
Journal of Applied Finance & Banking, vol. 7, no. 1, 2017, 1-40 

ISSN: 1792-6580 (print version), 1792-6599 (online) 

Scienpress Ltd, 2017 

 

Developing a Volume Forecasting Model 

 

Bogdan Batrinca1, Christian W. Hesse2 and Philip C. Treleaven3 

 

 

Abstract 

This study builds a series of models to predict trading volume in European markets using 

different statistical methods. The analysis considers a number of aspects, such as special 

events (e.g. MSCI rebalances, futures expiries, or cross-market holidays), 

day-of-the-week effects, and the volume-price relation asymmetry, in order to perform 

contextual one-step ahead prediction. We investigate the prediction error for each 

calendar circumstance to infer a cross-stock event-oriented switching model for volume 

prediction. The study concludes by proposing a stock-specific out-of-sample metamodel 

that is fit by selecting an initial stock-specific model yielding the best performance for the 

most recent observations. 
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1  Introduction  

Measuring trading performance is a challenging research area, but there are certain factors 

that have a clear influence on the overall trading performance, such as the market impact, 

which is the effect caused by a market participant who buys or sells shares, consisting in 

the extent to which the price goes upward for a buy order or downward for a sell order. 

The market impact cost is defined as the difference between the actual price and the 

hypothetical price provided that the order was not created [1]. Market impact can move 

the prices adversely, leading to decreased profits or turning profitable strategies into 

losing strategies. 
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The execution style of an order drives the extent of an order’s market impact. An example 

of a trading strategy to decrease the market impact is when an investor needs to break 

down a large sell order into smaller orders over a longer period in order to trade slowly 

with a low market impact. Therefore, predicting the trading volume as a measure of 

liquidity is of vital importance to forecast the expected market impact. 

The aim of this study is to propose a switching volume prediction model by fitting a 

variety of models that employ different machine learning methods and considering 

endogenous and exogenous variables that may potentially impact the trading volume. This 

is motivated by the importance of optimally sizing an order for minimising the market 

impact and ultimately improving the trading performance. Market participants who size 

their orders incorrectly can either over-participate by producing excessive market impact 

or under-participate by creating opportunity cost and price uncertainty. Therefore, 

predicting the trading volume helps better determine the degree of participation in the 

market. 

The primary focus of this study is to fine-tune the models and identify the optimal model 

given the market context at a certain point in time, in order to achieve optimal prediction 

accuracy and model stability. We are investigating the error breakdown by different 

model types and days that matter (e.g. holidays, expiries, days-of-the-week etc.). 

Each stock exhibits different levels of trends, volatility, and magnitude in their market 

data. Consequently, we perform stock-specific predictive modelling throughout this study 

by independently training a variety of window-based predictive models for seven machine 

learning techniques: ordinary least squares, stepwise regression (i.e. ordinary least squares 

with sequential feature selection), ridge regression, lasso regression, k-nearest neighbours 

with arithmetic average, k-nearest neighbours with inverse distance weighting, and 

support vector regression. For each statistical method, we iterate every stock in our 

pan-European stock universe consisting of 2,353 stocks, every training window type (i.e. 

moving/sliding vs. growing) and every window size (i.e. 1-month, 3-month, 6-month, 

1-year, 2-year windows). We also train three models for special events (i.e. cross-market 

holidays, MSCI rebalances and futures expiries) using the entire stock universe, although 

they are ultimately used to make stock-specific predictions. We fit these models in 

isolation and aim to determine a performance metric for each method and window type. 

Eventually, we shift from a static process to an adaptive process and construct a switching 

dynamic model, which switches between these models based on the current context (e.g. 

regular trading day, cross-market holiday, futures expiry, MSCI rebalance, certain 

day-of-the-week etc.). The proposed model is a virtually switching model as it does not 

switch per se. We are post-processing the model performance and investigate the 

performance metrics by breaking down the errors by: day-of-the-week, cross-market 

holidays, futures expiries, MSCI rebalances etc. This leads to the metamodel, which is a 

stock-specific out-of-sample model that selects the best initial stock-specific model on a 

1-month and a 3-month rolling window basis, depending on the recent performance of the 

initial stock-specific models that are trained independently of each other. 

The rest of the study is structured as follows: section 2 reviews the key findings that led to 

our model choice in this study (e.g. the volume-price relation asymmetry, the 

day-of-the-week effect, the expiry day effect, and the cross-market holidays effect) and 

outlines the methods employed in this analysis; the market and calendar data sets are 

introduced in section 3; section 4 provides the analysis approach and briefly describes the 

high performance computing design of this computationally expensive analysis, followed 

by a methodological introduction of the cross-stock models and the stock-specific models; 
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this is followed by section 5, which presents the main findings of this study, including a 

performance breakdown of the models, and introduces the switching model and the 

out-of-sample stock-specific metamodel; eventually, section 6 provides a conclusion of 

this analysis and discusses the obtained results. 

 

 

2  Background  

Previous studies provided empirical evidence for the volume-price relation and its 

asymmetry, and the existence of the day-of-the-week effect, the expiry day effect and the 

so-called ‘cross-market holiday’ effect in relation with trading volume. These findings are 

summarised below and are followed by a review of the statistical methods employed in 

this analysis. 

 

2.1 Volume-Price Relation and Asymmetry 

The price-volume relation is of great importance for this study as most of the behavioural 

literature focuses on the impact of certain anomalies on price returns, while trading 

volume is the main focus of this study. Price changes represent the market response to 

new information, whereas the trading volume indicates the level of information 

disagreement among investors [2]. Although the literature on a potential relation between 

price changes and volume is far from homogenous, there is a large proportion confirming 

a positive correlation between trading volume and price changes [3] [4]. Batrinca et al. [5] 

provided empirical evidence that trading volume is correlated with historical price 

indicators (i.e. intraday range and intraday return for the previous day, and overnight 

return for the previous night, which acts as a proxy for the opening auction volume, i.e. 

more recent information) and that volume exhibits autoregression, where we employed 

lagged time series volume data (i.e. raw past observations) and also smoothed lagged time 

series (i.e. moving average of past observations, which acts as a low-pass filter effect in 

the data). The formulae for the intraday return, intraday range and overnight return are 

outlined below, where 𝑛 is the number of intervening nights, 𝑡0 is the day for which we 

predict the trading volume and 𝑡−1 is the previous trading day, whose price and volume 

information is available: 

 

intraday return log ratio: 𝑝intradayRtn = log
𝑝𝑡−1

close

𝑝𝑡−1

open (1) 

 

intraday range log ratio: 𝑝intradayRng = log
𝑝𝑡−1

high

𝑝𝑡−1
low  (2) 

 

overnight return log ratio: 𝑝overnightRtn =
1

𝑛
log

𝑝𝑡0

open

𝑝𝑡−1
close. (3) 

 

In general, there are two key representations of the volume-price relation, where trading 

volume is positive correlated either with the magnitude (i.e. absolute value) of the price 

change [6], i.e. |Δ𝑝|, or with the price change per se (i.e. the raw value of the price 

change), i.e. Δ𝑝 [7] [8]. The asymmetric relation in the latter representation exhibits a 



4                                                    Bogdan Batrinca et al. 

volume/price change ratio that is different in magnitude for upticks than for downticks. 

Equation (4) shows the levels of volume based on the sign of the price change, compared 

to the symmetric model in Equation (5): 

 

asymmetry: (𝑣𝑡|∆𝑝𝑡
+) > (𝑣𝑡|∆𝑝𝑡

−) or (𝑣𝑡|∆𝑝𝑡
+) < (𝑣𝑡|∆𝑝𝑡

−) (4) 

 

symmetry: (𝑣𝑡|∆𝑝𝑡
+) = (𝑣𝑡|∆𝑝𝑡

−). (5) 

 

Batrinca et al. [5] provided empirical evidence for the price-volume relation asymmetry, 

which was exhibited in over 70% of the analysed European stocks; there is a moderate 

overnight asymmetry, which is almost evenly distributed, and a more salient intraday 

asymmetry (in approximately 60% of the stocks). 

 

2.2 The Day-of-the-Week Effect 

The day-of-the-week effect consists of certain trends associated with a particular 

day-of-the-week. The most broadly studied day-of-the-week effect is the weekend effect 

[9] [10] [11] [12] [13] [14] [15] [16], or Monday effect, where the closing price on 

Monday is lower than the closing price of the previous Friday. These results are intriguing 

as they are opposite to the expectation of higher returns on Monday, as its returns reflect 

three consecutive days. The weekend effect has been widely documented in conjunction 

with price changes. There are very few studies investigating the relation between the 

day-of-the-week effect and trading volume. For example, Berument and Kiymaz [17] 

found day-of-the-week anomalies in both returns and volatility, with the highest volatility 

on Friday and the lowest on Wednesday, while Lakonishok and Maberly [18] found a 

relative increase in the trading activity of individuals on Mondays. 

Batrinca et al. [5] reported a clear improvement of the trading volume prediction model 

when adding the day-of-the-week features. The indicator variable for Monday improves 

the model in more than 75% of the cases, having predominantly negative coefficients, 

despite the fact that we divide the overnight return by the number of intervening nights, 

which suggests that the negative coefficient for Monday is not a corrective factor and that 

there is simply less activity on Mondays. Fridays improve the volume model in 45% of 

the stocks and their coefficients are surprisingly mostly negative, even if the traditional 

definition of the weekend effect states that the Friday volume and prices are usually 

higher than those of the following Monday. 

 

2.3 The Expiry Day Effect 

The expiry day effect exhibits higher trading volume and abnormal volatility around the 

close on expiry days for futures and options [19] [20] [21] [22] [23] [24] [25], and for 

MSCI quarterly reviews [26]. 

Following these findings, Batrinca et al. [27] further analysed the effect of periodical 

events on the trading volume, while investigating the stock index futures expiries and 

MSCI quarterly index reviews in the pan-European markets. The stock index futures 

expiries occur on the third Friday of each expiry month or on the previous trading day in 

case that Friday is a bank holiday. The futures contracts are traded either quarterly (i.e. 

March, June, September and December) or monthly. The indices of Morgan Stanley 

Capital International (MSCI) are updated quarterly in order to reflect the up-to-date state 
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of the financial markets. The constituent list of these indices changes close to the last 

trading day of the four rebalancing months: February, May, August and November. We 

reported the existence of the futures expiry effect and the MSCI rebalance effect, both 

leading to a surge in trading volume for their index constituents. The trading volume 

increases significantly during the four days in the run-up to the expiry, lasts two days after 

the futures expiry, and then returns to normal levels of trading activity starting on the 

third trading day after the expiry day. The MSCI rebalances exhibit a similar trend, 

causing surges in the trading volume on the day before the the review day and on the 

effective rebalance date. We discriminated between these two instances of the expiry day 

effect and the Friday and end-of-month effects and concluded that the futures expiry 

effect is essentially causing the so-called Friday effect. However, we could not find 

enough evidence that the MSCI quarterly reviews could drive the anecdotal end-of-month 

effect; the trading volumes on the four months with MSCI quarterly reviews are 

significantly different from those on the adjacent months, but their magnitude is not 

sufficiently large in order to explain the end-of-month effect throughout the entire year. 

 

2.4 The Cross-Market Holiday Effect 

In a previous study, Batrinca et al. [28] coined the term ‘cross-market holiday effect’, 

which refers to the anecdotal evidence of lower volumes in a particular country when one 

or more external markets are not trading. There are only a couple of studies investigating 

this effect although they focus mainly on the subduing effect of the US holidays on other 

markets, such as Canada [29] and Europe [30]. We documented a salient cross-market 

holiday effect when a dominant market is on holiday or when most of the European 

markets are shut. Since the UK is Europe’s largest market, we examined whether it is 

actually the Monday effect that drives down the volumes, as most of the bank holidays 

fall on a Monday in the UK. However, we reported strong evidence that the Mondays 

with at least one cross-market holiday have significantly lower volumes that the other 

Mondays. 

