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Abstract

This study presents a new formulation for canonical correlation anal-
ysis as an equivalent multiple regression model for two Gaussian random
vectors. In addition, implications for the simple and multiple correla-
tions are discussed. The new model can also be extended to measure
nonlinear associations between sets of variables.
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1 Introduction

Canonical correlation analysis (CCA) was introduced by Hotelling [1] to

measure relationships between sets of dependent variates. It is especially useful

in instances where one may be interested in the level of association between

sets of variables or relationship within a single set. The system of classical

CCA is described in Figure 1.

Figure 1: The System of Classical CCA

Given two sets of variables X and Y , it is customary to refer to one as

independent variables (IV), and the other as dependent variables (DV), though

the two sets can play symmetrical roles in this context. Canonical correlation

analysis forms a linear composite, that is, canonical variate U = Xα and V =

Y β from each set, then develops a function that maximizes the canonical

correlation coefficient ρ between the two canonical variates.

Canonical correlation analysis has several advantages: (i) it limits the prob-

ability to reject the null hypothesis (H0) when it is true. In other words, it

reduces the probability of committing Type I error. The risk of a Type I error is

related to the likelihood of finding a statistically significant result when it does

not exist. Increased risk of Type I error results from when the same variables

in a dataset are used for too many statistical tests. Suppose a researcher is

interested in predicting four DVs using three IVs through multiple regression,

then a series of four regression equations are required (i.e., one for each DV).
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However, conducting separate statistical tests for each equation substantially

increases the risk of Type I error. CCA can investigate these relationships in

a single equation rather than using separate equations for each DV (Ander-

son [2]); (ii) it can identify two or more unique relationships, if they exist:

CCA develops multiple canonical functions; each function is orthogonal with

respect to the other functions so that they depict different relations among

variables. Thus CCA is a well designed technique for analyzing data involving

multiple DVs and IVs and its theory is consistent with that purpose; and (iii)

it provides a platform to analyze relationships in accordance with the reali-

ties of life: Often times, the complexity of research studies involving human

or organizational behavior may suggest multiple DVs that interract and thus

create problems (such as misspecification) when the variables are examined

separately. Accordingly, canonical correlation would represent a relationship

between the sets of variables rather than individual variables.

Though CCA generalizes most linear models, its use in practice has of-

ten been limited to dimension reduction. Further, the issue of interpretation

is another major limitation. “The standard derivation of canonical solutions

is mathematically elegant but uninterpretable” (Tabachnick and Fidell [3]).

While the solutions of other related procedures like Factor Analysis and Prin-

cipal Components Analysis can be rotated in an attempt to improve inter-

pretability, that of CCA cannot because “rotation destroys the optimality of

the canonical correlations and also introduces correlations among succeeding

canonical variates” (Rencher [4]).

In view of these limitations, the present study presents a probabilistic for-

mulation for CCA using a novel combination of the techniques of multiple

regression and canonical correlation. Such formulation enhances the under-

standing of CCA as a model-based method that is useful in modeling and

prediction. It also suggests generalization of CCA to distributions other than

the Gaussian distribution. What is more, the formulation can be exploited

to learn nonlinear associations between sets of variables. In addition, since

multiple regression is a very popular method, well understood by many, and

frequently used by practitioners, consequently, such representation will provide

simple, easy-to-understand and straightforward derivation of CCA which will

facilitate ease of interpretation of the variates and the correlations.

The rest of the paper is organized as follows: Section 2 reviews the pre-
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vious formulations in canonical correlation analysis. Section 3 provides the

derivations of canonical functions. The next section presents an equivalent

probabilistic expression for CCA together with the canonical solutions. Sec-

tion 5 contains the conclusion.

2 Literature Review

Canonical Correlation Analysis (CCA) usually referred to as the classical

CCA originated from Hotelling [1], [5], who applied the technique to a data

set in which one set of variables consisted of mental tests and the other in-

volved physical measurements. Canonical correlation (ρ) between two sets of

multivariate random variables X and Y is the covariance (Cov) between the

two variables normalized by the geometric mean of the variances (V ar) of Xα

and Y β;

ρ =
Cov(Xα, Y β)√
V ar(Xα)V ar(Y β)

; (1)

where α and β are vectors of appropriate dimensions.

Initially, CCA did not receive much attention from practitioners due to little

understanding of the concept and absence of computer programs. According

to Cramer [6], the “complicated way” in which canonical correlation equations

are derived in standard texts like Anderson [2] or Morrison [7] contributed

to the reason it is not well understood. Consequently, the study proposed a

particular simple derivation which follows directly from the relation between

multiple regression analysis and multiple correlation. Though the attempt did

not yield the exact canonical variates as Hotelling’s, yet it achieved a simple

derivation of the technique and also suggested that CCA could be cast in a

regression model.

