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Stability Properties With Cone —Perturbing

Liapunov Function method
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Abstract

¢o — Lp — equistability, integrally ¢, — equistability,  eventually ¢, -
equistability, eventually equistability of a system of differential equations are
studied, perturbing Laipunov function. Our methods are cone valued perturbing
Liapunov function method and comparison methods. Some results of these
concepts are given.
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1 Introduction

Stability concepts of differential equations has been interested important from
many authors, Lakshmikantham and Leela [4] discussed some different concepts
of stability of system of ordinary differential equations namely, eventually
stability, integrally stability, totally stability, L, stability, partially stability,
strongly stability, practically stability of the zero solution of systems of ordinary
differential equations, Liapunov function method [6] that extend to perturbing
Liapunov functional method in [3] play essential role to determine stability
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properties.
Akpan et, al [1] discussed new concept namely, ¢,— equitable of the zero
solution of systems of ordinary differential equations using cone -valued Liapunov
function method. Soliman [7] extent perturbing Liapunov function to so-called
cone-perturbing Liapunov function method that lies between perturbing Liapunov
function and perturbing Liapunov function.
In [2], and [3] EI-Shiekh et.al discussed and improved some concepts stability of
[4] and discussed new concepts mix between @g—equitable and the previous kinds
of stability [3-5],[8-11]
In this paper, we discuss and improve the concept of Ly — equistability of the
system of ordinary differential equations with cone perturbing Liapunov function
method and comparison technique. Furthermore, we prove that some results of ¢q
— Lp — equitability of the zero solution of the nonlinear system of function
differential equations with cone -valued Liapunov function method. Also we
discuss some results of @o — Lp — equitability of the zero solution of ordinary
differential equations using a cone - perturbing Liapunov function method.
Let R™ be Euclidean n —dimensional real space with any convenient norm | || ,
and scalar product (.,.) < ||.|lll.]| . Let for some p > 0
S, ={x € R, ||x|| < p}.

Consider the nonlinear system of ordinary differential equations

x'=f(tx), x(ty) = x,, (1.2)
where f € C[] X Sp,R"],] = [0,00) and C[J x S, R"] denotes the space of
continuous mappings J x S, into R™.
Consider the differential equation

u =g(tu) u(ty) =ug (1.2)

where g € C[J] X R™, R™], E be an open (t,u) — set in R"*1.

The following definitions [1] will be needed in the sequel.
Definition 1.1 A proper subset K of R™ is called a cone if

(DAKcK, 1=0. (iDK+KCK,

(iiDK = K, (iv)K° # @, (v)K n (—K) = {0}.
where K and K° denotes the closure and interior of K respectively, and K denote
the boundary of K.
Definition 1.2.Theset K* = {¢ € R™,(¢,x) = 0,x € K} is called the adjoint cone
if it satisfies the properties of the definition 1.1.
x € 0K if (¢, x) = 0 for some ¢ € K ,K, = K/{0}.
Definition 1.3. A function g:D - K,D c R™ is called quasimonotone relative to
the cone K if x,y € D,y —x € 0K then there exists¢, € K such that
($o,y —x) = 0 and (¢, g(y) — g(x)) > 0.

Definition 1.4. A function a(.) is said to belong to the class X if a € [R*,R*],
a(0) = 0and a(r) is strictly monotone increasing in r .
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2 On ¢y — Lp — equistability

Perturbing Liapunov function method was introduced in [2] to discuss ¢po —
equitability properties for ordinary differential equations. In this section, we will
discuss ¢, — Lp — equistability of the zero solution of the non linear system of
ordinary differential equations using cone valued perturbing Liapunov functions
method.

The following definitions will be needed in the sequel and related with [2].
Definition2.1.The zero solution of the system (1.1) is said to be ¢, — equistable, if
for e > 0,t, € ] there exists a positive function &(ty, €) > 0 that is continuous in
to such that for t > t,,.