Throughout the previous in-sample analyses on the day-of-week, expiry day and 

cross-market holiday effects, strong evidence of volume autoregression is observed [5]. 

Given the results of these previous independent studies, we aim to integrate their findings 

in an out-of-sample study. Here, we aim to build a virtually adaptive model, which fits a 

number of models in parallel and switches from one underlying model to another, by 

taking into account the event dates (e.g. futures expiry, MSCI rebalance, certain 

day-of-the-week etc.) when we expect the markets to behave significantly different. We 

also raise additional questions on the optimal training window and the appropriate 

methodology. We are empirically testing a number of statistical methods in order to 

understand how the performance of each method is affected and to explore the 

relationship between trading volume and event dates in a predictive framework. 

 

2.5 Methodology Review 

In this section, we review the basic principles for the supervised learning models that are 

employed in this study. There are seven different statistical methods that are fit 

simultaneously and independently in order to predict the one-step ahead trading volume. 

We start with the ordinary least squares (OLS); it is the most basic model and estimates 

the variable coefficients of a linear regression model by minimising the sum of the 
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squared distances between the predicted values and the observed values. 

Feature selection can be applied after a model is fit using OLS, by performing stepwise 

regression. This can be achieved through forward selection, backward elimination, or 

bidirectional elimination. We chose forward selection for the second method of this study 

(i.e. stepwise regression), which adds new variables having p-values that are less than a 

given improvement measure. We start from a reduced model consisting of the intercept, 

the lagged volumes, and the smoothed lagged volumes, allowing the model to pick the 

most informative price log-ratio and day-of-the-week features. The rationale for using 

forward selection is driven by the design of the day-of-the-week categorical variable as 

five dummy variables. Generally, a categorical variable having 𝑛 values is encoded as 

𝑛 − 1 dummy variables, although in this study, the day-of-the-week dummy variables are 

mutually exclusive since the aim is to perform feature selection and extract the variables 

with the highest statistical significance for volume prediction and this is conducted in a 

feature selection framework. We preferred forward selection to backward elimination 

because of the potential collinearity problems; adding a collinear variable could make 

matrix inversion impossible when determining the optimal beta. 

The next two techniques employ regression shrinkage methods, namely ridge regression 

and lasso regression. Linear regression relies on the independence of the model variables 

and therefore the matrix (𝑋T𝑋)
−1

 becomes close to singular when the design matrix 𝑋 

has columns that exhibit an approximate linear dependence. As a result, the least squares 

estimate shown in Equation (6) produces a high variance because of its sensitivity to 

random errors in the observed response variable 𝑦: 

 

�̂� = (𝑋T𝑋)
−1

𝑋T𝑦. (6) 

 

Ridge regression, or L2 regularisation, addresses the problem of multicollinearity by 

estimating the regression coefficients using Equation (7), where 𝜆 is the ridge parameter 

and 𝐼 is the identity matrix. This method introduces bias, but reduces the variance of the 

coefficient estimates, producing a lower mean squared error (MSE) compared to the least 

squares estimates. We start by identifying the optimal value for 𝜆  (i.e. the ridge 

parameter) that minimises the cross-validation error, by using a two-section search 

consisting of grid search and followed by the bisection method (also known as binary 

search). The grid search traverses 21 consecutive values of 𝜆 in logarithmic space, from 

-10 to 10 and cross-validates the data set for each 𝜆. The value with the minimum 

average MSE across the grid search is then passed to the bisection method, whose initial 

left and right points are calculated as 𝜆 − 1 and 𝜆 + 1, respectively, which are also 

expressed in logarithmic space. The bisection method runs until at least one of the 

following three tolerance criteria is not met anymore: minimum delta (i.e. minimum 

change in 𝜆) = 0.1%, minimum error change = 10−11%, and maximum number of 

iterations = 20. The ridge coefficient estimates are restored to the original scale of the 

data. This transformation also computes the parameter for the constant term (or intercept) 

and provides a model that is more useful for making predictions, unlike a model with 

standardised coefficients: 

 

�̂� = (𝑋T𝑋 + 𝜆𝐼)
−1

𝑋T𝑦. (7) 

 



Developing a Volume Forecasting Model                                     7 

Lasso [31], or L1 regularisation, is another regularisation method that is similar to ridge 

regression. The main difference is that when the penalty term 𝜆  increases, more 

coefficients are set to zero, whereas ridge regression sets the coefficients close to zero, but 

not exactly zero. The lasso estimator produces a smaller model with fewer predictors. 

Based on the resulting model, lasso can be regarded as an alternative to the second 

methodology described above, i.e. stepwise regression, and other dimensionality 

reduction techniques. For a nonnegative regularisation parameter 𝜆, lasso solves the 

regularisation problem in Equation (8), where 𝑁 is the number of observations, 𝑦𝑖 

represents the response variable for observation 𝑖 , 𝑥𝑖  is the observed data for 

observation 𝑖 consisting of a vector of 𝑝 values that correspond to each predictor, 𝛽0 is 

a scalar for the intercept coefficient, and 𝛽 is a 𝑝-vector for the other model terms’ 

coefficients: 

 

min
𝛽0,𝛽

(
1

2𝑁
∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖

T𝛽)
2

+𝑁
𝑖=1 𝜆 ∑ |𝛽𝑗|

𝑝
𝑗=1 ). (8) 

 

We implemented lasso regression in a similar manner to ridge regression. The optimal 𝜆 

is determined through 10-fold cross-validation using a two-section search (i.e. grid search 

in logarithmic space between -10 and 10, followed by binary search for the same set of 

tolerance criteria that we defined for ridge regression). MATLAB’s implementation of 

lasso regression fits the regularised regression without a constant term, although its 

coefficient is returned in the ‘FitInfo.Intercept’ variable, and is eventually appended to the 

coefficient vector corresponding to the model’s predictors. 

The k-nearest neighbours (kNN) technique is a non-parametric method belonging to the 

instance-based learning family, which can be used for both classification and regression 

problems, where the function is only approximated locally. It is memory-based and 

requires no model to be fit, i.e. it memorises all of the observations and predicts the target 

variable based on the chosen similarity measure, which is typically a distance function. 

The most common distance metric for continuous variables is the Euclidean distance 

shown in Equation (9), whereas the Hamming distance, represented in Equation (10), is 

typically used for binary/categorical variables and is calculated as the number of instances 

where two observations are different: 

 

𝑑Euclidean = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑘

𝑖=1

 (9) 

 

𝑑Hamming = ∑ |𝑥𝑖 − 𝑦𝑖|𝑘
𝑖=1 . (10) 

 

The algorithm retrieves the k memorised examples that are the most similar to the one that 

is used for the current prediction using an appropriate distance function. The kNN method 

does not have any costs associated with the learning process as there is no model inferred 

and, because of this, it is also known as ‘lazy learning’, as the entire cost of this technique 

consists of the prediction computation; there are no assumptions about the characteristics 

of the data, although the lack of any learning costs makes kNN impossible to be 

interpreted as there is no description of the learnt concepts. Moreover, the accuracy of 
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kNN can be significantly impacted by the presence of noisy or irrelevant features. The 

basic version of kNN is the 1-nearest neighbour estimate, whose bias if often low, but the 

variance is high. An interesting property of the nearest-neighbour is that its error rate is 

never more than twice the minimum achievable error rate of an optimal classifier [32] 

[33]. 

In order to identify the optimal value of k, we perform 10-fold cross-validation and we 

pick the value of k that minimises the cross-validation average error. A small value of k 

means that noise will have a higher impact on the results, whereas a large value of k is 

computationally expensive and signals a highly non-linear and noisy structure. The 

number of neighbours can be regarded as a measure of noisiness; for example, 1NN is an 

indication of clear data. In general, a larger value for k is more precise, although the 

boundaries within the feature space become blurred. A few authors [34] [35] suggest an 

empirical rule-of-thumb, and setting k equal to the square root of the number of instances, 

𝑘 = 𝑛
1

2⁄ , as a starting point. We also attempted to apply PCA on the standardised 

variables in order to remove the correlations before running kNN, but it mainly dealt with 

the intercept only and did not improve the resulting model. 

We begin by standardising each feature of the data set to have mean zero and variance 1, 

because the variables have different measurement scales and there is also a mixture of 

continuous and categorical/binary variables [32]. This allows us to use the Euclidean 

distance as the nearest neighbours’ similarity measure. 

The following two methods represent slightly different implementations of kNN, which 

vary in their approach of aggregating the contribution of the identified neighbours. The 

first approach is kNN with arithmetic mean, which treats all of a point’s neighbours 

equally and computes the prediction as the average of the target variable of the k nearest 

neighbours, as shown in Equation (11). The second approach is kNN with inverse 

distance weighting, where the neighbours are assigned weights based on their distance 

from the prediction point, such that the nearer neighbours contribute more to the average 

compared to the further neighbours. This method assigns a weight to each neighbour, 

which is equal to the inverse of its distance to the prediction point; this weighted average 

is illustrated in Equation (12). The algorithm finds the k nearest observations using the 

Euclidean distance metric, then calculates the inverse distance weight of each neighbour 

and normalises the inverse distances such that their sum is equal to one. Finally, the 

method computes the weighted average of the k neighbours using their inverse distance 

weights. We implemented both methods in order to better understand the data structure. 

Using the inverse distance weighting could potentially lead to a large number of 

neighbours being identified, where most of them could have extremely small weights that 

would not influence the prediction significantly and would simply introduce more noise to 

the model. If this is the case, a parsimonious model could be identified by using the 

arithmetic mean and implicitly assigning equal weights to the neighbours: 

 

�̂� =
1

𝑘
∑ 𝑦𝑖

𝑘

𝑖=1

 (11) 

 

�̂� = ∑ 𝑑′𝑖
−1 ∙ 𝑦𝑖

𝑘
𝑖=1 . (12) 

 

Both techniques begin by identifying the optimal value for k. This is accomplished by 
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performing 10-fold cross-validation grid search for k ranging between 1 and 49, with a 

step size of 1, and between 50 and 100, with a step size of 5. Once the optimal value of k 

is found, the algorithm retrieves the closest k neighbours by standardising the training 

data set (or computing the z-score, such that each variable has unit variance and zero 

mean), and then standardising the test set using the mean and variance obtained from the 

training set. Then the predicted value is computed either by the mean of the target 

variable of the k neighbours for the kNN with arithmetic mean method, or by weighing 

the neighbours taking into account their normalised inverse distances. 

The last method is based on support vector machine (SVM) analysis [36] [37], which is a 

popular method that was traditionally employed for classification; a version of SVM for 

regression was introduced later [38] and is called support vector regression (SVR). SVM 

is non-parametric as it relies on kernel functions. SVM produces non-linear boundaries by 

creating a linear boundary in a transformed representation of the feature space [32]. SVM 

maximises the margin around the separating hyperplane and defines the solution in terms 

of a small subset of training samples, which are called the support vectors, i.e. the training 

data points that are closest to the decision hyperplane and that are most difficult to 

classify. SVR produces a model that depends only on a subset of the training data, since 

the model’s cost function ignores the training data points that are close to the model 

prediction. We implemented the sequential minimal optimisation (SMO) algorithm [39], 

which does not require a numerical optimisation algorithm or matrix computation and 

storage, because it divides a very large quadratic programming (QP) optimisation problem 

into a series of smallest possible QP problems that are solved analytically; this eliminates 

the need for a time-consuming numerical optimisation as an inner loop. The SMO 

algorithm is fast, easy to implement, and provides better scaling properties. The algorithm 

also flags the day-of-the-week features as categorical predictors. The SVR models in this 

study use the Gaussian kernel function. Keerthi and Lin [40] proved that the linear kernel 

is a degenerate version of the Gaussian kernel, also called radial basis function (RBF), 

and therefore the linear kernel would never have a better accuracy than the Gaussian 

kernel. 

