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Packing dimension for β-shifts

Zheng Yin1 and Xiucheng Hong2

Abstract

This article is devoted to the study of the packing entropy for maps
with g-almost product property, a weak form of specification property.
In particular, our result can be applied to the packing dimension for
β-shifts.
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1 Introduction

(X, d, T ) (or (X, T ) for short) is a topological dynamical system which

means that (X, d) is a compact metric space together with a continuous self-

map T : X → X. Denote by M(X), M(X,T ) and E(X,T ) the sets of all

Borel probability measures, T -invariant Borel probability measures, and er-

godic measures on X, respectively. It is well known that M(X) and M(X,T )

equipped with weak* topology are both convex, compact spaces.
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For an T -invariant subset Z ⊂ X, let M(Z, T ) denote the subset of M(X,T )

for which the measures µ satisfy µ(Z) = 1 and E(Z, f) denote those which are

ergodic. For a positive integer n, define the n-th empirical measure En : X →
M(X) by

En(x) =
1

n

n−1∑

k=0

δT kx,

where δx denotes the Dirac measure at x. Let A(xn) be the set of all limit

points of sequence {xn}.
This investigation uses the framework introduced and developed by Olsen

[3, 4, 5, 6] and Olsen and Winter [7]. Consider the continuous and affine

deformations of En i.e. pairs (Y, Ξ) where Y is a vector space with linear

compatible metric and Ξ : M(X) → Y is a continuous and affine map. Let

∆equ(C) = {x ∈ X|A(ΞEn(x)) = C}
and

∆sup(C) = {x ∈ X|A(ΞEn(x)) ⊂ C}.
where C is a convex and closed subset of Ξ(M(X, T )).

There are some interesting results about the description of the structure

(Hausdorff dimension or topological entropy or topological pressure) of ∆equ(C)

and ∆sup(C). Recently, Zhou, Chen and Cheng [10] studied the packing en-

tropy of ∆equ(C) and ∆sup(C) for maps with specification property. Pfister

and Sullivan [8] obtained the Bowen entropy in a dynamical system with the

g-almost product property which is weaker than specification. Zhou and Chen

[9] gave topological pressure for maps with g-almost product property.

Motivated by the work of Zhou, Chen and Cheng (see [9, 10]), we study the

packing entropy in a dynamical system with the g-almost product property.

In particular, our result can be applied to the packing dimension for β-shifts.

2 Definitions and main result

Let (X, T ) be a topological dynamical system and C(X) the space of contin-

uous functions from X to R. For µ, ν ∈ M(X), define a compatible metric d

on M(X) as follows:

d(µ, ν) :=
∑
i≥1

2−i

∣∣∣∣
∫

fidµ−
∫

fidν

∣∣∣∣
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where {fi}∞i=1 is the subset of C(X) with 0 ≤ fi(x) ≤ 1, i = 1, 2, · · · . It is

convenient to use an equivalent metric on X, still denoted by d, d(x, y) :=

d(δx, δy).

For every ε > 0, denote by Bn(x, ε), Bn(x, ε) the open and closed balls of

radius ε > 0 in the metric dn around x respectively, i.e.,

Bn(x, ε) = {y ∈ X : dn(x, y) < ε} , Bn(x, ε) = {y ∈ X : dn(x, y) ≤ ε} .

Where n ∈ N, the n-th Bowen metric dn on X is defined by

dn(x, y) = max
{
d(T kx, T ky) : k = 0, 1, · · · , n− 1

}
.

2.1 Continuous affine deformation Ξ.

Definition 2.1. [1] If Y is a vector space and d′ is a metric in Y, then d′

is linearly compatible if

(1) For all x1, x2, y1, y2 ∈ Y, d′(x1 + x2, y1 + y2) ≤ d′(x1, y1) + d′(x2, y2);

(2) For all x, y ∈ Y and all λ ∈ R, d′(λx, λy) ≤ |λ|d′(x, y).