(Dy, %) < 8, implies (b, x(t, tg,%p)) < €.
where x(t, tg, Xo) IS the maximal solution of the system (1.1).

In case of uniformly ¢-equistable , the & is independent of t,.
Definition2.2. The zero solution of the system (1.1) is said to be ¢y — L, —

equistable and P > 0, if itis ¢, — equistable and for each € > 0, t, € ] there exists
a positive function §, = §,(t,, €) > 0 continuous in t, such that the inequality
(bo,Xo) < 8y, implies (g, | 1x(s,tg,%0)||IFds) < .
to
In case of uniformly ¢, — Lp — equistable, the §, is independent of t,,.
Let for some p > 0, — L,—equistability of (1.1), integrally ¢,— equistability
Sp = {x € R", (g, %) < p, Py € Kp}.
We define for V € C[] x S%, K], the function D*V(t, x)by

1
D*V(t,x) = }llirr%) sup- (V(t + h,x + hf(t, x)) — V(t,x)).

The following result will discuss the concept of ¢, — L, — equistability of (1.1)
using comparison principle method.

Theorem 2.1. Suppose that there exist two functions g; € C[J X R,R] and
g, € C[J X R,R] with g,(t,0) =g,(t,0) =0 are monotone non decreasing
functions, and there exist two Liapunov functions
where V;(t,0) = V,,,(t,0) = 0,and S; = {x € R"; (¢po,x) <71 ,do € Kz} and
S,’;Cdenotes the complement of S, satisfying the following conditions:
(H{)V; (t,x) is locally Lipschitzian in x and
D* (o, Vi (£, %)) < gl(t, V, (¢, X)) for (tx) €]xS;.

(Hy)V,, (t,x) is locally Lipschitzian in x and

b($o,%) < (Po, Vony (£, %)) < a(do, x) (2.1)
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t

((I)Oi ”X(Sr tOIXO)”PdS)

to
t

< (o, Von (6 x(t0,X0)) < a1(dbo, | 11x(s,to, %) [I7ds), (2.2)

to
where a,a;,b,b; € X for (t,x) €]XS;N S";C.
(H3)D* (o, V1 (£, %)) + DT (o, Vo (t, X)) < g2(t, V1 (£, %) + Vo (£,%)) for (t,%) €
J % S5 nSsE.
(H4)If the zero solution of the equation

u, = gl(t) u)) u(tO) = Up. (23)
IS ¢, — equistable, and the zero solution of the equation
w' =gyt w), w(ty) = w, (2.4)

is uniformly ¢, — equistable. Then the zero solution of the system (1.1) is ¢y —
Lp — equistable.

Proof. Since the zero solution of (2.4) is uniformly ¢, — equistable , given
0 < e < p and by(€) > 0 there exists §, = §y(e) > 0 such that t > ¢,

(b0, wg) < 8, implies (g, r2(t, to, o)) < by(e). (2.5)
where 1, (t, to, wg) is the maximal solution of the system (2.4).
From the condition (H-), there exists §, = §,(¢) > 0 such that

5
3(82) < 70

From our assumption that the zero solution of the system (2.3) is ¢, — equistable,
given %"and to € Ry, there exists 6" = §*(ty, €) > 0 such that

(2.6)

) 2.7
(o, up) < 6%, implies (g, (L, to, Up)) < ?0, fort >t (2.7)