Our SVR method implements the linear epsilon-insensitive SVM (-SVM) regression, 

which is also called the L1 loss. By using the predictor variables and the observed 

response variables, the goal of -SVM is to identify a function 𝑓(𝑥) such that its 

deviation from 𝑦𝑛 is no greater than  for each training point and is as flat as possible 

[41]. There are two main formulations for the optimisation problem: the primal formula 

and the dual formula. The primal formula consists of a convex optimisation problem, 

where it is possible that there is no function that satisfies the constraints for all points. 

This issue is overcome by introducing slack variables, which help deal with infeasible 

constraints and lead to the objective function, also known as the primal formula. The 

primal formula includes the box constant, which acts as a regularisation method in order 

to prevent overfitting; this imposes a penalty on all of the observations lying outside the  

margin and determines the trade-off between the flatness of the function 𝑓(𝑥) and its 

tolerance. The SVR loss is calculated based on the distance between the observed target 

variable 𝑦 and the  boundary. The dual formula provides a computationally simpler 

solution to the primal formula; it employs Lagrange multipliers in order to transform the 

optimisation problem into a form that can be solved analytically. The optimal values of 

these two problem formulations are not necessarily equal and their difference is known as 

the duality gap. The solution of the dual problem is used exclusively when the problem is 
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convex and meets a constraint qualification condition. 

 

 

3  Data Set  

We compile one of the most comprehensive pan-European data sets, ranging from 1st 

January 2000 to 10th May 2015. It consists of over 7 million observations of daily market 

data for 2,353 stocks, 3,039 bank holidays for 22 countries, 1,042 stock index futures 

expiries for 7 indices, and 49 MSCI quarterly review dates, along with a historical log of 

1,420 leavers and joiners for the investigated futures and MSCI indices. A great effort has 

been put into collecting, cleansing and processing the calendar data set due to the lack of a 

comprehensive database of bank holidays for financial markets. 

 

3.1 Market Data 

The market data contains daily observations consisting of the opening, closing, low and 

high prices and the trading volume for the constituents of the 31 most important European 

indices. The data set was retrieved from Thomson Reuters and was further processed. We 

compute the consolidated trading volume for each stock by retrieving the corresponding 

trading volume across the main European multilateral trading facilities (MTFs), i.e. BATS, 

CHI-X and Turquoise, and adding the MTF volume to the trading volume of the primary 

exchange. The resulting consolidated volume is used across this study in order to better 

reflect the true liquidity of a stock. The analysis discards the stocks with less than 100 

trading days. South Africa was included in the analysis due to its close ties with the 

European financial markets. The processed market data covers 21 European countries and 

Table 1 outlines the number of stocks and their daily observations for each country. 
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Table 1: Stock universe – Breakdown by country 

Country Name Country Code Number of Stocks Number of Observations 

    

Austria AT 32 98,179 

Belgium BE 62 205,414 

Czech Republic CZ 5 14,491 

Denmark DK 43 144,352 

Finland FI 130 390,209 

France FR 346 1,117,220 

Germany DE 176 539,142 

Greece GR 61 209,103 

Hungary HU 4 15,311 

(Republic of) Ireland IE 43 100,910 

Italy IT 111 330,609 

Netherlands NL 46 157,156 

Norway NO 69 172,562 

Poland PL 65 162,509 

Portugal PT 18 53,449 

South Africa ZA 42 139,568 

Spain ES 61 179,410 

Sweden SE 158 462,935 

Switzerland CH 104 339,998 

Turkey TR 130 412,273 

United Kingdom GB 647 1,952,265 

 

 

 

3.2 Calendar Data 

The market data is augmented by a comprehensive list of event dates, which can be 

classified as bank holidays and expiry days (i.e. stock index futures expiries and MSCI 

rebalances). These special events are expected to impact on the normal state of the 

financial markets and cause non-stationarity in trading volume. 

 

3.2.1 Bank Holidays 

The data set for bank holidays is customised specifically for the financial markets and can 

be different in certain instances from the official national public holidays for a given 

country: when an exchange venue is owned by a company which is based in another 

country (e.g. Euronext) and enforces a different trading calendar, when a trading venue is 

located in a region with additional holidays, or when unforeseeable events occur (e.g. 

Hurricane Sandy, 11th September Terrorist Attacks etc.). This calendar is an accurate 

reflection of the trading state of the US and the pan-European exchanges, consisting of 22 

countries. The United States of America was included in the data set since it is a dominant 

financial market, whose magnitude could potentially influence the European liquidity. 

The non-trading calendar was meticulously compiled from scratch and multiple sources 

(e.g. the trading calendar on the exchanges’ websites and public holidays from 

www.timeanddate.com) were used to make decisions on the final outcome. These were 
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double-checked with the empirical trading calendar resulting from the market data, which 

truly proved whether an exchange has been trading on a particular day. The accuracy of 

this calendar was vital to perform a cross-market holiday model and had to be manually 

constructed because there was no such trading calendar available; there are very few such 

calendars, although their information is either incomplete or they contain conflicting 

information. 

There are also country-specific characteristics for generating the public holidays calendar. 

For example, if a public holiday falls on a weekend, different countries substitute it with 

the previous trading day (e.g. New Year’s Eve in Austria and Belgium), with the 

following day, or do not substitute it at all. Additional ‘bridge’ holidays can be observed 

in particular countries (e.g. Hungary and Poland), when a holiday falls on a Tuesday or on 

a Thursday, resulting in four-day weekends. 

An illustrative example of the difference between the official public holidays and the 

non-trading calendar is on 1st May in the Netherlands, where the financial markets are 

shut despite the fact that 1st May is not a bank holiday. This is observed after the 

Amsterdam stock exchanged merged with the Brussels and Paris stock exchanges, in 

order to form the Euronext group. Similarly, the Belgian, Portuguese and French trading 

calendars changed after their main trading exchanges joined Euronext and therefore the 

public holidays between 1st May and Christmas Eve became regular trading days. 

 

3.2.2 Expiry Days 

The expiry day calendar incorporates periodic trading events which could be positively 

correlated with the trading volume, and consists of the futures expiries for seven liquid 

indices and the MSCI quarterly review for the MSCI International Pan Euro Price Index. 

By using the most liquid indices in Europe, this expiry calendar is an accurate 

representation of the main expiry dates in the European markets. 

We retrieved the up-to-date constituents for these indices as of 11th May 2015, which 

represent the ‘current constituents’. In order to create an accurate representation of the 

expiring indices at a given point in our analysis timeframe, we constructed a historical list 

of additions and eliminations for each index, which allowed the generation of a snapshot 

of a stock’s constituent stocks. Table 2 outlines the number of constituents for each index, 

for both futures expiries and MSCI rebalances, where the ‘historical constituents’ column 

represents the number of previous stocks that were part of the constituent list of a given 

index before 11th May 2015, but which were subsequently eliminated, such that they are 

not a constituent anymore on 11th May 2015.   
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Table 2: Market data European indices for the futures expiry analysis and MSCI rebalance 

analysis 
Analysis 

Type 

Index Name Current 

Constituents 

Historical 

Constituents 

Location 

     

Futures 

expiry 

Amsterdam Exchanges Index 25 37 Netherlan

ds 

CAC 40 Index 40 54 France 

FTSE MIB Index 40 51 Italy 

FTSE 100 Index 100 149 United 

Kingdom 

Deutsche Boerse DAX Index 30 37 Germany 

IBEX 35 Index 35 44 Spain 

OMX Stockholm 30 Index 30 33 Sweden 

MSCI 

rebalance 

MSCI International Pan Euro Price Index 

EUR Real Time 

204 338 Europe 

 

3.2.2.1 Stock Index Futures Expiries 

There are 32,408 observations of stock index futures expiries for seven indices, whose 

expiries occur either monthly or quarterly (i.e. December, March, June and September) as 

follows: 

 Monthly: CAC 40 Index Futures, FTSE MIB Index Futures, IBEX 35 Index Futures, 

Amsterdam Exchanges (AEX) Index Futures, and OMX Stockholm 30 (OMXS30); 

 Quarterly: FTSE 100 Index Futures, and DAX 30 Index Futures. 

The expiry occurs on the third Friday of the expiry month, or on the previous trading day 

when the third Friday is a non-trading day. The futures contract specifications were 

retrieved from Euronext (AEX and CAC 40), Eurex Exchange (DAX 30), London Stock 

Exchange (FTSE 100), Borsa Italiana (FTSE MIB), Bolsas y Mercados Españoles (IBEX 

35) and NASDAQ OMX (OMXS30), in order to verify the expiry specifications for each 

index. 

 

3.2.2.2 MSCI Quarterly Reviews 

The MSCI rebalances have 10,298 observations across 16 countries: Austria, Belgium, 

Switzerland, Germany, Denmark, Spain, Finland, France, United Kingdom, Greece, 

(Republic of) Ireland, Italy, Netherlands, Norway, Portugal, and Sweden. Each stock’s 

country represents the country where that stock is trading, e.g. the United Kingdom is 

defined as a Spanish stock’s country if this stock is trading on the London Stock 

Exchange. 

In general, the MSCI quarterly reviews are implemented on the last trading day of the 

February, May, August, and November quarterly cycle, although there are a few 

exceptions when the MSCI rebalance falls a few days before the end of the month. The 

MSCI quarterly review dates were double-checked with the quarterly index review 

documents from www.msci.com. 

 

 

4  Predictive Modelling  

We build a 1-step ahead out-of-sample model for predicting the trading volume, while 

fitting different supervised learning methods and examining event dates. 
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4.1 Analysis Approach 

The methodological approach for constructing the predictive model is described in this 

section. For a given stock, these models predict the volume of the next day (i.e. the target 

date) based on past observations, employing a variety of machine learning methods and 

training window types. All of the models are fit with a constant term. 

There are three cross-stock models for event dates (i.e. cross-market holidays, stock index 

futures expiries, and MSCI quarterly reviews), which are fit using normalised data from 

all of the relevant stocks. In the case of special events, very few training observations 

would be available for an individual stock, hence the necessity of aggregating the training 

points for multiple stocks. However, after learning the model on the normalised data set, 

the volume for each stock is predicted individually, by using the stock-specific 

benchmark volume that was used for normalising the stock’s past volumes. The feature 

set of these cross-stock models includes 20 lagged volumes for each stock’s observation, 

which are normalised by dividing them by their median, in order to remove any 

differences in magnitude across our stock universe. 