An alternative approach which presented CCA as a least squares problem

was first discussed in Muller [8]. A multivariate multiple regression representa-

tion of CCA amounts to finding an estimate of β, α and D(ρk) in the following

model equation:

Y β = XαD(ρk) + E; (2)
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where β is a q × d matrix, with the kth column being the canonical weights

for the set for the kth canonical variate pair. D(ρk) is a d× d diagonal matrix

of canonical correlation. α is a p × d matrix, with the kth column being the

canonical weights for the X set for the kth canonical variate pair. The matrices

β, α, and D(ρk) must correspond in the sense that the kth columns of β and

α provide the linear combinations that are correlated ρk , which is the (k, k)

element of D(ρk). E is a n× d matrix of errors.

Overall, this is a novel and clearer approach; however, the multivariate for-

mulation introduced some “greater complication” which needs “extra care to

deal with” (Muller [8]). For instance, the equivalence of β, α, and D(ρk)

in the standard statement of CCA are vectors (not matrices). Hence, “the

standard statement of canonical correlation has more in common with the

univariate statement than with the multivariate (that was developed in the

study)” (Muller [8]).

The least squares approach now popularly referred to as ‘The least squares

formulation’ facilitated better understanding of canonical correlation. Conse-

quently, several limitations of CCA were identified: (i) it is limited to linear

association; (ii) it is sensitive to outliers due to the normal density assump-

tion. Hence, two other basic reformulations of CCA were developed: (i) Kernel

CCA; and (ii) probabilistic graphical approach.

Kernel CCA was formulated by Fyfe and Lai [9] to address the nonlinear

associations between sets of variables. Given the pair of multivariate random

variables (X, Y ), kernel CCA maximizes the equation

ρK = max
α,β

α
′
KXKY β (3)

s.t. α
′
K2

Xα = β
′
K2

Y β = 1;

where α
′

= (α1, α2, · · · , αn), β
′

= (β1, β2, · · · , βn) , and Kx and Ky are the

Gram matrices [KX ]n×n = k (Xi, Xj) and [KY ]n×n = k (Yi, Yj) calculated from

the sample.

KCCA though nonparametric, generalizes the classical CCA to a nonlinear

setting. It is mostly used in multimedia applications. KCCA first transforms
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the data to a higher (or infinite) dimensional nonlinear space, called the re-

producing kernel Hilbert space, and then assumes that there exists a linear

relationship between the variables in the transformed space. In other words,

the method computes linear correlation between a linear combination of (non-

linearly) transformed variables in one set and a linear combination of (nonlin-

early) transformed variables in the other set. More details on KCCA can be

found in Hardoon, Szedmak and Shawe-Taylor [10].

The most recent reformulation is the probabilistic graphical approach intro-

duced by Bach and Jordan [11]. The model is presented as

z ∼ N(0, Id), min(p, q) ≥ d ≥ 1,

X|z ∼ N(αz, ψ1) α ∈ Rp×d, ψ1 ≥ 0, (4)

Y |z ∼ N(βz, ψ2) β ∈ Rq×d, ψ2 ≥ 0.

The probabilistic interpretation opens doors to several extension of CCA:

first, it demonstrates that Hotelling’s canonical variates can be obtained through

maximum likelihood estimation; second, since graphical models are naturally

viewed as exponential families (Wainwright and Jordan [12]), the approach

has potential to extending the scope of CCA from the assumption of normal

density to the exponential family.

The new model proposed in the study is a hybrid of the least squares and

Bach-Jordan formulations. Along the line of Bach-Jordan, it is a probabilistic

model though not graphical; and along the least squares, it is a multiple regres-

sion representation though not multivariate multiple. The model combines the

advantages of (i) mathematical simplicity; and (ii) linear and nonlinear rela-

tions between variables from the least squares approach, and the probabilistic

advantage of Bach-Jordan. In addition, it enhances ease of interpretation and

allows easy and straight-forward generalizing of CCA to nonnormal cases.

3 The Classical Correlation Analysis

Consider N observations on two sets of standardized variables X and Y
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with

X = {xij}; i = 1, 2, · · · , N, j = 1, 2, · · · , p,

Y = {yij}; i = 1, 2, · · · , N, j = 1, 2, · · · , q,

The matrices of correlations R among the X variables and the Y variables,

and between the two sets of variables are RXX , RY Y and RXY , respectively.

CCA seeks to maximize the correlation (ρ) between Xα and Y β; (αp×1 and

βq×1) 3 the variance, V ar(Xα) = V ar(Y β) = 1 :

ρ =
Cov(Xα, Y β)(

V ar(Xα), V ar(Y β)
) 1

2

. (5)

Of course, Cov is the covariance between U and V .