where 14 (¢, ty, ug) is the maximal solution of the system (2.3).
From the conditions (H,), (2.1),(H3),(H,) and applying Theorem (2) of [6], it
follows the zero solution of the system (1.1) is ¢, —equistable.
To show that there exists §, = &, (ty, €) > 0, such that
(o, x0) < &, implies (o, fto (s, to, xo) 17 ds) <e.
Suppose this is false, then there exists t; > t, > t,. such that for (¢, ¥) < 6,.
t1 tz
(o [ TG to 7 ds) = 8, (o, [ IxGtomlPds) =€ (g
to to
t
82 < (o, | llx(s, to, x0)|IPds) < € for t € [ty,t,].
to
Let 5, = n and setting m(t,x) = Vi(t,x) + Vo, (¢, x)for t € [ty,,].
From the condition (H3), we obtain
D+(¢O' m(t' X)) < 92 (t' m(t' .X'))
We can ChOOSE m(tl,X(tl)) = Vl(tl,x(tl)) + VZT] (tl,x(tl)) = Wg-
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Applying Theorem (8.1.1) of [5], we get

(P, m(t, %)) < (Po, 72(t, t1, m(ty, x(£1))) for t € [ty,t,]. (2.9)
Choosing u, = V;(ty, x). From the condition (H;) and applying the comparison
Theorem, we get

(¢Ol Vl (tr x)) S (d)()! 7"1 (t! t()! uO) )
Let t = tyand from (2.7),we get
0
(P0, Vi (1, x(t1)) < (o, 11(E1, Lo, Up)) < ?O-
From the condition(H,), (2.6) and(2.8), we obtain
(o Van (t2, 2(£2)) < s (o, [ 125, to, o) 1P ds) < 0, (8,) < 2.

So we get (oo, wo) = (Po, Vi(t1, x(t1)) + Vapp (1, X, x(21)) < 6.
Then from (2.5) and (2.9), we get

(Po, m(t,x)) < (Po, 12(t, ty, w(t1)) < by(e). (2.10)
From the condition (H,), (2.8) and (2.10) at t = t,
t2
bi(e) = b1(¢0'] llx(s, to, xp) 1P ds) < (‘ibo:Vzn(tz'x(tz)) < (¢po, m(ts, x(t3))
to
< b, (e).

This is a contradiction, therefore it must be

(o]

(¢0, ”.X(S, to, xo)”PdS) <€ prOVided that (¢0, xo) < 60.
to
Then the zero solution of the system (1.1) is ¢, — Lp — equistable.

3 On Integrally ¢,-equistable

In this section, we discuss the concept of Integrally ¢, - equistability of
the zero solution of non linear system of ordinary diffrential equations using cone
valued perturbing liapunow functions method and comparison principle method.
Consider the non linear system of differential equation(1.1) and the perturbed
system

x'=f(t,x) + R(t,x),x(ty) = xg (3.2
where f,R € C[] x S;,R"|,] =[0,0] and C[J x S}, R™] denotes the space of
continuous mapping J X Sjinto R™. Consider the scalar differetail equation (2.3),
(2.4) and the perturbing equations

u' = gq(t.w) + @(8),ulty) = ug (3.2)

w' = go(t.w) + @2(8), w(ty) = wg (3.3)
where g,,9, € C[J] X R,R], ¢1,¢, € C [], R] respectively.
The following definitions [4] will be needed in the sequal.

Definition 3.1. The zero solution of the system (1.1) is said to be integrally
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o -equistable if for every a > 0 andt, € J, there exists a positive function
B = [ (ty, @) which in continuous in t,, for each aand f € K, such that for
b € K; every solution x(t,t,,x,) of pertubing differential equation (3.1), the
inequality

((I)O'x(t' to 'xO)) < ﬁ ’ t =t
holds, provided that (¢, xo) < a, and every T> 0,

(o | suppaisIRG0Nds) <

to
Definition 3.2.The zero solution of (3.2) is said to be integrally ¢,-equistable if ,
forevery a; = 0 and t, € J, there exists a positive function f; = B, (t,, &) which
in continuous in t,, foreach @, and B, € K, suchthat for ¢, € K; every solution
u(t, ty,uy) of perturbing differential equation (2.3), the inequality