Besides these three cross-stock models, there are seven stock-specific models, which are 

fit using different types of supervised learning methods: OLS, stepwise regression, ridge 

regression, lasso regression, kNN with arithmetic mean, kNN with inverse distance 

weighting, and SVR. We define an iteration as a fit model for every combination of stock, 

target date, learning method, and window type. For each iteration, these stock-specific 

models follow a similar training routine, starting by defining the 10-fold stratified 

cross-validation (CV) partitions from the beginning of the analysis, in order to conduct 

the entire iteration analysis on the same data partitions (e.g. when cross-validating 

potential values for method-specific parameters such as 𝜆 or k). The CV splits the data 

into 10 equally-sized partitions, while ensuring these are stratified by the binary indicator 

variables (i.e. the day-of-the-week binary features), such that these features are evenly 

distributed across the folds; its aim is to minimise the average mean squared error (MSE) 

throughout the 10 folds. The models can potentially contain 15 raw lagged volumes (i.e. 

autoregressive past observations) and 14 smoothed lagged volumes (i.e. moving average 

past observations), in order to explain the trading volume using recent time series. The 

iteration analysis identifies the optimal orders for the raw lagged volumes (or ‘volume 

lags’) and the smoothed lagged volumes (or ‘volume windows’). It starts by fitting a 

linear regression for the lowest orders (i.e. volume lag 1, or volume window 2), then it 

increments the order by one, fits the second model, and compares the CV average MSE 

for these two models. If the higher order model performs better, the process is 

incrementally repeated for the next pair of orders (up to order 15), until the optimal order 

has been found, either when the higher order model has a larger error (and therefore the 

current model pair’s lower order becomes the optimal one), or when the order reaches the 

maximum limit of 15. This incremental comparison of nested models is conducted 

independently for the volume lags and the volume windows. 

When kNN, ridge regression or lasso regression are employed, the model proceeds to 

parameter calibration and runs grid search for k and performs a two-section search (i.e. 

grid search and binary search) for 𝜆. These searches perform 10-fold cross-validation for 

each value. Then, all of the models proceed to feature construction and model training. 

The iteration analysis ends by testing the learnt model, i.e. computing the 1-step ahead 

prediction for the target date.  



Developing a Volume Forecasting Model                                     15 

4.1.1 Training Windows 

Each model is trained using two approaches: moving window and growing window. This 

helps understand whether a model relies only on recent data or whether it improves when 

more and more data points are used for training the model. These two approaches differ in 

the size of past observations when learning a model. When iterating the target dates of a 

stock for which predictions are made, the moving window approach trains the model 

using a fixed number 𝑛 of past observations, starting from the most recent data point (i.e. 

the observation occurring right before the prediction ‘unseen’ data point) and going 

backward until n points are accumulated. Throughout the next iterations, the moving 

window gradually adds a newer observation and drops the oldest observation, whereas the 

growing window approach adds a newer observation without discarding any other 

observations. Therefore, the number of observations on the kth iteration of a model is 𝑛 

for the moving window and 𝑛 + 𝑘 − 1 for the growing window. 

There is a discrete number of sliding window sizes, whose representations are marked in 

brackets and are used when outlining the model results for this study: 1 month 

(‘MW_1M’), 3 months (‘MW_3M’), 6 months (‘MW_6M’), 1 year (‘MW_1Y’), and 2 

years (‘MW_2Y’). 

The growing window starts with a training size that is equal to the largest moving window 

size, i.e. 2 years, and is represented by ‘GW’. 

Each stock-specific learning method is trained using the five moving window types and 

the growing window, whereas the cross-stock models are fit using only the two largest 

moving window sizes (i.e. ‘MW_1Y’ and ‘MW_2Y’) and the growing window. The 

rationale of using only the 1-year and 2-year moving windows is driven by the 

significantly lower number of observations in the case of event dates (i.e. cross-market 

holidays, futures expiries, and MSCI rebalances). 

For each training window iteration, the models are re-trained based only on the data 

available in that particular training window. The window sizes have been translated into a 

certain number of trading days, such that a constant number of observations are used to 

train the models throughout the different window iterations and stocks. There are 2,937 

holidays for 22 countries whose market data is investigated, throughout 15 full years, 

between 1st January 2000 and 31st December 2014. This period covers exactly 15 years, or 

5,479 days including weekends, or 3,913 days excluding weekends. On average, there are 

252 trading days per year for each country, which are derived from the difference between 

the total number of business days and the average number of holidays per country, which 

is then divided by the number of years: (3913 − 2937 22⁄ ) 15⁄ = 251.97. Therefore, 

the fixed-length moving windows are defined in trading days as follows: 21 days for 1 

month, 63 days for 3 months, 126 days for 6 months, 252 days for 1 year, and 504 days 

for 2 years. The year 2015 was excluded from this averaging because our data set includes 

observations until 10th May 2015 and therefore this year has incomplete data. 

Out of the 2,353 pan-European stocks, there are 163 stocks (or 6.93%) whose number of 

observations is less than 504 (corresponding to the 2-year window). As for the remaining 

2,190 stocks with available data spreading on over 2 years, there are 26 stocks with less 

than 100 days outside the 2-year period, 150 stocks with more than 100 days and less than 

1,000 days, and 2,014 stocks with over 1,000 days of observations outside the 2-year 

period. 
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4.1.2 Cluster Job Management 

Given the tremendous number of iterations and runtime required by the stock-specific 

models, we ran these models on two distinct computer clusters for high performance 

computing, which operate on the Sun Grid Engine grid computing system. 

The stock-specific total runtime was 11,878 days (or 33 years), excluding the queuing 

times associated with each job, which tended to reach even several days during peak 

times. The stock-specific models have been split into jobs of maximum 1,000 iterations 

(i.e. 1,000 consecutive target dates for a given stock). For example, a stock with 3,683 

observations running a 2-year moving (or growing) window, needs 3683 − 504 = 3179 

iterations to traverse all of the target dates for 1-step ahead volume prediction; therefore, 

there are 4 jobs for this stock (broken down into 3 jobs of 1,000 iterations and another job 

of 179 iterations), for a particular learning method. Table 3 outlines the total runtime for 

each method (across all of the stocks and window types) and for each window type 

(across all of the stocks and learning methods), along with the corresponding number of 

jobs and target dates.  

 

Table 3: The distribution of runtime and number of iterations/target dates by method and 

window type 

Breakdown Item Item Name Runtime (Days) Jobs Target Dates 

     

Method OLS 554.64 45,990 39,604,267 

 Stepwise regression 819.76 45,990 39,604,267 

 Ridge regression 767.18 45,990 39,604,267 

 Lasso regression 6,014.76 45,990 39,604,267 

 kNN (arithmetic mean) 1,791.22 45,990 39,604,267 

 kNN (inverse distance) 1,361.45 45,990 39,604,267 

 SVR 569.41 45,990 39,604,267 

Window type Moving window, 1 month 938.53 55,622 49,802,970 

 Moving window, 3 months 993.51 55,391 49,111,188 

 Moving window, 6 months 1,142.35 54,978 48,074,677 

 Moving window, 1 year 1,196.28 53,571 46,029,606 

 Moving window, 2 years 1,494.24 51,184 42,105,714 

 Growing window 6,113.52 51,184 42,105,714 

 

Lasso and kNN are computationally expensive, mainly because lasso performs a 

two-section search (i.e. grid search and bisection method) and deals with a large number 

of features (up to 40 variables) when regularising their coefficients and sets some to zero, 

while kNN is memory-based and requires heavy resources when finding the k nearest 

neighbours for a test point. The runtime for the various window sizes is larger when the 

window grows in size and is significantly larger for the growing window approach. 

 

4.2 Cross-Stock Models 

We investigated the effect of event dates on trading volume, focusing on cross-market 

holidays, stock index futures expiries, and MSCI quarterly reviews. The sparsity of these 

observations determined the models to be trained on cross-stock data. Since stocks exhibit 

different volume and price magnitudes, we normalised the past observations of trading 
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volume and aggregated the data for the entire stock universe. Even after aggregating, the 

number of observations was significantly less than in the case of stock-specific models; 

there are 2,904 target dates and predicting their volume had a runtime of 15 days. Each 

model corresponds to only one learning method. The cross-market holiday model 

employs ridge regression, whereas the futures expiries and the MSCI rebalances are fit 

using OLS. 

Unlike the stock-specific models where the target variable consists of the logarithmic 

consolidated volume, the cross-stock models employ the ‘relative volume’ as the target 

variable. Equation (13) shows the formula for the relative volume, which is determined by 

the log-ratio between the consolidated volume on the target date (also called ‘event date’ 

or ‘special date’) and the stock-specific benchmark volume. This benchmark is computed 

as the median of the trading volumes of the 20 trading days prior to the target date (i.e. the 

futures expiry, MSCI rebalance, or cross-market holiday). The median was selected 

among other measures of central tendency (e.g. geometric mean or arithmetic mean) 

because it was the most robust to the outliers in our data set. By dividing a stock’s target 

date volume by the benchmark volume, we get a normalised value for the trading volume, 

which works well across our stock universe. This normalisation, consisting in the 

identification of observations from multiple stocks that have a common target date, was 

necessary as these event dates are periodic, but sparse: 

 

𝑉rel = �̂� = log
𝑉𝑡0

𝑉benchmark
= log

𝑉𝑡0

median(𝑉𝑡−1,𝑉𝑡−2,…,𝑉𝑡−20)
. (13) 

 

When performing 1-step ahead prediction, these models estimate the relative volume. In 

order to be able to make stock-specific predictions, the relative volume needs to be 

converted to a particular stock’s logarithmic volume. Essentially, we train the model on 

the entire stock universe sharing a common event date, but we make stock-specific 

predictions by transforming the target variable from being stock-agnostic to being 

stock-specific. Equation (14) shows how to calculate the stock-specific volume estimate 

𝑦′̂ based on the relative volume. We add the benchmark volume to the relative volume, as 

this is the stock-specific term that customises the volume prediction for a given stock: 

 

𝑉stock = 𝑦′̂ = 𝑉rel + log 𝑉benchmark. (14) 

 

4.2.1 Cross-Market Holidays 

The cross-market holiday model implements ridge regression, which performs a 

two-section search for each iteration. Ridge regression was appropriate for the 

cross-market holidays as it addresses the problem of multicollinearity and reduces the 

coefficient variance. Its predictors consist of the constant term, 20 lagged normalised 

volumes (i.e. a stock’s most recent 20 volumes divided by their median), 21 indicator 

variables for the trading country, and 22 indicator variables for the holiday country, 

adding the US on top of the 21 trading countries. The regression line is outlined in 

Equation (15), where 𝛽0 is the constant term, 𝑇𝑖 is the indicator variable signalling 

whether the ith country is trading, and 𝐻𝑖 indicates whether it is on holiday: 
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�̂� = 𝛽0 + ∑ 𝛽𝑖
lag 𝑉𝑡−𝑖

𝑉benchmark

20

𝑖=1

+ ∑ 𝛽𝑖
country

𝑇𝑖

21

𝑖=1

+ ∑ 𝛽𝑖
country

𝐻𝑖

22

𝑖=1

. (15) 

 

4.2.2 Stock Index Futures Expiries 

The futures expiry model is fit using OLS. Stepwise regression, or more generally feature 

selection, was not performed based on the previous findings [27], where the OLS 

provided a more stable model across the analysis. The feature set consists of the constant 

term, 20 lagged normalised volumes and 7 indicator variables corresponding to the 

futures indices included in this pan-European analysis (i.e. Amsterdam Exchange, CAC 

40, FTSE MIB, FTSE, Deutsche Boerse DAX, IBEX 35, and OMX Stockholm 30), 

showing which expiring index a particular observation is a member of. The model is 

summarised in Equation (16), where 𝐸𝑖  indicates whether a particular stock is the 

constituent of the ith index: 

 

�̂� = 𝛽0 + ∑ 𝛽𝑖
lag 𝑉𝑡−𝑖

𝑉benchmark

20

𝑖=1

+ ∑ 𝛽𝑖
index𝐸𝑖

7

𝑖=1

. (16) 

 

4.2.3 MSCI Quarterly Reviews 

The MSCI rebalance model is similar to the futures expiry model and is fit using OLS due 

to the same considerations. It is modelled for the MSCI International Pan Euro Price 

Index, which covers 204 stocks from 16 countries: Austria, Belgium, Switzerland, 

Germany, Denmark, Spain, Finland, France, United Kingdom, Greece, (Republic of) 

Ireland, Italy, Netherlands, Norway, Portugal, and Sweden. The model terms include the 

intercept, 20 lagged normalised volumes and 16 indicator variables for the trading country 

of each stock, i.e. the exchange country where the stock is trading; these are outlined in 

(17), where 𝐶𝑖 represents the indicator variable for the ith country included on the MSCI 

pan-European index: 

 

�̂� = 𝛽0 + ∑ 𝛽𝑖
lag 𝑉𝑡−𝑖

𝑉benchmark

20

𝑖=1

+ ∑ 𝛽𝑖
country

𝐶𝑖

16

𝑖=1

. (17) 

 

4.3 Stock-Specific Models 

There are seven stock-specific models employing different supervised learning techniques 

and they all begin from the model function in Equation (18). The initial feature set 

includes the constant term, 15 volume (autoregressive) lags, 14 volume (moving average) 

windows, 5 price metrics 𝑃𝑖 that are trained using the opening, closing, low and high 

prices of the previous trading day (i.e. 𝑡 − 1) and the opening price of the target day (i.e. 

