, €) be the collection of count-
able or finite sets {(z;, n;)} € Zx{N, N+1,-- -} such that By, (z;,€) () By, (z;,€) =
(),Vi # j. For each s € R, consider the set functions

m*(ZaSaN7 6) = sup Z exp(—nis);

P (Z7N76) (xL 777/2')

m*(Z,s,e) = lim m*(Z,s, N,e);

—00

m*(Z, s, e) = inf {Zm*(Zi,s,e) : UZ,- D Z} .
i=1 i=1
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Both of these functions are non-increasing in s, and the latter takes values oo

and 0 at all but at most one value of s. Denoting the critical value of s by
h'(Z,€) = inf{s € R : m**(Z, s,¢) = 0}
=sup{s € R: m"™(Z,s,¢€) = o0},
leads to m**(Z,s,€) = oo when s < hf(Z,¢), and 0 when s > h¥(Z, ¢).

The packing entropy of Z is h¥(Z) = lim. o h"(Z,€). The limit exists

because h¥(Z, €) increases when ¢ decreases.

2.3 g-almost property and uniform separation property

In this section, we first present some notations to be used in the paper.
Then a weak specification property and a weak expansive property are intro-

duced. A remark about the notation is presented here for convenience.
Remark 2.2. Let (X,T) be a topological dynamical system.
(1) If F C M(X) is an open set, set X, p:={x € X : E,x € F}.

(2) Given § > 0 and € > 0, two points z and y are (d,n, €)-separated if
#{i : d(T'z,T'y) > ¢,0 < i < n—1} > dn. A subset E is (d,n,€)-

separated if any pair of different points of E are (4, n, €)-separated.

(3) Let F¥ C M(X) be a neighborhood of v, and € > 0, and set
N(F;n,e€) :=maximal cardinality of an (n, €)-separated subset of X, p;

N(F;0,n,¢) :=maximal cardinality of an (d,n,e)-separated subset of
X

(4) Let ¢ : N — N be a given nondecreasing unbounded map with the

9(n)

properties g(n) < n and lim = 0. The function g is called a blow-up

n—oo

function. Given x € X and € > 0; let

By(gix,€) :={y € X : IA C An,#(An \ A) < g(n) and
max{d(T'z, T"y) :i € A} < ¢},

where A, ={0,1,--- ,n— 1}.
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Definition 2.3. ([8]) The dynamical system (X, d,T') has the g-almost prod-
uct property with blow-up function g if there exists a non-increasing function
m : RY — N such that for any k € N, any x; € X, -+ , 1, € X, any positive

€1, €, ,Ek, and any integers ny > m(ey), -+ ,ng > m(er),

k
ﬂ T_Mjianj (ga Zj, 6]') 7& @7

j=1
where Mo = 0, M; =ny +ng +-+-+n;,0=1,2--- b — 1.

Definition 2.4. ([8]) The dynamical system (X,d,T) has the uniform sep-
aration property if for any n, there exist 6* > 0 and € > 0 such that for u
ergodic and any neighbourhood F C M(X) of p, there exists Ny, Such that

forn > n}%n,
N(F;6%,n,€") > exp(n(h(T, ) —n)),
where h(T, ) is the metric entropy of p.
Proposition 2.5. [8] Assume that (X,d,T) has the g-almost product prop-

erty and the uniform separation property. For anymn, there exists 0* and € > 0
such that for p € M(X,T) and any neighborhood F C M(X) of , there exists

*
Ny Such that

N(F;6%,n,€) > exp(n(h(T, 1n) —n)),Yn = nkg,, .

2.4 Statement of main result

Define

sup  WT,p), yeEMX,T));
A(y) = PEM (X, T),Eu=y
—0Q, otherwise.

The following theorem is the main result of this paper.

Theorem 2.6. (X,T,=,E,,Y) satisfies the g-almost product property and

the uniform separation property. If C C'Y is a conver and closed subset of
E(M(X,T)), then Aegu(C) # 0 and

hP(Aequ(C)) = hP(Asup(C)) = sup A(y)

yeC
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3 Proof of Theorem 2.6.