(do, u(t, to,up)) <pPi, t =t
holds, provided that (¢, uy) < @, , and for every T> 0,

to+T
(¢0:f @1(s)ds) < a.
t

0
In the case of uniformly integrally ¢,-equistable , f;is independent of t,.

We define for a cone valued Liapunov function V(t,x) € C[J X S;, K] is
Lipschitzian in x. The function

1
D*V(t,x)3, = lim sup (V(t+hx+h(f(t,x) + R(tx))) — V(¢ x)).
The following result is related with that of [5].

Theorem 3.1. Let the function g,(t, w) be nonincreasig in w for each t € R*,
and the assumptions (H,), (H,) — (2.1) and (H;) be satisfied.
If the zero solution of (2.3) is integrally ¢,-equistable, and the zero solution of (2.4)
is uniformly integrally ¢,-equistable.
Then the zero solution of (1.1) is integrally ¢,-equistable.
Proof . Since the zero solution of (2.4) is integrally ¢, — equistable, given
@, = 0and ty, = 0 there exists By = Lo (ty, @) such that t > tysuch that for any
¢o € K, and for any solution u(t, t,, u,) of the perturbed system (3.2) satisfies the
inequality

(o u(t, to,u)) < Bo (3.4)
holds provided that (¢, uy) < @y, and for every T> 0,

to+T
(o, j o1()ds) < .
t,

0
From our assumption that the zero solution of the system (2.3) is uniformly

integrally ¢, - equistable given a, > 0, there exists ; = B, (a,) such that every
solution w(t, ty, wy) of the perturbed equation (3.3) satisfies the inequality

(¢0' a)(t' tO' a)O)) < Bl (35)
holds provided that (¢, wg) < a, and for every T> 0,
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to+T
(o, f 92(s)ds) < .
t,

0

Suppose that there exists @ > 0 such that

a, = ala) + By (3.6)
sinceb(u) — oo as u - o then we can find B (t,, a) such that
b(B) > B1(az) (3.7)

To prove that the zero solution of (1.1) is integrally ¢, — equistable, it must be for
every a > 0 andt, € J , there exists a positive function g = f(t,, «) which in
continuous in t,, for each @ and g € X, such that for ¢, € K; every solution
x(t, ty,xo) of pertubing differential equation (3.1), the inequality

(o, x(t,to,%0)) <P, t =t
holds , provided that (b, x,) < « andevery T> 0,

(o | suppaisIRG0Nds) <

to
Suppose this is false, then there exists t, > t; > t, such that
(¢0' x(tq, to, xo)) =a ,(pox(tyte,x)) =P (3.8)

a < (¢, x(t, to,x9)) <P for t € [ty, t5]
Let 8, = a, and setting m(t,x) = Vy(t,x) + V,, (¢, x)for ¢t € [ty,t,].
Since V;(t, x)andVy, (t,x) are Lipschitizian in x for constants M and K
respectively. Then

D*(¢po, V1 (t, x))31 + D¥ (B0, Voy (£, X))31 <
D* (o, V1 (£, %)) 1.1 + DT (o, Vay (t, X)) 1.1 + N (o, R(E, x)).

where N = M + K. From the condition (H;), we obtain

D+(¢O' m(t: X)) < 9> (t'm(t' X)) + N((pO' R(t, X))
We can choose m(tq, x(t1)) = Vi (&1, x(t1)) + Vo (1, x(£1)) = wy.
Applying Theorem (8.1.1) of [5], we get

(o, m(t,x)) < ((boﬂ"z(t' tpm(tpx(tl))) for t € [ty,t;] (3.9)

where (¢, £, m(t1, x(t1)) is the maximal solution of the perturbed system (3.3),
where ¢,(t) = NR(t,x). To prove that (¢, 5(t, t1, wy)) < By(a3), it must be

shown that
to+T

(Po, wo) < a3, (‘I»”o’fto P2(s)ds) < a;
Choosing uy = V;(to, xo), since V;(t,x) is a Lipschitizian in x for a constant
M > 0,then
lolllIV1(to, xo) Il < Mlidollllxoll

(P, Up) = (¢0,V1(t0,x0)) < M(¢o,xp) < Ma = a; (3.10)

Also we get
D* (o, V1(t, x))31 < D¥ (o, V1(t, x)) 1.1 + M (o, R(E, X)).