𝑡0) in the case of the overnight return, and finally five indicator variables corresponding 

to each business day, denoted by 𝐷𝑂𝑊𝑖, where i ranges from 1 to 5 (i.e. Monday to 

Friday). The target variable of these models is a particular stock’s estimated logarithmic 

volume for the next trading day (i.e. 𝑡0): 
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�̂� = 𝛽0 + ∑ 𝛽𝑖
lag

𝑉𝑡−𝑖
lag

15

𝑖=1

+ ∑ 𝛽𝑖
lag

𝑉𝑡−𝑖
win

15

𝑖=2

+ ∑ 𝛽𝑖
p

𝑃𝑖,𝑡−1

5

𝑖=1

+ ∑ 𝛽𝑖
d𝐷𝑖

5

𝑖=1

. (18) 

 

We use three main price log-ratios: intraday range, asymmetric intraday return, and 

asymmetric overnight return; their formulae are shown in Equation (1), Equation (2), and 

Equation (3), respectively. The overnight return is divided by the number of intervening 

nights in order to correct for the additional non-trading day observed throughout 

weekends and bank holidays. The previous empirical evidence of Batrinca et al. [5] found 

that better performance is achieved when splitting the intraday return and overnight return 

log-ratios at zero, into positive absolute values (denoted by ‘absPos’, representing the 

absolute value of positive returns only), and negative absolute values (denoted by 

‘absNeg’, corresponding to the absolute value of negative returns). Consequently, we 

include the following 5 price metrics in the initial model: intraday range, ‘absPos’ 

intraday return, ‘absNeg’ intraday return, ‘absPos’ overnight return, and ‘absNeg’ 

overnight return. 

Given this initial model, the analysis follows the framework described in the Analysis 

Approach section for each individual iteration (i.e. for each target date, given a particular 

learning method, a particular stock and a particular window type): partitioning the data for 

the subsequent stratified 10-fold cross-validation applications and determining the 

optimal orders for the volume lags and the volume windows, producing a model with 

potentially less features than the initial model, where 15 volume lags and 14 volume 

windows were included. Then, if the method is a shrinkage method (i.e. ridge regression 

or lasso regression) or kNN, the method optimal parameter is identified using 

cross-validation on that iteration’s training set. Eventually, each of the following methods 

is applied to this model definition, using the methodology described in the Methodology 

Review section: OLS, stepwise regression, ridge regression, lasso regression, kNN with 

arithmetic mean, kNN with inverse distance weighting, and SVR. A particular constraint 

is applied to stepwise regression, where we force the constant term, the volume lags and 

volume windows to be kept into the reduced model when performing sequential feature 

selection. 

 

 

5  Results  

The results of this study are outlined in this section, along with an interpretation of their 

meaning and implication. We start by investigating the distribution of the volume lags and 

windows, and then explore the method-specific results, such as the model parameter 

distribution and feature selection. Next, we provide a performance benchmark for the 

various models employed in this model, leading to an interpretation of the optimal 

learning method and training window, and to a breakdown of the model performance by 

event dates. Based on this performance breakdown by special events, we propose a 

switching model that virtually adapts from one underlying model to another, based on the 

current state of the market, which is driven by event dates (e.g. futures expiries, MSCI 

rebalances, and cross-market holidays) or the current day-of-the-week. 
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5.1 Contribution of Recent Data: Volume Lags and Windows 

For each unique combination of stock, learning method and window type, a certain 

optimal order for the volume lag and volume window is determined for every target date. 

Since a stock has different cross-validation partitions across its various models consisting 

of different learning methods and window types, we report very minor fluctuations in the 

order distribution of volume lags and volume windows for the same window type across 

the seven training methods. Therefore, we aggregated the order values across the seven 

models, grouped by window type. 

Table 4 outlines the descriptive statistics for each window for volume lags and volume 

windows. We observe a correlation between the size of the training window and the mean 

and median of the volume lag/window orders. This suggests that the larger the training set, 

the more relevant past volumes tend to become in fitting an accurate prediction model. 

This confirms that trading volume is autoregressive and that past observations are 

meaningful if a substantial training set is available to learn the model. 

 

Table 4: Descriptive statistics for the orders of the volume lag and the volume window, 

grouped by window type 

Past Volume Type Window Type Min Max Mean Median Standard Deviation 

       

Volume lag MW_1M 1 15 1.22 1 0.51 

 MW_3M 1 13 1.33 1 0.63 

 MW_6M 1 11 1.65 1 0.89 

 MW_1Y 1 13 2.35 2 1.23 

 MW_2Y 1 15 3.56 3 1.57 

 GW 1 15 7.67 7 3.22 

Volume window MW_1M 2 15 2.24 2 0.52 

 MW_3M 2 10 2.24 2 0.54 

 MW_6M 2 12 2.34 2 0.67 

 MW_1Y 2 15 2.65 2 0.98 

 MW_2Y 2 15 3.50 3 1.50 

 GW 2 15 7.70 7 3.28 

 

In Figure 1, we can visualise how the highly positive skewness from Panel A, which 

corresponds to the smallest training window (i.e. 1-month moving window) gradually 

transforms into a relatively symmetrical distribution in Panel F, where the growing 

window approach trains the model using a variety of lag orders, including the high orders 

towards 15. 
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Figure 1: Distribution of the volume lag orders across the six different window types 

 

The moving average-based volume windows in Figure 2 exhibit a similar pattern and the 

volume window orders are positively skewed for the smallest training window (i.e. 

1-month moving window in Panel A). The positive skewness decreases once the training 

window is extended, and becomes rather symmetrical for the largest training window in 

Panel F (i.e. the growing window). The growing window starts from an initial window 

size of 2 years, whose distribution is outlined in Panel E. However, the larger the window 

becomes, the less the order distribution is positively skewed, exhibiting a negatively 

skewed distribution for the largest window sizes of the growing window, which 

ultimately yields the relatively symmetrical distribution in Panel F. 

The shift in the order distribution from smaller to larger training windows provides 

evidence that recent volume data contributes to the prediction accuracy and that the 

amount of meaningful recent data (in the form of lag and window orders) increases with 

the number of observations in the training window. 
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Figure 2: Distribution of the volume window orders for different window types 

 

5.2 Method-Specific Parameters 

We performed grid search between 1 and 50, with a unit-sized step, and between 50 and 

100, with a step size of 5, in order to identify the optimal value of k for the two kNN 

models, while conducting a two-section search for identifying the optimal value of 𝜆 for 

the two regularisation methods in this analysis. At each step, 10-fold stratified 

cross-validation was performed to validate the model performance. Below, we outline the 

distributions and patterns of these two method-specific parameters, i.e. k and 𝜆. 

 

5.2.1 k-Nearest Neighbours 

There are two models implementing kNN, one that treats neighbours equally and uses the 

arithmetic mean to determine the target variable, and one that penalises the distance 

between the test point and its neighbours through inverse distance weighting. Table 5 

includes the descriptive statistics for the values of k for each window type of the two kNN 

models, i.e. kNN with arithmetic mean and kNN with inverse distance weighting, for the 

entire stock universe. We observe similar results for the distribution of k across these two 

models, although the inverse distance weighting approach tends to have slightly higher 

values of central tendency, having the mean and median with almost 3 neighbours more 

than the arithmetic mean approach. We report that the mean and median increase with the 

window size, especially when comparing the 2-year moving window with the growing 

window, as their initial iteration is identical, confirming that the market data has a highly 

noisy structure. The value of k for the 1-month moving window reaches is less than 18 as 

it contains 21 trading days and similarly the 3-month moving window has less than 56 

neighbours as it contains 63 trading days in total. However, k reaches the maximum 

number of 100 neighbours once the training window is at least 6 months long; we did not 

allow for more than 100 neighbours in order to avoid over-smoothing and eliminating 

important properties in the data distribution. Although we expected the inverse distance 

weighting approach to have a significantly higher number of neighbours on average 

potentially because it could assign very low weights to a high number of neighbours with 
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a possible blurring effect, the difference is not very conspicuous. We conclude that the 

kNN with arithmetic average approach produces a model that is slightly more 

parsimonious that the one yielded by the inverse distance weighting, although their 

overall parameter distribution is rather similar. Their performance is discussed in a 

subsequent section. 

 

Table 5: Descriptive statistics for the values of k for the 6 different window types of the 

two kNN models 
kNN 

Approach 

Window Type Observations Min Max Mean Median Standard Deviation 

        

Arithmetic 

Mean 

MW_1M 7,111,213 1 18 10.82 11 5.25 

 MW_3M 7,012,429 1 55 23.26 20 13.92 

 MW_6M 6,864,419 1 100 32.43 29 22.29 

 MW_1Y 6,572,392 1 100 38.17 32 27.68 

 MW_2Y 6,012,088 2 100 39.42 27 29.51 

 GW 6,012,088 3 100 48.23 41 26.47 

Inverse 

Distance 

Weighting MW_1M 7,111,213 1 18 11.74 12 5.23 

 MW_3M 7,012,429 1 55 26.20 24 14.70 

 MW_6M 6,864,419 1 100 36.44 32 24.23 

 MW_1Y 6,572,392 1 100 41.72 37 28.99 

 MW_2Y 6,012,088 1 100 42.37 30 30.13 

 GW 6,012,088 1 100 51.02 44 26.99 

 

The empirical cumulative distribution function (CDF) plot in Figure 3 is for the growing 

window models; Panel A represents the kNN with arithmetic mean model, while Panel B 

represents the kNN with inverse distance weighting. The minor difference in central 

tendency is noticeable, e.g. in Panel A 65% of the values of k are less than or equal to 50, 

whereas the proportion in Panel B is 60%. 

 

 
Figure 3: Empirical CDF of k for the growing window model for kNN with arithmetic 

mean in Panel A and kNN with inverse distance weighting in Panel B 
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5.2.2 Regularisation Methods 

The shrinkage methods in this analysis consist of an initial identification step for 𝜆, 

employing a two-section search, where we first perform grid search to locate the optimal 

𝜆 in the (base 10) common logarithm interval [−10,10], using a unit-sized step in the 

log10 space, and then use the spotted value to perform bisection method for determining a 

more precise value for 𝜆. The most extreme values that 𝜆 can take are −11 and 11; this 

happens when the optimal value for 𝜆 in the grid search section is either −10 or 10 and 

this value is then used as the initial midpoint of the bisection method, with potential 

extreme values lying one unit away from this midpoint, allowing for values between the 

interval [−11,11], expressed in base 10 logarithm space. This leads to 24,596 unique 

values for 𝜆 across the six window types in the ridge regression model, and 18,862 

unique values in the lasso regression model. Based on the descriptive statistics for 𝜆 in 

Table 6, which are reported for the entire stock universe in the base 10 logarithmic space, 

we observe significant differences in the distribution of 𝜆 between ridge regression and 

lasso regression. The values of 𝜆 are more dispersed throughout the interval [−11,11] 
in the case of ridge regression, whereas lasso regression exhibits a positively skewed 

distribution, with mostly negative values, where the maximum is either 0 or 1. While the 

median for 𝜆 is around 2 for the ridge regression model, it is −2 for lasso regression. 

