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Abstract

The Black-Scholes equation is a partial differential equation character-
izing the price evolution of a European call option and put option on a
stock. In this work, we use the Adomian Decomposition Method (ADM)
for the approximation of the solution of the Black-Scholes equation and
show how it can be applied to a case in which the volatility is not con-
stant but is dependent on the price of the underlying asset. Finally, we
expose a numerical example to validate the developed method.
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1 Introduction

In finance, a financial derivative (or derivative) is a financial product whose

value varies depending on the price of another asset; the asset of which depends

takes the name of the underlying asset. In practice, the options are a type of

derivative, i.e., a contract which we have the option to buy or sell a certain

underlying asset at a certain date and at a price established. Therefore, an

option can be a purchase option or a selling option, called call option and put

option, respectively.

Commonly, an option is valued using the Black-Scholes model, which is

a partial differential equation which, when solved, produces a function that

allows us to know the price of a derivative, depending on the underlying asset

price and time. As the name suggests, this model was proposed by Fischer

Black and Myron Scholes [8]. Subsequently, Robert Merton published a paper

with a deeper and more consistent development of the mathematical model.

In this paper we will do a study through the Adomian decomposition

method of the Black-Scholes equation for a case in which volatility is vari-

able, this case is a more acceptable model to describe the current behavior of

finance in the world.

This paper is organised as follows. Section 2 includes a brief description

of the Adomian decomposition method (ADM). In the Section 3, the Black-

Scholes equation for the standard case of constant volatility is exposed. In

Section 4, a recursive solution for the Black-Scholes equation (with variable

volatility) is found via the ADM. Finally, in Section 5 we present an exam-

ple to illustrate the goodness of the Adomian decomposition method applied

to mathematical finance and compare the results with solutions previously

obtained in the literature for this type of equations.

2 Description of the Adomian Decomposition

Method (ADM)

The Adomian decomposition method (ADM) will be applied to the follow-
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ing general nonlinear equation

Ltu(x, t) + Ru(x, t) + Nu(x, t) = g(x, t) (1)

where Lt = ∂
∂t

, R is the linear remainder operator that could include partial

derivatives with respect to x, N is a nonlinear operator which is presumed

to be analytic and g is a non-homogeneous term that is independent of the

solution u.

Solving for Ltu(x, t), we have

Ltu(x, t) = g(x, t)−Ru(x, t)−Nu(x, t). (2)

As L is presumed to be invertible, we can apply L−1
t (·) =

∫ t

0
(·)dr to both sides

of equation (2), obtaining

L−1
t Ltu(x, t) = L−1

t g(x, t)− L−1
t Ru(x, t)− L−1

t Nu(x, t). (3)

An equivalent expression to (3) is

u(x, t) = f(x) + L−1
t g(x, t)− L−1

t Ru(x, t)− L−1
t Nu(x, t). (4)

where f(x) is the constant of integration with respect to t that satisfies Ltf = 0.

In equations where the initial value t = t0, we can conveniently define L−1.

The ADM proposes a decomposition series solution u(x, t) given as

u(x, t) =
∞∑

n=0

un(x, t). (5)

The nonlinear term Nu(x, t) is given as

Nu(x, t) =
∞∑

n=0

An(u0, u1, . . . , un) (6)

where {An}∞n=0 is the Adomian polynomials sequence established in [4, 12].

The Adomian polynomials have been studied in a formal manner in [12].

Substituting (5) and (6) into equation (4), we obtain

∞∑
n=0

un(x, t) = f(x)+L−1
t g(x, t)−L−1

t R
∞∑

n=0

un(x, t)−L−1
t

∞∑
n=0

An(u0, u1, . . . , un),

(7)
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with u0 identified as f(x) + L−1
t g(x, t), and therefore, we can write

u0(x, t) = f(x) + L−1
t g(x, t),

u1(x, t) = −L−1
t Ru0(x, t)− L−1

t A0(u0),
...

un+1(x, t) = −L−1
t Run(x, t)− L−1

t An(u0, . . . , un).

¿From which we can establish the following recurrence relation, that is obtained

in a explicit way for instance in reference [13],{
u0(x, t) = f(x) + L−1

t g(x, t),

un+1(x, t) = −L−1
t Run(x, t)− L−1

t An(u0, u1, . . . , un), n = 0, 1, 2, . . . .
(8)

Using (8), we can obtain an approximate solution of (1), subject to the initial

condition u(x, 0) = f(x) as

u(x, t) ≈
k∑

n=0

un(x, t), where lim
k→∞

k∑
n=0

un(x, t) = u(x, t). (9)

ADM requires far less work in comparison with traditional methods [1]. This

method considerably decreases the volume of calculations. The decomposition

procedure of Adomian [7] easily obtains the solution without linearizing the

problem by implementing the decomposition method rather than the standard

methods. In this approach, the solution is found in the form of a convergent

series with easily computed components; in many cases, the convergence of

this series is extremely fast and consequently only a few terms are needed in

order to have an idea of how the solutions behave. Convergence conditions of

this series have been investigated by several authors, e.g., [5, 6, 2, 3].