From the condition (H;) we get

(¢0, Vi(t, %)) < (o, 11 (t, o, up) ) for t € [ty,t;].
where 14 (¢, to, ug) is the maximal solution of (3.2) and define ¢,(t) = MR(t, x).
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Integrating it,we get
to+T

to+T to+T
f 01(s) ds = f MIRGs,0llds < M [ supp<sllR(s,0llds
t t

0 0 to

which leads to

to+T to+T
(Gbo;f 91(s) d5> =M <¢o;f sup|x<plIR(s, X)||d5> <SM=a (3.11)
t

0 to
From (3.4),(3.10) and (3.11) at t = t,,we get
(Po, V1 (t1, x(1)) < (Po, 11 (1, to, Ug)) < Bo.
From the condition (2.1) and (3.7), we obtain
(P, Voy (81, (1)) < a1 (o, x(t1)) < a(a).
From (3.6), we get

(o, W) = (o, V1(t1, x(t1)) + Vo (b1, X, x(t1)) < 3 (3.12)
Since ¢, (t) = NR(t, x), then integrating both sides
to+T to+T to+T
[ emas= [ NIREolIds <N [ suppayepIRE DS
tO to tO

which leads to

to+T to+T
(4’0»] @2(s) d5> < N(%] sup)x<glIRCs, x)”ds) SN=a (313)
t

0 to

Then from (3.5), (3.12) and (3.13), we get

(o, m(t, %)) < (o, 12(L, t1, w(t1)) < By(az). (3.14)
From the condition (2.1), (3.7) and (3.14) at t = t,,we have

b(B) = b(ﬁbo'x(tz)) < (@0, Voy (2, x(82)) < (o, m(tz, x(t2))

< Bi(az) < b(B).
That is a contradiction, therefore it must be

((I)O,X(t, tO 'xO)) < ﬁ’t = tO
Then the zero solution of the system (1.1) is integrally ¢, — equistable.

4 Eventually equistable

In this section, we discuss the notion of eventually-equistable of the zero solution
of non linear system (1.1) using perturbing liapunow functions method and
comparison principle method.
The following definition will be needed in the sequel and related with that [3].
Definition 4.1. The zero solution of the system (1.1) is said to eventually
uniformly equistable if for e > 0, there exists a positive function
8(e) >0 and 7 = 1(€) such that the inequality

lIxoll <&, implies|| x(t, tg,x0)|| <€, t =1ty = 1(€)
where x(t, ty, Xo) 1S any solution of the system (1.1).
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Theorem 4.1. Suppose that there exist two functions g,, g, € C[] x R*,R] with
g1(t,0) = g,(t,0) = 0, and two Liapunov functions
V;(t,x) € C[J X S, R"] and V,,,(t,x) € C[] X S, N S§, R"]
where V; (t,0) = V,, (t,0) = 0,and S, = {x € R" ||x|| < n} and S§ denotes the
complement of S, satisfying the following conditions
(h;)V; (t,x) is locally Lipschitzian in x and
D*Vi(t x) < gi(t Vi(t,x)) for (t,x) €] XS,
(hz)V,, (t,x) is locally Lipschitzian in x, and
b(llx) < Va (£, x) < a(llxIl)

for 0 <r <||x|| <pand t = 6(r), where 8(r) is a continuous monotone
decreasing inr, for0<r <p wherea,b € X. For (tx)€]XS,N Sﬁ.
(h3)D*V; (t,x) + D Vo, (£, %) < g,(t, Vi (%) + Vo (£, %)) for (t,x)) €] X S, N
Se.
(h,) If the zero solution of (2.3) is uniformly equistable, and the zero solution of
(2.4) is eventually uniformly equistable, then the zero solution of the system (1.1) is
uniformly eventually equistable.
Proof. Since the zero solution of (2.4) is eventually uniformly equistable, given
b(e) > 0 there exists 7, = 7;(€) > 0 and 6, = 6,(e) > 0 such that