2.2 Packing entropy

Given Z ⊂ X, ε > 0 and N ∈ N, let P∗(Z, N, ε) be the collection of count-

able or finite sets {(xi, ni)} ⊂ Z×{N, N+1, · · · } such that Bni
(xi, ε)

⋂
Bnj

(xj, ε) =

∅, ∀i 6= j. For each s ∈ R, consider the set functions

m∗(Z, s,N, ε) = sup
P∗(Z,N,ε)

∑

(xi,ni)

exp(−nis);

m∗(Z, s, ε) = lim
N→∞

m∗(Z, s, N, ε);

m∗∗(Z, s, ε) = inf

{ ∞∑
i=1

m∗(Zi, s, ε) :
∞⋃
i=1

Zi ⊃ Z

}
.
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Both of these functions are non-increasing in s, and the latter takes values ∞
and 0 at all but at most one value of s. Denoting the critical value of s by

hP (Z, ε) = inf{s ∈ R : m∗∗(Z, s, ε) = 0}
= sup{s ∈ R : m∗∗(Z, s, ε) = ∞},

leads to m∗∗(Z, s, ε) = ∞ when s < hP (Z, ε), and 0 when s > hP (Z, ε).

The packing entropy of Z is hP (Z) := limε→0 hP (Z, ε). The limit exists

because hP (Z, ε) increases when ε decreases.

2.3 g-almost property and uniform separation property

In this section, we first present some notations to be used in the paper.

Then a weak specification property and a weak expansive property are intro-

duced. A remark about the notation is presented here for convenience.

Remark 2.2. Let (X, T ) be a topological dynamical system.

(1) If F ⊂ M(X) is an open set, set Xn,F := {x ∈ X : Enx ∈ F}.

(2) Given δ > 0 and ε > 0, two points x and y are (δ, n, ε)-separated if

#{i : d(T ix, T iy) > ε, 0 ≤ i ≤ n − 1} > δn. A subset E is (δ, n, ε)-

separated if any pair of different points of E are (δ, n, ε)-separated.

(3) Let F ⊂ M(X) be a neighborhood of ν, and ε > 0, and set

N(F ; n, ε) :=maximal cardinality of an (n, ε)-separated subset of Xn,F ;

N(F ; δ, n, ε) :=maximal cardinality of an (δ, n, ε)-separated subset of

Xn,F .

(4) Let g : N → N be a given nondecreasing unbounded map with the

properties g(n) < n and lim
n→∞

g(n)
n

= 0. The function g is called a blow-up

function. Given x ∈ X and ε > 0; let

Bn(g; x, ε) := {y ∈ X : ∃Λ ⊂ Λn,#(Λn \ Λ) 6 g(n) and

max{d(T ix, T iy) : i ∈ Λ} ≤ ε},

where Λn = {0, 1, · · · , n− 1}.
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Definition 2.3. ([8]) The dynamical system (X, d, T ) has the g-almost prod-

uct property with blow-up function g if there exists a non-increasing function

m : R+ → N such that for any k ∈ N, any x1 ∈ X, · · · , xk ∈ X, any positive

ε1, ε2, · · · , εk, and any integers n1 ≥ m(ε1), · · · , nk ≥ m(εk),

k⋂
j=1

T−Mj−1Bnj
(g; xj, εj) 6= ∅,

where M0 = 0,Mi = n1 + n2 + · · ·+ ni, i = 1, 2 · · · , k − 1.

Definition 2.4. ([8]) The dynamical system (X, d, T ) has the uniform sep-

aration property if for any η, there exist δ∗ > 0 and ε∗ > 0 such that for µ

ergodic and any neighbourhood F ⊂ M(X) of µ, there exists n∗F,µ,η such that

for n ≥ n∗F,µ,η,

N(F ; δ∗, n, ε∗) ≥ exp(n(h(T, µ)− η)),

where h(T, µ) is the metric entropy of µ.