(5) can be equivalently expressed as,

ρ =
α

′
RXY β(

(α′RXXα)(β ′RY Y β)
) 1

2

(6)

s.t. α
′
RXXα = β

′
RY Y β = 1.

Maximize the quantity α
′
RXY β subject to the constraints α

′
RXXα = β

′
RY Y β =

1: Introduce Lagrangian multipliers, then compute matrix derivatives, set

them to zero and simplify. The solution leads to the normal equations

RXY β −KRXXα = 0 (7)

RY Xα−KRY Y β = 0 (8)

The values of K are obtained by solving the multivariate eigenvalue problem∣∣R−1
XXRXYR

−1
Y YRY X −K2I

∣∣ = 0 (9)

or ∣∣R−1
Y YRY XR

−1
XXRXY −K2I

∣∣ = 0. (10)

The positive square root of the largest eigenvalue gives the largest correlation

(Rencher [4]).
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Further, the values of α and β can be obtained from Equations (7) and (8)

as follows:

β =
1

ρ
R−1

XXRY Xα (11)

Substituting (11) in Equation (8) and rearranging terms gives(
R−1

XXRXY Σ−1
Y YRY X −K2I

)
α = 0 (12)

Similarly, (
R−1

Y YRY XR
−1
XXRXY −K2I

)
β = 0 (13)

4 Main Result: A Predictive Model for Canon-

ical Correlation Analysis

Consider N observations of two sets of standardized variables with

X = {xij}; i = 1, 2, · · · , N, j = 1, 2, · · · , p;
Y = {yij}; i = 1, 2, · · · , N, j = 1, 2, · · · , q.

The matrices of correlations among the X variables, among the Y vari-

ables, and between the two sets are RXX = 1
N
X

′
X, RXX = 1

N
X

′
X, RY Y =

1
N
Y

′
Y, RXY = 1

N
X

′
Y, respectively.

Recall Equations (5) and (6). The problem of CCA is to choose constants β

in such a way that y = Y β will have the greatest possible multiple correlation

with X ′s; this is equivalent to the requirement that y = Y β be estimated

from a regression equation with the smallest possible mean square error (in

the sense of least squares) (Hotelling [1]):

max
α,β

α
′
RXY β ≡ max

α,β
ς; (14)

where ς = (Y β −Xα)
′
(Y β −Xα);
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subject to (Xα)
′
(Xα) = 1 and (Y β)

′
(Y β) = 1.

Equation (14) may be equivalently expressed as

max
α,β

α
′
RXY β ≡ max

α,β
l; (15)

where l = −N
2

log 2π − 1
2
(Y β −Xα)

′
(Y β −Xα).

Thus the estimates of α and β may be obtained from the regression model

Y β = Xα + ε; ε ∼ N(0, 1). (16)

From this viewpoint, canonical correlation analysis can be seen as a straight-

forward generalization of multiple regression model in which several Y variables

are simultaneously related to several X variables. In this view, CCA seeks a

vector β such that the composite variable Y β is most predictable from the

variables of X.

Remark 4.1. Clearly, Model (16) allows a straightforward extension of the

scope of CCA beyond the normal distribution. It can, as a matter of fact, be

generalized to any distribution f :

Y β = Xα + ε; ε ∼ f. (17)

Remark 4.2. Following Davidson and Mckinnon [13], the next expression

generalizes Equation (17) to measuring nonlinear associations:

Y β = g (X;α) + ε; ε ∼ f. (18)

4.1 Solutions to CCA Model Parameters

Recall

Y β = Xα + ε; ε ∼ N(0, 1). (16)

Model (16) relates to the case when the variables X and Y are linearly re-

lated and normally distributed. Recall that these were the assumptions of

Hotelling [1].
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The following results demonstrate a maximum likelihood approach to ob-

taining canonical solutions that are identical to Hotelling’s:

Theorem 4.3. Given Model (16) subject to (Xα)
′
(Xα) = 1 and (Y β)

′
(Y β) =

1, the maximum likelihood estimation of α and β yields the following normal

equations

RXY β − ρRXXα = 0, (19)

RY Xα− ρRY Y β = 0; (20)

where RXX = 1
N
X

′
X, RXX = 1

N
X

′
X, RY Y = 1

N
Y

′
Y, RXY = 1

N
X

′
Y ; and ρ =

corr(Xα, Y β).