wo < &, implies w(t, ty, wg) < b(€), t =ty = 11(€) 4.1)
wherew(t, ty, wy) isany solution of the system (2.4).
Since a(u) » was u - o fora € X , it is possible to choose 6; = 6;(€¢) > 0
such that

a(6,) < % (4.2)

From our assumption that the zero solution of the system (2.3) is uniformly
equistable. Given 52—" , there exists 8" = 6"(e) > 0 such that

4.3
Uy < 8%, implies u(t, ty, up) < 70 (43)

whereu(t, ty, uy) is any solution of the system (2.3).
Choosing u, = V;(ty, x0), since V; (t, x) is a Lipschitizian function for a contant
M. Then there exists §, = 6,(€) > 0 such that
l|xoll < &,, implies V;(tg, x0) < M ||xo]| < M5, < &
max|[7, (€), 75 (€)].
To prove theorem, it must be shown that set
d = min(d;, ,) and suppose||xy|| < &6, definet,(€) = 9(5(6)) and let T
= 1(€)
x|l < & implies|| x(t, ty, x0)|| < €, t =ty = 1(€)
Suppose that is false, then there exists t, > t; > t,such that
llx (DIl = 61, [lx ()l = € (4.4)
8 < [x(®)]| <€ fort€ [ty,t,].
Let 8; = nand setting m(t,x) = Vi (t,x) + Vo, (t,x) for t € [ty, t;].
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From the condition(hs), we obtain
D*m(t, x) < G,(t, m(t,x)).
we can choose m(ty, x(t1)) = Vi(ty, x(t1)) + Vor (t1, x(t1)) = wy.
Applying Theorem (8.1.1) of [5], we get
m(t, x) < ry(t ty, m(ty, x(¢4))) (4.5)

wherer;, (t, t;, m(ty, x(t;))) is the maximal solution of (2.4). Choosing
uy = V;(tg, xo). From the condition (h;) and applying the comparison Theorem,
we get

Vi(t x) < r(t ty, ug)for t € [tg, tq]. (4.6)
Let t = tyand from (4.3), we get

Vi(ty, x(1)) < 1y(ty,to,up) <
From the condition (h,), (4.2) and (4.4)
Van (b1, x(6)) < a( llx(e)]) < a(8;) <22

5o

2

So we get

wo = Vi (ty, x(t1)) + Vo (t1:x(t1)) < &y.
Then from (4.1) and (4.5), we get

m(t, x) < ry(tty, w(ty)) < b(e) 4.7)
From (h,),(4.4) and (4.7)at t =t,

b(e) = b(llx(t) Il < Voq (tz, x(£2)) < m(ty, x(t2)) < b(e).
This is a contradiction, therefore it must be
|| x(t, to, x)Il < €,t =ty = 1(€)

Provided that||x,|| < &.Then the zero solution of the system (1.1) is uniformly
eventually equistable.

5 Eventually ¢, — equistable

In this section, we discuss the notion of eventually¢,-equistable of the zero
solution of non linear system (1.1) using cone valued perturbing liapunow
functionsmethod and comparison principle method. The following definition is
somewhat new and related with that [3].

Definition 5.1. The zero solution of the system (1.1) is said to
eventually uniformly ¢q-equistable if for € > 0 there exists a positive function
8(e) >0 and 7 = 1(€) such that the inequality
(bo,x0) <8, 1mplies (g, x(t, tg,%0)) <€, t =ty =>1(€)
where x(t, ty, Xo) 1S the maximal solution of the system (1.1).