 

Table 6: Descriptive statistics for the values of 𝜆 
Shrinkage 

Model 

Window Type Observation Min Max Mean Median Standard Deviation 

        

Ridge 

Regression 

MW_1M 7,111,213 -11 11 5.13 2.15 4.59 

 MW_3M 7,012,429 -11 11 3.05 2.00 3.15 

 MW_6M 6,864,419 -11 11 2.26 1.96 1.98 

 MW_1Y 6,572,392 -11 11 1.94 2.00 1.17 

 MW_2Y 6,012,088 -11 11 1.86 2.00 0.87 

 GW 6,012,088 -11 11 2.04 2.00 0.80 

Lasso 

Regression MW_1M 7,111,213 -11 1 -0.36 0.00 0.87 

 MW_3M 7,012,429 -11 1 -0.93 -1.00 1.08 

 MW_6M 6,864,419 -11 1 -1.42 -1.25 1.22 

 MW_1Y 6,572,392 -11 1 -1.82 -2.00 1.28 

 MW_2Y 6,012,088 -11 0 -2.12 -2.00 1.27 

 GW 6,012,088 -11 0 -2.43 -2.01 1.16 

 

The difference in the distribution of 𝜆 stems from the different ways in which the two 

penalties work when dealing with two variables that are highly correlated: the L1 

regulariser (i.e. lasso regression) picks only one of the two correlated predictors, whereas 

the L2 regulariser (i.e. ridge regression) keeps both of them in the model and jointly 

shrinks their coefficients. Therefore, L2 penalties can minimise the prediction error better 

than L1 penalties, although L1 penalties can reduce overfitting and produce a more 

parsimonious model. In this section, we only examine the patterns observed in the 

distribution of these method-specific parameters. The predictive power of these models is 

compared in a subsequent section of this study. 
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5.3 Feature Selection 

We analyse the results of feature selection, which was conducted by two methods: 

stepwise regression and lasso regression. The stepwise regression models were enforced 

to keep the intercept and the volume features (i.e. volume lags and volume windows), 

performing feature selection on the price features (i.e. intraday range, intraday return 

absPos/absNeg, and overnight return absPos/absNeg) and the five day-of-the-week 

features, whereas the lasso models could eliminate any feature from the full model. 

Because of this methodology difference, we start by investigating the selection of the 

volume features in the reduced model produced by lasso regression. Since every model 

starts by identifying the optimal order of the volume lags and volume windows, Table 7 

outlines the proportion of each volume order (ranging from 1 to 15 for the volume lags 

and from 2 to 15 for the volume windows) in the full models throughout all of the 

window types of lasso regression. We observe that the volume lag and window orders 

below 7 are initially included in over 10% of the samples, out of a total of 39,584,629 

model iterations. Once these full models are fit with the optimal orders, lasso regression 

performs variable selection. 

 

Table 7: The proportion of volume lag and volume window orders in the full models of 

lasso regression, averaged over the six window types 

 Order 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                

Volume lags 10

0 

56.5

2 

36.8

0 

24.5

0 

18.6

9 

12.3

0 

9.3

4 

7.2

6 

6.0

0 

4.8

9 

2.9

8 

1.8

6 

1.2

3 

0.8

1 

0.5

7 

Volume 

windows 

- 100.

00 

42.6

5 

25.2

7 

18.4

6 

12.4

2 

9.3

4 

7.3

5 

6.0

9 

5.0

1 

3.1

5 

1.9

4 

1.3

0 

0.8

8 

0.6

3 

 

In order to compute the proportion of each volume feature in the reduced lasso model, we 

take into account that the volume lag and window orders are mostly less than the 

maximum value (i.e. 15) and, for each stock, we count the number of occurrences of each 

feature in the reduced model and also the number of models where a particular volume 

feature could not be possibly part of the reduced model, because the initially identified 

optimal order of the full model is lower than this particular volume order. Lasso 

regression selected the intercept in 100% of the model iterations. Figure 4 illustrates the 

selection proportions of the volume features (i.e. both volume lags and volume windows) 

in the reduced models across the six window types of lasso regression. The volume lags 

up to order 11 are selected in more than half of the model iterations, whereas the 

proportions for the volume window features are significantly lower, ranging from 10% to 

35%. 
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Figure 4: The proportion of volume lag and volume window orders in the reduced model 

produced by lasso regression 

The distribution of the selection proportions of the volume features for each window type 

is outlined in Table 8, for the purpose of spotting potential trends in the volume 

autoregressive nature. We observe a very high retention of the volume lag features for the 

models that are trained on at least 6 months of data (i.e. MW_6M, MW_1Y, MW_2Y, 

and GW). This trend is not followed by the selection of the volume windows, but we can 

conclude that past observations of the trading volume become more relevant when the 

learnt model is trained on more than 6 months of observations, and that volume becomes 

more autoregressive in this context. 

 

Table 8: Selection proportion for the volume lag and volume window orders for each 

window type 
Order Window type for volume lags Window type for volume windows 

MW_1M MW_3M MW_6M MW_1Y MW_2Y GW MW_1M MW_3M MW_6M MW_1Y MW_2Y GW 

             

1 17.70 56.56 82.94 95.47 99.28 99.94 0 0 0 0 0 0 

2 23.68 65.29 88.02 95.89 98.12 99.52 5.74 18.10 32.64 43.14 48.83 47.80 

3 29.75 71.37 91.92 97.07 97.83 99.24 7.60 20.23 23.94 16.51 14.25 27.20 

4 30.43 67.71 90.10 96.30 96.47 97.27 11.94 27.23 31.64 19.56 12.71 25.57 

5 36.85 71.30 90.46 96.15 96.27 96.05 15.30 28.71 33.85 20.43 12.09 22.30 

6 40.33 60.84 79.05 91.04 95.13 95.23 19.04 26.46 33.56 22.16 14.42 22.60 

7 41.57 64.21 84.99 94.46 97.57 95.03 19.62 23.95 31.74 24.32 15.86 21.45 

8 34.09 60.38 79.70 92.01 97.63 94.07 20.73 24.49 29.78 25.01 17.96 20.65 

9 5.56 45.45 77.14 92.23 97.66 94.61 20.45 23.91 26.90 23.27 18.61 19.56 

10 0 0 90.32 95.59 97.02 95.08 0 33.33 28.57 39.39 26.99 19.87 

11 0 0 90.91 92.65 93.68 96.84 0 0 41.67 21.57 26.95 19.59 

12 0 0 0 91.30 95.28 96.77 0 0 100.00 27.27 25.22 17.76 

13 0 0 0 75.00 99.29 98.41 0 0 0 33.33 32.28 18.31 

14 0 0 0 0 95.45 97.72 0 0 0 100.00 28.95 19.41 

15 0 0 0 0 100.00 99.80 0 0 0 0 35.71 34.42 

 

Next, we discuss the feature selection of the price variables and the day-of-the-week 
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indicator variables for both stepwise regression and lasso regression. Table 9 shows the 

selection percentage for each feature after averaging the results across the six window 

types. There is a notable difference in the selection proportion of the price features with 

significantly higher values for the stepwise regression implementation, whereas the price 

features are selected in approximately 3% of the lasso regression models. The 

day-of-the-week variables are similarly selected in both learning methods. Mondays have 

the highest percentage (approximately 42%), proving their great significance, either as a 

weekend effect or as an impact of the Monday bank holidays. Friday is the second most 

frequent day-of-the-week in the reduced model (being selected in approximately 25% of 

the models), possibly because of the weekend effect or due to the expiry day effect (e.g. 

stock index futures expiries or MSCI quarterly reviews). 

 

Table 9: The features selected by stepwise regression and lasso regression, averaged 

across the six window types 

Variable % in model 

Stepwise regression Lasso regression 

   

Intraday range 27.62 3.71 

Asymmetric intraday return (absPos) 26.44 3.34 

Asymmetric intraday return (absNeg) 26.91 3.03 

Asymmetric overnight return (absPos) 42.32 3.31 

Asymmetric overnight return (absNeg) 38.60 3.19 

Day-of-week: 1 41.81 42.84 

Day-of-week: 2 20.60 26.18 

Day-of-week: 3 18.88 25.36 

Day-of-week: 4 17.63 21.43 

Day-of-week: 5 23.52 26.99 

 

5.4 Methodology Performance 

For the comparison of the various methods, we need to bear in mind that different stocks 

have different error magnitudes. Employing the commonly used residual-based evaluation 

(i.e. including the cross-stock MSE of each method) would not be informative as we are 

looking to obtain stock-specific model stability. We need to look at some type of error 

normalisation and a simple way of doing this is to rank the different methods/models for 

each stock, and then look at the overall (average) ranks when comparing across stocks. 

Here, we ask the question “What proportion of the time was one method better than the 

other” and look at the relative performance for each stock. We perform the rankings for 

each stock and then answer how often each method was the best. 

This error-based ranking approach is common in statistics [42], and can be used overall, 

as well as on the specific event days. Ranking-based evaluation measures for regression 

models are interpretable and they are robust against extreme outliers. We used the 

prediction data, containing the predicted and the observed trading volume for each trading 

day. Then, we computed the MSE for every stock and then ranked the methods based on 

the MSE. We used dense ranking (or "1223" ranking), where the models with equal 

predictions get the same ranking number and the next model receives the following 

ranking number. 
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The rank averages for each method and window type in Table 10 show that ridge 

regression trained on a 2-year moving window is the best method for all of the trading 

dates, including special events. The optimal length of the sliding window approach is 2 

years, both for the cross-stock models (i.e. futures expiries, MSCI rebalances, and 

cross-market holidays) and the stock-specific models (i.e. OLS, stepwise regression, ridge 

regression, lasso regression, and kNN), with the exception of SVR, whose best error is 

achieved by the 6-month moving window. The 2-year moving window and the growing 

window tend to have the best performance across all methods. The 2-year moving 

window is better in 5 models (i.e. futures expiries, stepwise regression, ridge regression, 

lasso regression, and SVR), whereas the growing window is better in the other 5 models 

(i.e. MSCI rebalances, cross-market holidays, OLS, kNN with arithmetic average, and 

kNN with inverse distance weighting). The average rank for the stock-specific models are: 

37.85 for MW_1M, 28.99 for MW_3M, 23.21 for MW_6M, 18.80 (18.61 including the 

special event models) for MW_1Y, 17.30 (16.55 including the special event models) for 

MW_2Y, and 17.52 (16.61 including the special event models) for GW. For the moving 

windows, the rank improves once the window length increases. However, the growing 

window has a slightly worse rank than MW_2Y, suggesting that recent data might be 

more relevant as there could be structural breaks across the years. This pattern is not 

applicable to the OLS method, where the lowest rank across all the models is achieved by 

OLS GW. 