Proof. Let y = Y β, then Model (16) can be re-written as

y = Xα + ε,

which is the familiar multiple regression expression. The loglikelihood equation

denoted l is readily written down:

l = −N
2

log 2π − 1

2

N∑
i=1

(yi −Xiα)2. (21)

The observations are assumed to be independent hence the loglikelihood func-

tion l is just the sum of these contributions over all i, or

l = −N
2

log 2π − 1

2
(y −Xα)

′
(y −Xα)

= −N
2

log 2π − 1

2
(Y β −Xα)

′
(Y β −Xα). (22)

In line with the conditions of CCA, we wish to find a pair of vectors (α, β)

which yields sets of composite variables Xα and Y β such that Y β is most

predictable from the variables of X. In other words, we seek a pair of vectors

(α, β) that maximizes the function Q such that

Q = −N
2

log 2π−1

2
(Y β−Xα)

′
(Y β−Xα)−K

2
{(Xα)

′
(Xα)−1}−L

2
{(Y β)

′
(Y β)−1}.
(23)

Then the first order conditions are

δ

δα
Q = X

′
Y β − (1 +K)X

′
Xα,

δ

δβ
Q = Y

′
Xα− (1 + L)Y

′
Y β.
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The solution leads to the following stationary equations

RXY β − ARXXα = 0, (24)

RY Xα−BRY Y β = 0; (25)

where A = 1 +K and B = 1 + L.

Multiplying Equation (24) by α
′
and Equation (25) by β

′
shows that

A = B = α
′
RXY β = ρ.

Consequently,

RXY β − ρRXXα = 0, (19)

RY Xα− ρRY Y β = 0. (20)

Theorem 4.4. The solutions of the stationary equations (19) and (20) yield

the canonical correlations ρ and canonical variates α, β that are defined in

(R−1
XXRXYR

−1
Y YRY X − ρ2I)α or (R−1

Y YRY XR
−1
XXRXY − ρ2I)β.

Proof. ¿From Equations (19) and (20),

MX = 0; (26)

where M =

(
−ρRXX RXY

RY X −ρRY Y

)
and

(
α

β

)
.

The homogeneous system (26) has a non-zero solution iff |M | = 0 (Lip-

schutz [14]).

We thus seek ρ so that

|M | =

∣∣∣∣∣ −ρRXX RXY

RY X −ρRY Y

∣∣∣∣∣ = 0.

By the determinant property of block matrices,

|M | = 0 ⇒ |RXX ||RY Y |
∣∣R−1

Y YRY XR
−1
XXRXY − ρ2I

∣∣ = 0. (27)
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Alternatively,

|M | = 0 ⇒ |RY Y ||RXX |
∣∣R−1

XXRXYR
−1
Y YRY X − ρ2I

∣∣ = 0. (28)

The values of ρ2 is determined by solving the multivariate eigenvalue problem

(MVEP) ∣∣R−1
Y YRY XR

−1
XXRXY − ρ2I

∣∣ = 0 (29)

or ∣∣R−1
XXRXYR

−1
Y YRY X − ρ2I

∣∣ = 0. (30)

To obtain the solutions of α and β, we revert again to Equation (19), which

implies

β =
1

ρ
R−1

Y YRY Xα. (31)

Substituting Equation (31) in (20) and re-arranging the term gives(
R−1

XXRXYR
−1
Y YRY X − ρ2I

)
α = 0. (32)

Similarly, (
R−1

Y YRY XR
−1
XXRXY − ρ2I

)
β = 0. (33)

4.2 Implications for the Simple and Multiple Correla-

tions

The following results demonstrates that the multiple and the simple corre-

lations can also be obtained from the new formulation - Model (16).

Corollary 4.5. The multiple correlation coefficient corresponds to the square

root of the case p = p, q = 1 in Model (16).

Proof. Given Model (16), let p = p and q = 1. Then Equation (29) becomes

R2 =
~RY XR

−1
XX

~RXY

rY Y

= ~RY XR
−1
XX

~RXY . (34)
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Since canonical correlations are invariant to any full rank linear transforma-

tions, it follows that

R2 =
~SY XS

−1
XX

~SXY

SY Y

; (35)

where R2 is the multiple coefficient of determination and Σ̂ = S. Of course,

the multiple correlation coefficient R =
√
R2.

Corollary 4.6. The simple correlation coefficient corresponds to the square

root of the case p = 1, q = 1 in Model (16).

Proof. Given Model (16), let p = 1 and q = 1. Then Equation (29) becomes

r2 =
rY XrXY

rXXrY Y

= rY XrXY = r2
XY . (36)

The last equality follows by noting thar rXY = rY X = r; i.e. symmetric

property of ρ.

Again, since canonical correlations are invariant to any full rank linear trans-

formations, it follows that

r2 =
SY XSXY

SY Y SXX

=
S2

XY

SY Y SXX

; (37)

where r2 is the coefficient of determination and Σ̂ = S. Of course, the simple

correlation coefficient r = ±
√
r2.

5 Conclusion

The study formulated a predictive model for canonical correlation analy-

sis and discussed the implementation of the simple and multiple correlation

coefficients under the formulated model. This new formulation enhances the

understanding of canonical correlation as a model-based method. In addition,

it aids ease of interpretation as canonical variates can be interpreted as the

familiar beta weights.
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