In this section, we are going to prove Theorem 2.6. The upper bound of
hP (Agp(C)) holds without extra assumption. ;jFrom the second part proof of

Theorem 1.1 in [10], we have

hP<Asup(C)) < sup A(?J)

yel

Now we prove the lower bound of h”(A.,,(C)). We need the following

lemma.

Lemma 3.1. ([2]) Let (X, T) be a topological dynamical systems. If K C X

15 non-empty and compact, then

hP(T, K) = sup{ h,(T) : p € M(X), n(K) = 1}.

_ — — 1
h,(T) = /hu(T, x)dp(x), h, (T, z) = 11_1}11 lim sup - log p(Byp(x,€)).

n—oo

For any 1 > 0, there exists sufficiently small ¢ > 0 (see below) and p € C
such that

sup A(q) —n < A(p).

qeC

Let n € N\ {0}. Since C' is compact and connected, it is possible to choose
In1, " Gn,m, € C such that

Mn 1
CC UB (C.Zn,iaE) )

i=1

1 . 1
|d' (gni — Gnii1)| < = Vi, |d(Gnm, — Gnirn)| < —,
n n
GnM, =D N
Let {0/1,70/2/,045,,,“'} = {Q1,1,Q1,27“' 7Q1,M17Q2,1,CI2,2,"'}5 then for any n €

NA {0},

{af 15 e N\{0},j > n}=C

and jhjgo d'(of,af,,) = 0.
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We will construct a subset F' CA.q,, (C) such that for each x € F, {2, (x)}

has the same limit-point set as the sequence {a}} and h¥(F) > sup A(z).
xeC

For 1 and o € C, there exists oy, € Z7'CNM (X, T) such that A(o)) -7 <
h(T, ozk) By Proposition 2.5, it is easy to see that for § > 0, there exist 6* > 0
and €* > 0, such that for any neighborhood F” C :(M(X)) of o (choose

F" = B(ay, &), there exist B(ay, &) € E1F” and nf , satisfying

(CPRINR-T

N(Blay, &);0%n,€) = exp (n (h(T,00) = 1)) M

where n > ng(ak €0)ap), 1 and &, & will be determined later.
) )
We choose Strlctly decreasing sequences {&}r, {§r }x and {ex}r such that
liin & =0, hin & = 0 with ¢; < €. (From (1), we deduce the existence of ny

and a (6%, ny, €°)-separated subset I'y € Xy, B(ay.) € Xy 21 B(ay.gy) With
i = exp (m (h(Toan) = 7)) = exp ((Alaf) =)

We may assume that n satisfies

g(n)

6" ny, > 2g(ng) + 1,
T,

S €L.

We choose a strictly increasing sequence { Ny }32, with Ny = 0 and N}, € N\ {0}
such that

k
N1 < gk Z an
j=1

and
k—1 k
> niN; <& > nN;. (2)
j=1 j=1

We enumerate the points in the set 'y, and consider the set F,fvi,i =1,2,---,

Let z; = (x%,--- ,xﬁvl) € FZN", for any (z,, -+ ,x,) € Fjlvl X oo X FkN’“, by
g-almost product property, we have
—1'2 Ning—(j—1)n; ;
B(ll?"' y L, ﬂﬂT =0 Bnl(g)x])5j>
i=1j=1

is a non-empty closed set. We define F} by

Fk:U{B@p;ﬁk)(lp,ik)élﬂl\hxxl‘ivk}



84 Packing dimension for (3-shifts

Note that Fy is compact and Fjy C Fj. Define F = (2, F). Let t, =

Zle nlNZ
The proof of the following lemma is same as the proof of Lemma 3.2 in [9].

Lemma 3.2. Let € be such that 4¢ = €*, then

(1) Let x;,y; € Iy with x; # y;. If x € By, (g;%4,€;) and y € By, (g:yi, €),
then

dp,(2,y) = max{d(T?x, T?y) : j = 0,1,--- ,n; — 1} > 2e.

(2) F C DAegu(C).

For each (z,,--- ,z,) € IV x---xT'* we choose one point z = z(x,, - -+, z;)
such that z € B(zy, -+ ,x;). Let Ly be the set of all points constructed in this
way. (From Lemma 3.2, we have 4L, = TV 4T - ijfCV’“. We define for each

k, an atomic measure centred on Lj. Precisely, let

V = Z(SZ

zE€Ly
We normalise v, to obtain a sequence of probality measure pyg, i.e. we let

1

Mg = ij_ka‘

Lemma 3.3. Suppose i is a limit point of the sequence of probability mea-

sures i, then p(F) = 1.