Proposition 2.5. [8] Assume that (X, d, T ) has the g-almost product prop-

erty and the uniform separation property. For any η, there exists δ∗ and ε∗ > 0

such that for µ ∈ M(X, T ) and any neighborhood F ⊂ M(X) of µ, there exists

n∗F,µ,η, such that

N(F ; δ∗, n, ε∗) ≥ exp(n(h(T, µ)− η)),∀n > n∗F,µ,η.

2.4 Statement of main result

Define

Λ(y) =





sup
µ∈M(X,T ),Ξµ=y

h(T, µ), y ∈ Ξ(M(X, T ));

−∞, otherwise.

The following theorem is the main result of this paper.

Theorem 2.6. (X, T, Ξ, En, Y ) satisfies the g-almost product property and

the uniform separation property. If C ⊂ Y is a convex and closed subset of

Ξ(M(X, T )), then ∆equ(C) 6= ∅ and

hP (∆equ(C)) = hP (∆sup(C)) = sup
y∈C

Λ(y).
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3 Proof of Theorem 2.6.

In this section, we are going to prove Theorem 2.6. The upper bound of

hP (∆sup(C)) holds without extra assumption. ¿From the second part proof of

Theorem 1.1 in [10], we have

hP (∆sup(C)) ≤ sup
y∈C

Λ(y).

Now we prove the lower bound of hP (∆equ(C)). We need the following

lemma.

Lemma 3.1. ([2]) Let (X,T ) be a topological dynamical systems. If K ⊂ X

is non-empty and compact, then

hP (T, K) = sup{ hµ(T ) : µ ∈ M(X), µ(K) = 1}.

where

hµ(T ) =

∫
hµ(T, x)dµ(x), hµ(T, x) = lim

ε→0
lim sup

n→∞
− 1

n
log µ(Bn(x, ε)).

For any η > 0, there exists sufficiently small ε > 0 (see below) and p ∈ C

such that

sup
q∈C

Λ(q)− η ≤ Λ(p).

Let n ∈ N \ {0}. Since C is compact and connected, it is possible to choose

qn,1, · · · , qn,Mn ∈ C such that

C ⊂
Mn⋃
i=1

B

(
qn,i,

1

n

)
,

|d′(qn,i − qn,i+1)| ≤ 1

n
∀i, |d′(qn,Mn − qn+1,1)| ≤ 1

n
,

qn,Mn = p ∀n.

Let {α′′1, α′′2, α′′3, · · · } = {q1,1, q1,2, · · · , q1,M1 , q2,1, q2,2, · · · }; then for any n ∈
N \ {0},

{α′′j : j ∈ N \ {0}, j ≥ n} = C

and lim
j→∞

d′(α′′j , α
′′
j+1) = 0.
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We will construct a subset F ⊂Mequ (C) such that for each x ∈ F , {ΞEn(x)}
has the same limit-point set as the sequence {α′′k} and hP (F ) ≥ sup

x∈C
Λ(x).

For η
2

and α′′k ∈ C, there exists αk ∈ Ξ−1C∩M(X, T ) such that Λ(α′′k)− η
2

<

h(T, αk). By Proposition 2.5, it is easy to see that for η
2

> 0, there exist δ∗ > 0

and ε∗ > 0, such that for any neighborhood F ′′ ⊂ Ξ(M(X)) of α′′k (choose

F ′′ = B(α′′k, ξ
′′
k)), there exist B(αk, ξk) ⊆ Ξ−1F ′′ and n∗B(αk,ξk),αk, η

2
satisfying

N(B(αk, ξk); δ
∗, n, ε∗) ≥ exp

(
n

(
h(T, αk)− η

2

))
, (1)

where n ≥ n∗B(αk,ξk),αk), η
2

and ξk, ξ
′′
k will be determined later.