 

Table 10: The mean of the rank of each method and window type for all of the target 

dates 
Window 

size 

Futures 

expirie

s 

MSCI 

rebalance

s 

Cross-mark

et holidays 

OLS Stepwise 

regressio

n 

Ridge 

regressio

n 

Lasso 

regress

ion 

kNN 

(Arithmeti

c mean) 

kNN 

(Inverse 

distance) 

SVR 

           

MW_1

M 

- - - 45.82 44.32 38.93 29.93 34.79 33.50 37.65 

MW_3

M 

- - - 36.33 29.81 19.56 21.01 30.07 28.37 37.74 

MW_6

M 

- - - 22.54 18.73 13.71 15.63 28.43 26.57 36.88 

MW_1Y 13.93 16.85 23.74 13.01 11.12 8.78 11.16 26.10 24.52 36.92 

MW_2Y 12.11 11.76 20.55 8.27 7.78 6.96 9.85 25.22 23.87 39.14 

GW 13.93 10.57 19.03 7.94 8.20 8.16 10.09 23.62 22.27 42.33 

 

The performance of the two kNN methods improves when the window size is larger, as 

more similar data points are found among the past observations. Throughout the 

stock-specific learning methods, ridge regression is the best one for 4 window types 

(MW_3M, MW_6M, MW_1Y, and MW_2Y). OLS has the best average rank for the 

growing window approach, although the rank of ridge regression growing window is the 

second best. When using fewer points to train the model, lasso regression achieves the 

best error. SVR with Gaussian kernel has the poorest performance; this could be further 

improved by implementing SVR with feature selection. 

The standard deviations in Table 11 show the performance volatility of the three 

cross-stock models compared to the stock-specific models. 
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Table 11: The standard deviation of each method and window type for all of the target 

dates 
Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR 

           

MW_1M - - - 2.06 2.55 5.37 8.03 5.68 5.48 5.51 

MW_3M - - - 6.93 7.12 5.38 6.58 6.43 6.33 3.79 

MW_6M - - - 7.32 5.88 4.84 4.97 6.61 6.59 3.95 

MW_1Y 15.39 17.75 14.49 6.34 5.09 4.55 4.67 5.94 6.21 4.77 

MW_2Y 14.99 16.13 13.88 5.72 4.66 4.92 4.88 5.62 6.05 4.74 

GW 16.91 15.73 13.91 6.39 6.02 6.68 6.27 8.39 8.37 4.45 

 

5.5 The Switching Model 

From the methodology performance ranks, we infer an adaptive switching model. This is 

a cross-stock in-sample analysis that aims to better understand the performance of the 

various models on specific dates of interest. The 6,012,088 samples are drilled down to 

the lowest possible granularity by various temporal characteristics, such as: non-event 

dates (i.e. dates without any special event such as cross-market holidays, futures expiries, 

or MSCI rebalances), futures expiry index, MSCI rebalances, cross-market holidays, and 

day-of-the-week. This breakdown incorporates all combinations of these temporal aspects 

in order to find the best local model. Table 12 provides a dissection of the switching 

model for all the temporal combinations (i.e. every combination of event dates) and 

outlines each of the 42 sub-models, along with their best models, window sizes and 

average ranks. For a given trading day, the switching model chooses between these 

sub-models and picks the locally optimal model. Non-event dates and (special) event 

dates are mutually exclusive. Moreover, futures expiries and MSCI rebalances also have 

no overlapping days. The switching model is fit based on the 42 time intervals and their 

associated best models. 

We make a specific comparison of errors on the various event days. The performance 

comparison between two methods for a given temporal circumstance is computed by 

getting the intersection of the trading dates that match the current temporal circumstance 

(e.g. non-event date, special event, certain day-of-the-week etc.) and comparing their 

ranks. In the situation of a clash between two special events, we choose the model 

preference by investigating the performance of these models using the intersection of the 

trading days for these special events, and then computing the MSE per stock and ranking 

each method for this reduced data set. 

 

Table 12: Switching model drilldown based on granular temporal circumstances 
Event type Samples Method Window Rank 

Average 

Rank 

Standard 

Deviation 

      

Non-event Mondays 813,433 Ridge regression MW_2Y 7.45 5.80 

Non-event Tuesdays 1,063,098 Ridge regression MW_2Y 7.45 5.63 

Non-event Wednesdays 1,075,948 Ridge regression MW_2Y 7.23 5.33 

Non-event Thursdays 986,720 Ridge regression MW_2Y 7.41 5.49 

Non-event Fridays 930,276 Ridge regression MW_2Y 7.25 5.22 

FTSE MIB Futures expiry (Thursdays) 94 OLS MW_2Y 16.73 10.92 

IBEX 35 Futures expiry (Thursdays) 25 Lasso regression MW_6M 18.32 12.41 

OMX Stockholm 30 Futures expiry (Thursdays) 105 OLS MW_2Y 13.30 9.90 

Amsterdam Exchanges Futures expiry (Fridays) 2,410 Futures expiry GW 3.06 3.90 

CAC 40 Futures expiry (Fridays) 4,380 Futures expiry GW 4.53 5.56 

FTSE MIB Futures expiry (Fridays) 3,571 Futures expiry GW 5.96 7.19 
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Event type Samples Method Window Rank 

Average 

Rank 

Standard 

Deviation 

FTSE 100 Futures expiry (Fridays) 3,035 Futures expiry GW 3.72 6.90 

DAX Futures expiry (Fridays) 1,037 Futures expiry MW_1Y 3.76 8.13 

IBEX 35 Futures expiry (Fridays) 3,432 Futures expiry GW 5.55 8.58 

OMX Stockholm 30 Futures expiry (Fridays) 3,220 Ridge regression MW_1Y 8.22 6.15 

MSCI rebalance Mondays 417 Lasso regression MW_3M 17.96 11.51 

MSCI rebalance Tuesdays 2,091 MSCI rebalances GW 11.95 12.90 

MSCI rebalance Wednesdays 1,556 MSCI rebalances MW_2Y 9.20 9.40 

MSCI rebalance Thursdays 1,152 MSCI rebalances GW 16.61 13.90 

MSCI rebalance Fridays 3,268 MSCI rebalances GW 15.04 14.57 

Cross-market holiday Mondays 358,289 Cross-market 

holidays 

GW 7.96 9.37 

Cross-market holiday Tuesdays 153,291 Cross-market 

holidays 

GW 10.54 9.82 

Cross-market holiday Wednesdays 141,087 Cross-market 

holidays 

GW 8.91 10.15 

Cross-market holiday Thursdays 221,034 Cross-market 

holidays 

GW 8.57 9.58 

Cross-market holiday Fridays 230,755 Cross-market 

holidays 

GW 8.31 8.63 

Cross-market holiday and Amsterdam Exchanges 

Futures expiry (Thursdays) 

59 OLS GW 17.31 12.42 

Cross-market holiday and Amsterdam Exchanges 

Futures expiry (Fridays) 

733 Futures expiry GW 8.94 11.58 

Cross-market holiday and CAC 40 Futures expiry 

(Thursdays) 

108 OLS MW_3M 20.23 16.55 

Cross-market holiday and CAC 40 Futures expiry 

(Fridays) 

1,342 Futures expiry MW_2Y 6.47 9.86 

Cross-market holiday and FTSE MIB Futures expiry 

(Thursdays) 

70 Stepwise 

regression 

MW_1Y 12.14 9.63 

Cross-market holiday and FTSE MIB Futures expiry 

(Fridays) 

955 Futures expiry MW_2Y 9.69 11.07 

Cross-market holiday and FTSE 100 Futures expiry 

(Thursdays) 

86 Futures expiry GW 13.67 12.41 

Cross-market holiday and FTSE 100 Futures expiry 

(Fridays) 

1,326 Futures expiry GW 7.19 10.91 

Cross-market holiday and DAX Futures expiry 

(Thursdays) 

29 Futures expiry MW_2Y 14.03 17.95 

Cross-market holiday and DAX Futures expiry 

(Fridays) 

457 Futures expiry MW_1Y 2.62 3.18 

Cross-market holiday and IBEX 35 Futures expiry 

(Thursdays) 

84 Stepwise 

regression 

MW_2Y 15.12 10.86 

Cross-market holiday and IBEX 35 Futures expiry 

(Fridays) 

1,026 Futures expiry MW_2Y 7.35 10.78 

Cross-market holiday and OMX Stockholm 30 

Futures expiry (Thursdays) 

133 Cross-market 

holidays 

GW 6.80 7.79 

Cross-market holiday and OMX Stockholm 30 

Futures expiry (Fridays) 

831 Futures expiry GW 11.91 7.10 

Cross-market holiday and MSCI rebalance Mondays 342 Cross-market 

holidays 

GW 15.51 12.88 

Cross-market holiday and MSCI rebalance 

Wednesdays 

199 Cross-market 

holidays 

GW 14.53 11.80 

Cross-market holiday and MSCI rebalance Fridays 584 MSCI rebalances GW 14.67 14.42 

 

Next, we compare the switching and the non-switching models, using the average ranks 

of these methods. The switching model does not have a certain window size enforced as it 

adapts to the right window size depending on the temporal circumstance. The average 

ranks in Table 13, along with the standard deviations in Table 14, show the impressive 

performance of the switching model, which strongly suggests that markets switch to 

different states on special events. The switching model has the lowest average rank (5.64); 

the next best rank is achieved by ridge regression MW_2Y (7.73) and the worst by OLS 
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MW_1M (46.82). The switching model was ranked first in 26.32% of the 2,181 stocks, 

whereas ridge regression MW_2Y is the best in only 1.65% of the cases. Throughout 

76.98% of the stocks, the switching model outperforms the second best model, i.e. ridge 

regression MW_2Y. Moreover, the switching model is better than the least performing 

model for every stock in our universe. 

 

Table 13: The average rank for every method and window type, along with the switching 

model, for all of the target dates 
Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR Switching 

model 

            

MW_1M - - - 46.82 45.32 39.92 30.91 35.78 34.49 38.64 - 

MW_3M - - - 37.33 30.81 20.52 21.96 31.05 29.34 38.74 - 

MW_6M - - - 23.52 19.70 14.62 16.55 29.40 27.54 37.87 - 

MW_1Y 14.41 17.36 24.53 13.90 11.98 9.59 12.01 27.07 25.50 37.92 - 

MW_2Y 12.56 12.12 21.31 9.07 8.58 7.73 10.71 26.21 24.86 40.14 - 

GW 14.39 10.90 19.77 8.57 8.84 8.79 10.80 24.58 23.23 43.33 - 

- - - - - - - - - - - 5.64 

 

Table 14: The standard deviation of the rank of each method and window type, along with 

the switching model, for all of the target dates 
Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regressio

n 

kNN 

(Arithmeti

c mean) 

kNN 

(Inverse 

distance) 

SVR Switching 

model 

            

MW_1M - - - 2.06 2.56 5.40 8.08 5.71 5.50 5.54 - 

MW_3M - - - 6.95 7.14 5.48 6.69 6.48 6.38 3.82 - 

MW_6M - - - 7.35 5.93 4.97 5.11 6.68 6.66 3.97 - 

MW_1Y 15.77 18.14 14.79 6.44 5.21 4.65 4.82 5.99 6.26 4.79 - 

MW_2Y 15.34 16.52 14.20 5.81 4.73 4.98 4.96 5.65 6.07 4.75 - 

GW 17.29 16.11 14.22 6.62 6.27 6.93 6.50 8.45 8.43 4.46 - 

- - - - - - - - - - - 4.82 

 

Figure 5 illustrates one of the best switching models (i.e. the lowest MSE for a particular 

stock) for Telefonica SA (TEF.MC), whose MSE for the entire period is 0.078. The plot 

shows the observed volume and the predicted volume of the switching model for a 

cropped period of 1 year, due to clarity considerations, between 02/01/2009 and 

30/12/2009, where the 1-year MSE is 0.063 for 254 observations. 
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Figure 5: Volume prediction using the switching model over one year for Telefonica SA 

 

The best performance improvement achieved by the switching model, compared to the 

best initial stock-specific models, is 17.41% for Total SA (TOTF.PA). This is computed 

using the relative change in MSE from the best initial stock-specific model to the 

switching model. For clarity purposes, we cropped its timeline in Figure 6 to 1 year, 

between 02/01/2013 and 31/12/2013. For these 255 observations, the improvement 

percentage is 33.40%, the MSE of the best initial model (i.e. ridge regression MW_2Y) is 

0.095884, while the MSE of the switching model is 0.063856. 
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Figure 6: The performance improvement of Total SA from the best initial stock-specific 

model to the switching model 

 

The largest performance improvement of the switching model when compared to the 

worst performing initial model is 99.99% improvement and is achieved for 5 stocks. As 

an illustrative example, Avenir Finance SA (AVEF.PA) has 3,220 observations and the 

MSE of the worst initial model (i.e. OLS MW_1M) is 4640865.802, whereas the 

switching model MSE is 4.448. Across all stocks, the performance of the worst initial 

models is improved by the switching model by 74.595% on average. 