Theorem 5.1.Let the assumptions (H,),(H,) — (2.1) and (H;3) be satisfied for
0<r<(¢gx)<pandt=06(r) where 6(r) is a continuous monotone
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decreasing inr for0 < r < p wherea,b € K. If the zero solution of (2.3) is
uniformly ¢, -equistable and the zero solution of (2.4) is uniformly eventually
&, -equistable. Then the zero solution of (1.1) is uniformly eventually
do-equistable.
Proof. Since the zero solution of (2.4) is eventually uniformly ¢, — equistable,
given b(e) > 0 there exists 7, = 7,(€) > 0 and §, = §,(e) > 0 such that

(o, wg) < &, implies (¢, 72 (t, to, wo)) < b(€) ,t =ty = 71(€) (5.1)
where 7, (t, to, ) is the maximal solution of the system (2.4).
Since a(u) » cas u » o fora € X, it is possible to choose 6; = 6;(e) > 0
such that

a6 <2 (5.2)

From our assumption that the zero solution of the system (2.3) is uniformly

¢, —equistable.Given 82—0 , there exists §" = §"(e) > 0 such that

(o, up) < &%, implies (¢pg, 11 (L, ty, ug)) < 82—0 (5.3)
where 7, (t, ty, ugy) is the maximal solution of the system (2.3).
Choosing u, = V;(ty, xo), since V; (t, x) is a Lipschitizian function for a constant
M. Then there exists §, = §,(€e) > 0 such that
St (Po,x0) < &, implies (¢, V1(to, %)) <M (o, x0) < M, < 6”
e
8 = min(6;, 6,) and suppose(dg, Xo) < 8,
then define t,(€) = 9(6(6)) and let t(€) = max|ty(€), T, (€)].
To prove the zeo solution of (1.1) is uniformly eventually ¢,-equistable, it must
be shown that
(o, x0) < 8, implies(po, x(t, to, x0)) < €t = to = 1(€)
Suppose that is false, then there exists t, > t; > t, such that
(¢0,X(t1)) = 61 ) (d)OIX(tZ) =€ (54)
81 < (o, x(t, tg, x9)) < € for t € [ty, t;].
Let 8; = n,and setting m(t,x) = V;(t,x) + V,,, (t,x)for t € [ty, t;].
From the condition (H3), we obtain
D* (¢po, m(t, x)) < g,(t, m(t,x)).
Choose m(ty, x(t;)) = Vi(ty, x(t1)) + Von (t1, x(£1)) = wo.
Applying Theorem (8.1.1) of [5], we get A
(¢0; m(t’ .X')) < ((POI I (t' tl! m(tl' x(tl))) (55)
Choosingu, = V; (tg, xo), from the condition (H;) and applying the comparison
Theorem 1.4.1 of [3], we get

(¢0, Vi(t, X)) < (o, 11 (L, to,up) ) for t€ [ty ty]. (5.6)
Let t = t;and from (5.3) , we get

o)
(B0, Vi (ty, x(t1))) < (o, 11 (t1, to, up)) < 70.
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From the condition (H,), (5.2) and (5.4)

0
(D0, Vo (t1, x(£1))) < a( o, x(t1)) < a(dy) < ?0
So we get

(B0, wo) = (Po, Va(ty, x(t1))) + (¢o, Von, (ty, x(£1))) < 8.
Then from (5.1) and (5.5), we get

(¢, m(t, %)) < (o, r2(t t1, 0(t1))) < b(e). (5.7)
From (H,),(5.4)and (5.7)at t =t,

b(€) = b(do, x(t2)) < (o, Voy (t2, x(£2))

< (¢o, m(tz, x(t2)) < b(e).
This is a contradiction, therefore it must be
(o, x(t, tg,x0)) < €,t =ty = T(€)
Provided that (¢, xo) < 6. Then the zero solution of the system (1.1) is uniformly
eventually ¢, — equistable .
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