We choose strictly decreasing sequences {ξk}k, {ξ′′k}k and {εk}k such that

lim
k

ξk = 0, lim
k

ξ′′k = 0 with ε1 < ε∗. ¿From (1), we deduce the existence of nk

and a (δ∗, nk, ε
∗)-separated subset Γk ⊆ Xnk,B(αk,ξk) ⊆ Xnk,Ξ−1B(α′′k ,ξ′′k ) with

]Γk ≥ exp
(
nk

(
h(T, αk)− η

2

))
≥ exp (nk(Λ(α′′k)− η)) .

We may assume that nk satisfies

δ∗nk > 2g(nk) + 1,
g(nk)

nk

≤ εk.

We choose a strictly increasing sequence {Nk}∞k=0 with N0 = 0 and Nk ∈ N\{0}
such that

nk+1 6 ξk

k∑
j=1

njNj

and

k−1∑
j=1

njNj ≤ ξk

k∑
j=1

njNj. (2)

We enumerate the points in the set Γk and consider the set ΓNi
i , i = 1, 2, · · · ,

Let xi = (xi
1, · · · , xi

Ni
) ∈ ΓNi

i , for any (x1, · · · , xk) ∈ ΓN1
1 × · · · × ΓNk

k , by

g-almost product property, we have

B(x1, · · · , xk) =
k⋂

i=1

Ni⋂
j=1

T
−

i−1P
l=0

Nlnl−(j−1)ni

Bni
(g; xi

j, εj)

is a non-empty closed set. We define Fk by

Fk =
⋃ {

B(x1, · · · , xk) : (x1, · · · , xk) ∈ ΓN1
1 × · · · × ΓNk

k

}
.
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Note that Fk is compact and Fk+1 ⊆ Fk. Define F =
⋂∞

i=1 Fk. Let tk =∑k
i=1 niNi.

The proof of the following lemma is same as the proof of Lemma 3.2 in [9].

Lemma 3.2. Let ε be such that 4ε = ε∗, then

(1) Let xi, yi ∈ Γi with xi 6= yi. If x ∈ Bni
(g; xi, εi) and y ∈ Bni

(g; yi, εi),

then

dni
(x, y) = max{d(T jx, T jy) : j = 0, 1, · · · , ni − 1} > 2ε.

(2) F ⊂ 4equ(C).

For each (x1, · · · , xk) ∈ ΓN1
1 ×· · ·×ΓNk

k , we choose one point z = z(x1, · · · , xk)

such that z ∈ B(x1, · · · , xk). Let Lk be the set of all points constructed in this

way. ¿From Lemma 3.2, we have ]Lk = ]ΓN1
1 ]ΓN2

2 · · · ]ΓNk
k . We define for each

k, an atomic measure centred on Lk. Precisely, let

νk =
∑
z∈Lk

δz.

We normalise νk to obtain a sequence of probality measure µk, i.e. we let

µk =
1

]Lk

νk.

Lemma 3.3. Suppose µ is a limit point of the sequence of probability mea-

sures µk, then µ(F ) = 1.

Proof. Suppose µ = limk→∞ µlk for lk → ∞. For any fixed l and all p ≥
0, µl+p(Fl) = 1 since Fl+p ⊂ Fl. Thus, µ(Fl) ≥ lim supk→∞ µlk(Fl) = 1. It

follows that µ(F ) = 1.

Lemma 3.4. Let µ be limit point of the sequence of probability measure µk

and ε = 1
4
ε∗. For any x ∈ F and δ > 0, there exists a increasing sequence {li}

with lim
i→∞

li = ∞ such that for sufficiently large i, we have

µ(Bli(x, ε)) ≤ e−li(s− δ),

where s = supx∈C Λ(x)− 2η.
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Proof. Choose li = tM1+···+Mi
. Let s = infx∈C Λ(x)− η. First we show that

µM1+···+Mi+p(Bli(x, ε)) ≤ ]L−1
M1+···+Mi

,∀p ∈ N \ {0}.