Proof. Suppose p = limy_. py, for [ — oo. For any fixed [ and all p >
0, 1p(F1) = 1 since Fi4, C F,. Thus, p(F;) > limsup,_, i, (F) = 1. It
follows that pu(F) = 1. O

Lemma 3.4. Let p be limit point of the sequence of probability measure fiy
and € = }16*. For any x € F and § > 0, there ezists a increasing sequence {l;}

with lim [; = oo such that for sufficiently large ¢, we have

u(By,(w,¢)) < e7(5 = 9),

where s = sup,cc A(z) — 2n.
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Proof. Choose l; =ty 1..in;- Let s = inf,ec A(x) — n. First we show that

:uM1+-'-+Mi+p(Bli<x>€)) < ﬂL]T/[llJrJervvp eN \ {0}

If pongy+ointirp(Bry (x,€)) > 0, then Ly 4oqnsip N By (x,6) # 0. Let 2z =
2(2,y) € Lapy sy mrp N By (2,€), 2" = 2(2',y') € Lty a9 N By (2, €), where

N]V[ e M
. X F 1++M;

/ N1
Zz,x € Fl X o Mi+-+M; >

N, . N, )
/ My++M;+1 o M+ My+p
Yy € Ui X X Do iy

Since dj,(z, ') < 2¢, from Lemma 3.2, we have = 2’. Thus we have

faay 4ot Mip (B (2, €))

NM1+"'+M1'+1 NM1+"'+Mi+p
1% ﬁFM1+“'+Mi+1’ Koo X tjFM1+---+Mi+p

ﬁLM1+~~-+Mi+P
1

L+,

This leads to

B (w,€)) < limsup i (By, (7, €))
1

N- N- N]\,j +-4+M;
ATV T

1
< —
exp{niNis +naNas - + ooyt Nty ot —18 + Ny oM, Nty 4401, 5

naNy + - g a1 Na 4 M1 NNt My N M 4 M
=expl —; ; s+ 7 S )

It follow from (2),we have

lim Ny + -+ gy N+

= 0.
lim nlNl + -+ nM1+'~~+MiNM1+~~~+Mi —1
Thus for sufficiently large i, we have u(By,(z,€) < e 9, 0

Applying Lemma 3.1, we have

hP(F) >3 — 8 =sup A(z) — 21 — 4.

zeC
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Since n and ¢ are arbitrary, we have
hY (Dequ (C)) = hP(C) > sup A(x).
zeC

Thus the proof of Theorem 2.6 is completed.

4 Application

In this section, we apply our result to the packing dimension for (-shift.
Let n = [B]. Let 3 > 1 be fixed. For t € R, we define

|t] =max{i € Z:i <t} [t] :=min{i € Z:1>t}.

Consider the -expansion of 1,

o0

1= ZCiﬁ_j,

=1

which is given by the algorithm
ro=1,cip1 = [Bri] — 1,100 = Bri — ¢y, 1€ Ly

For sequences {a; };>1 and {b; };>; the lexicographical order is defined by {a;} <
{b;} if and only if for the least index i with a; # b;, a; < b;. The [-shift is the
subshift of the full shift on the alphabet with n characters, A := {0,1,--- ,n—
1}, which is given by

Xﬁ = {w = {wi}i21 Wy € A,Tk{wl} S {CZ}Vk € Z+},

where T'(wy,wq,ws,--+) = (we,ws,---). Pfister and Sullivan [8] proved that

(XP T) satisfies g-almost product property and uniform separation property.
Endow X*? with the metric d(z,y) = e™ for z = (2;)°, and y = ()%,

where n is the largest integer such that z; = y;,1 < i < n. It is easy to check

that for any Z C X?, hf(Z) = dimp(Z), where dimp(Z) denotes the packing

dimension of Z. Hence, if C' is a closed and convex subset of Z(M(X? T)),

then

dimp {2 € XP|A(EL,x) = C} = dimp {z € XP|A(EL,x) C C} = sup A(y).

yeC
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