 

5.6 Stock-Specific Metamodel 

Since the switching model provides an in-sample analysis suggesting the various states 

markets shift between, we further pose the question whether we can improve the 

switching model better and provide an out-of-sample model for a given stock. Therefore, 

we use the ranking-based evaluation measures in order to build an out-of-sample 

stock-specific metamodel (or surrogate model). For a given stock, we employ a fixed size 

window of past observations, where the various methods are ranked and the best method 

is picked to make the next one-step ahead volume forecast. We train two metamodels, 

using a 1-month and a 3-month moving window. At each step, we evaluate the previous 

month (corresponding to 21 trading days) or 3 months (corresponding to 63 trading days) 

and we pick the current best performing method at a given time to make the next day 

volume prediction. We must note that these metamodel moving windows are different 

from the concept of moving windows applied to the stock-specific initial models. Here, 

we still train the initial models using the various training windows (ranging from the 



34                                                    Bogdan Batrinca et al. 

one-month moving window to the growing window), and then we investigate the 

prediction error over the past month or 3 months in order to select the best model 

throughout the recent time series. 

We compute the squared errors for all of the stocks. Then, for each stock, we perform a 

moving average over one month (21 days) and three months (63 days). We discard 20 

stocks having less than 100 test dates as these would not provide enough data for this 

out-of-sample analysis. This results in 6,011,125 samples, which are further processed by 

discarding the initial n days for each stock, where n is the lag number (i.e. 21 trading days 

or 63 trading days), yielding 5,965,744 samples for the 1-month metamodel and 

5,874,982 samples for the 3-month metamodel. 

 

5.6.1 One-Month Metamodel 

The one-month metamodel is the 27th best model based on the average rank (23.42) in 

Table 15, having a standard deviation of 6.40. Throughout the initial models, there are 8 

cross-stock models and 19 stock-specific models that outperform the one-month 

metamodel. The best rank is achieved by ridge regression MW_2Y and the worst one by 

OLS MW_1M. The one-month metamodel was the best model for 2 stocks (0.09%), 

whereas ridge regression MW_2Y was the best in 8.33% of the stocks. The metamodel is 

better than ridge regression MW_2Y for 43 stocks (1.99%) and it is better than the least 

performing model, i.e. OLS MW_1M, for all of the 2,161 analysed stocks. 

 

Table 15: The mean of each method and window type, along with the one-month 

metamodel, for all of the target dates 
Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR 1-month 

meta 

model 

            

MW_1M - - - 46.84 45.37 40.06 30.79 35.80 34.48 38.68 - 

MW_3M - - - 37.34 30.77 19.93 21.55 30.83 29.06 38.78 - 

MW_6M - - - 22.94 18.92 13.76 15.79 29.23 27.32 37.85 - 

MW_1Y 14.28 17.31 24.40 12.98 11.10 8.73 11.15 26.82 25.19 37.90 - 

MW_2Y 12.36 12.05 21.09 8.22 7.71 6.91 9.82 25.85 24.47 40.13 - 

GW 14.27 10.86 19.58 7.87 8.18 8.13 10.05 24.11 22.72 43.37 - 

- - - - - - - - - - - 23.42 

 

The largest improvement from the best initial stock-specific model to the one-month 

metamodel is 3.88% and it is achieved for DBV Technologies SA (DBV.PA). Figure 7 

illustrates the predictions of the one-month metamodel compared to the best initial model 

(i.e. stepwise regression) for 247 observations of DBV Technologies SA, between 

14/05/2014 and 30/04/2015, where the metamodel performance improvement is 4.5458%. 

The best initial model MSE is 0.51099, whereas the metamodel MSE is 0.48776. 
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Figure 7: The volume prediction of the best initial model and the one-month metamodel 

for DBV Technologies SA 

 

5.6.2 Three-Month Metamodel 

The three-month metamodel model is the 19th best model based on the average rank 

(14.93) outlined in Table 16, having a standard deviation of 5.31. There are 13 cross-stock 

models and 5 initial stock-specific models that are better than the three-month metamodel. 

Again, the best rank is achieved by ridge regression MW_2Y and the worst by OLS 

MW_1M. The three-month metamodel was the best model in only 0.42% of the stocks, i.e. 

9 out of 2,161 stocks, whereas ridge regression MW_2Y is the top ranked model in 8.28% 

of the stocks. The metamodel is better than the ridge regression MW 2Y model in 9.58% 

of the stock universe (i.e. 207 stocks) and it outperforms the least performing initial 

model across all of the stocks. 

 

Table 16: The mean of each method and window type, including the three-month 

metamodel, for all of the target dates 
Window 

size 

Futures 

expiries 

MSCI 

rebalances 

Cross-market 

holidays 

OLS Stepwise 

regression 

Ridge 

regression 

Lasso 

regression 

kNN 

(Arithmetic 

mean) 

kNN 

(Inverse 

distance) 

SVR 3-month 

meta 

model 

            

MW_1M - - - 46.83 45.35 40.06 30.97 35.83 34.52 38.75 - 

MW_3M - - - 37.25 30.77 20.39 21.89 31.07 29.27 38.79 - 

MW_6M - - - 23.41 19.55 14.18 16.39 29.42 27.53 37.83 - 

MW_1Y 14.44 17.57 24.61 13.28 11.31 8.87 11.44 27.09 25.40 37.82 - 

MW_2Y 12.53 12.18 21.42 8.32 7.78 6.96 10.01 26.11 24.75 40.03 - 

GW 14.36 11.11 19.87 7.99 8.34 8.28 10.31 24.43 23.04 43.36 - 

- - - - - - - - - - - 14.93 

 

The largest improvement from the best initial model is achieved by the three-month 
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metamodel in the case of Sponda Oyj (SDA1V.HE), with a performance improvement of 

3.24%. Figure 8 illustrates the volume predictions made by the best initial stock-specific 

model and the three-month metamodel for Sponda Oyj. There are 253 observations in the 

one-year cropped timeline, between 03/01/2005 and 30/12/2005. The metamodel, whose 

MSE is 0.8728, improves the performance of the best initial model (i.e. lasso MW_1Y), 

whose MSE is 1.0219, by 14.5936%. 

 

 
Figure 8: The best initial model vs. the 3-month metamodel volume prediction for Sponda 

Oyj 

 

The three-month metamodel has a significantly better performance than the one-month 

metamodel and provides improved model stability, by exhibiting a lower standard 

deviation. 

 

 

6  Discussion 

Volume prediction is critically important for optimal order allocation in order to minimise 

the market impact. Traders and portfolio managers aim to model the market liquidity by 

predicting the trading volume such that they do not over-participate, by incurring 

excessive market impact, or under-participate, by incurring opportunity cost. The study 

employs an enormous data set, comprising the daily market data for 2,353 European 

stocks from 21 countries, along with a precisely constructed trading calendar covering 

more than 15 years for these 21 European countries and the United States. 

The aim of this study is to train a variety of learning methods and window types in order 

to better understand how they perform in certain circumstances, by specifically 
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investigating event dates, such as cross-market holidays, futures expiries, or MSCI 

quarterly reviews, along with other aspects, e.g. day-of-the-week effect, price-volume 

relation asymmetry etc. Considering the difference in the volume and price magnitudes 

among our European stock universe, we independently train 42 stock-specific models, by 

fitting seven learning methods (i.e. OLS, stepwise regression, ridge regression, lasso 

regression, kNN with arithmetic mean, kNN with inverse distance weighting, and SVR) 

for each window type (i.e. the 1-month, 3-month, 6-month, 1-year, and 2-year moving 

windows, and the growing window). These independently fit stock-specific models had a 

remarkable runtime of 33 years on the high performance computing clusters. Three 

additional models are trained using cross-stock normalised observations for the special 

events (i.e. cross-market holidays, futures expiries, and MSCI rebalances), which are 

eventually used to make stock-specific predictions. These cross-stock models are learnt 

using the 1-year and 2-year moving windows and the growing window, producing 9 

cross-stock models in total. 

Our results corroborate previous findings and provide empirical evidence that the trading 

volume is autoregressive and this property becomes stronger (i.e. the autoregressive order 

increases) once the size of the training set is large enough (i.e. in excess of 6 months of 

training data). For example, the median order of the volume lags and volume windows for 

the growing window approach is 7. The volume observations from the previous one and a 

half weeks provide relevant trends, given that the model is trained on a substantial 

number of data points. The number of neighbours selected by kNN increases gradually 

once the window length becomes larger. Both kNN with arithmetic mean and kNN with 

inverse distance weighting reach the maximum number of 100 neighbours that we 

imposed in our analysis only when the size of the training window is at least 6 months 

long. 

While investigating the effects on volume of the days of the week, we provide consistent 

results with previous findings [5]. Mondays are retained by the feature selection methods 

in 42% of the models, followed by Fridays, whose indicator variable is kept in almost 

25% of the models. 

Using a ranking-based evaluation, we report that the best model is trained using ridge 

regression on a two-year moving window. The results indicate that OLS, i.e. the study’s 

most rudimentary method, trained on a growing window has a marginally worse 

performance than ridge regression, which deals with the multicollinearity problems. The 

rank of the moving windows improves once the window length increases and the optimal 

size of the moving window approach is 2 years, whose performance is similar to that of 

the growing window, although the 2-year moving window has a better rank average 

across all of the seven learning methods. This could be explained by possible structural 

breaks across the 15 years analysed by this study, potentially worsening the performance 

of the growing window when the window reaches a very large size. 

Based on a thorough dissection of the temporal circumstances for all of the stocks, we 

infer a cross-stock switching model that employs the best initial stock-specific model for 

a given date characteristic. There are 42 disjoint temporal circumstances that are 

described by different models, which best apply to a particular state of the financial 

markets. This cross-stock in-sample analysis drills down the 6 million samples into high 

granularity circumstances identified based on a variety of temporal factors, such as 

non-event dates, futures expiries, MSCI rebalances, cross-market holidays, 

day-of-the-week etc. The excellent performance achieved by the switching model 

confirms our hypothesis that markets are event-driven and shift to different states based 



38                                                    Bogdan Batrinca et al. 

on special events. 

Ultimately, the goal of this research is to improve model stability and we propose an 

out-of-sample stock-specific metamodel that evaluates the initial independent 

stock-specific models on a time window of one month or three months, and picks the 

model whose performance rank is the best throughout the chosen time window, in order 

to predict the following day’s trading volume. The average performance rank of the 

one-month metamodel is 23rd, whereas the three-month metamodel performs significantly 

better and its rank decreases to the 15th position. These metamodels provide an 

out-of-sample dynamic framework, which aims to improve error stability and forecasts 

the expected volume to mitigate market impact. 
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