If µM1+···+Mi+p(Bli(x, ε)) > 0, then LM1+···+Mi+p ∩ Bli(x, ε) 6= ∅. Let z =

z(x, y) ∈ LM1+···+Mi+p∩Bli(x, ε), z′ = z(x′, y′) ∈ LM1+···+Mi+p∩Bli(x, ε), where

x, x′ ∈ ΓN1
1 × · · · × Γ

NM1+···+Mi
M1+···+Mi

,

y, y′ ∈ Γ
NM1+···+Mi+1

M1+···+Mi+1 ,× · · · × Γ
NM1+···+Mi+p

M1+···+Mi+p .

Since dli(z, z
′) ≤ 2ε, from Lemma 3.2, we have x = x′. Thus we have

µM1+···+Mi+p(Bli(x, ε))

≤1× ]Γ
NM1+···+Mi+1

M1+···+Mi+1 ,× · · · × ]Γ
NM1+···+Mi+p

M1+···+Mi+p

]LM1+···+Mi+p

=
1

]LM1+···+Mi

.

This leads to

µ(Bli(x, ε)) ≤ lim sup
k→∞

µk(Bli(x, ε))

=
1

]ΓN1
1 ]ΓN2

2 · · · ]ΓNM1+···+Mi
M1+···+Mi

≤ 1

exp{n1N1s + n2N2s · · ·+ nM1+···+Mi−1NM1+···+Mi−1s + nM1+···+Mi
NM1+···+Mi

s}
= exp

{
−li

(
n1N1 + · · ·+ nM1+···+Mi−1NM1+···+Mi−1

li
s +

nM1+···+Mi
NM1+···+Mi

li
s

)}
.

It follow from (2),we have

lim
i→∞

n1N1 + · · ·+ nM1+···+Mi−1NM1+···+Mi−1

li
= 0.

lim
i→∞

n1N1 + · · ·+ nM1+···+Mi
NM1+···+Mi

li
= 1.

Thus for sufficiently large i, we have µ(Bli(x, ε) ≤ e−li(s−δ).

Applying Lemma 3.1, we have

hP (F ) > s− δ = sup
x∈C

Λ(x)− 2η − δ.
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Since η and δ are arbitrary, we have

hP (Mequ (C)) > hP (C) ≥ sup
x∈C

Λ(x).

Thus the proof of Theorem 2.6 is completed.

4 Application

In this section, we apply our result to the packing dimension for β-shift.

Let n = dβe. Let β > 1 be fixed. For t ∈ R, we define

btc = max{i ∈ Z : i ≤ t}, dte := min{i ∈ Z : i ≥ t}.
Consider the β-expansion of 1,

1 =
∞∑
i=1

ciβ
−j,

which is given by the algorithm

r0 = 1, ci+1 = dβrie − 1, ri+1 = βri − ci+1, i ∈ Z+.

For sequences {ai}i≥1 and {bi}i≥1 the lexicographical order is defined by {ai} <

{bi} if and only if for the least index i with ai 6= bi, ai < bi. The β-shift is the

subshift of the full shift on the alphabet with n characters, A := {0, 1, · · · , n−
1}, which is given by

Xβ = {ω = {ωi}i≥1 : ωi ∈ A, T k{ωi} ≤ {ci}∀k ∈ Z+},
where T (ω1, ω2, ω3, · · · ) = (ω2, ω3, · · · ). Pfister and Sullivan [8] proved that

(Xβ, T ) satisfies g-almost product property and uniform separation property.

Endow Xβ with the metric d(x, y) = e−n for x = (xi)
∞
i=1 and y = (yi)

∞
i=1,

where n is the largest integer such that xi = yi, 1 ≤ i ≤ n. It is easy to check

that for any Z ⊂ Xβ, hP (Z) = dimP (Z), where dimP (Z) denotes the packing

dimension of Z. Hence, if C is a closed and convex subset of Ξ(M(Xβ, T )),

then

dimP

{
x ∈ Xβ|A(ΞLnx) = C

}
= dimP

{
x ∈ Xβ|A(ΞLnx) ⊂ C

}
= sup

y∈C
Λ(y).
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