3 The Black-Scholes Equation (with constant

volatility)

This model is a partial differential equation whose solution describes the

value of an European Option, see [8, 11]. Nowadays, it is widely used to
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estimate the pricing of options other than the European ones. For an European

call or put on an underlying stock paying no dividends, the equation is:

Vτ (S, τ) +
1

2
σ2S2VSS(S, τ) + rSVS(S, τ)− rV (S, τ) = 0, (10)

where V is the price of the option as a function of underlying price S and

time τ ; with 0 ≤ τ < T, and S ≥ 0; here the risk-free interest rate r and the

volatility σ are assumed to be constant.

There are many varieties of options. European options may only be exer-

cised on the maturity date. American options may be exercised any time up to

and including the maturity date. The Asian option is an option whose payoff

depends on the average price of the underlying asset during the period since

the issue of the option until its expiration date, e.g., see [10] for details.

In the case of a European option, the value of the like-call option can be

obtained from (10) with the boundary conditions:
Vc(S, T ) = max(S −K, 0) : τ = T

Vc(0, τ) = 0 : S = 0

Vc(S, τ) → S −Ke−r(T−τ) : S →∞.

We have that

Vc(S, τ) = SN

(
1

σ
√

T − τ

[
ln(

S

K
) + (r +

1

2
σ2)(T − τ)

])

−e−r(T−τ)KN

(
1

σ
√

T − τ

[
ln(

S

K
) + (r − 1

2
σ2)(T − τ)

])
,

where N(η) = 1√
2π

∫ η

−∞ e−
S2

2 dx and K > 0 is the strike price.

Here S = S(τ) for τ ∈ [0, T ]; the solution of (10) provides both an option

pricing formula for a European option and a hedging portfolio that replicates

the contingent claim assuming that: The asset price S or the value of the

underlying asset follows a geometric Brownian motion and the volatility σ

which measures the standard deviation of the returns and the riskless interest

rate r are all constant for 0 ≤ τ ≤ T , and no dividends are paid in that

time period. In the next section we will do a study through ADM of the

Black-Scholes equation for a case in which volatility is not constant.
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4 The Black-Scholes equation through ADM

There are several transaction cost models from the most relevant class of

Black-Scholes equations for European and American options with a constant

interest rate r and a nonconstant modified volatility function

σ̂2 = σ̂2(τ, S, VS, VSS). (11)

There have been many approaches to improve the aforementioned model by

treating the volatility in different ways, e.g., using a modified volatility function

σ̂ to model the effects of transaction costs, illiquid markets and large traders,

which is the reason for the nonlinearity of (10). In the present paper, we will

consider the variable volatility σ(S) =
√

2σS with σ a constant, replacing this

volatility in the equation (10) becomes{
Vτ (S, τ) + σ2S4VSS(S, τ) + rSVS(S, τ)− rV (S, τ) = 0,

V (S, T ) = f(S), S ∈ [0,∞).
(12)

Note by considering the translation t = T − τ , and denoting V (S, τ) = u(S, t),

problem (12) assumes the form{
ut(S, t) + σ2S4uSS(S, t) + rSuS(S, t)− ru(S, t) = 0,

u(S, 0) = f(S), S ∈ [0,∞).
(13)

4.1 ADM for Black-Scholes

Comparing (13) with equation (1), we have that g(S, t) = 0, and

Lt =
∂(·)
∂t

, R = σ2S4∂2(·)
∂S2

+ rS
∂(·)
∂S

− r, N = 0. (14)

Applying L−1 =
∫ T

t
(·)dz in both sides of the equation (13), we obtain,

L−1ut(S, t) = −σ2L−1S4uSS(S, t)− rL−1SuS(S, t) + rL−1u(S, t), (15)

equivalently

u(S, T )−u(S, t) = −σ2

∫ T

t

S4uSS(S, z)dz−r

∫ T

t

SuS(S, z)dz+r

∫ T

t

u(S, z)dz,
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from where

u(S, t) = f(S) + σ2

∫ T

t

S4uSS(S, z)dz + r

∫ T

t

SuS(S, z)dz − r

∫ T

t

u(S, z)dz.

By ADM assuming that the solution could be expressed in terms of a series

u(S, t) =
∞∑
i=0

ui(S, t),

we obtain
∞∑
i=0

ui(S, t) = f(S) + σ2

∞∑
i=0

∫ T

t

S4ui,SS(S, z)dz

+ r

∫ T

t

∞∑
i=0

Sui,S(S, z)dz − r
∞∑
i=0

∫ T

t

ui(S, z)dz,

from where, we establish the following recursion relation{
u0(S, t) = f(S),

un+1(S, t) =
∫ t

T
Run(S, t), n = 0, 1, 2, . . . ,

(16)

then, an approximation is given by the partial sum

u(S, t) ≈
k∑

i=0

ui(S, t). (17)

5 An Illustrative Example

In this example, we consider the Black-Scholes with variable volatility (13)

and with the market parameters given in the Table 1

Parameter Value

Maturity time T = 1 year

Strike price K = $15

Interest rate r = 0.01

Volatility σ = 0.5

Payoff function f(S) = S2 − 18S + 45

Table 1: Data of Black-Scholes model for the case: σ(S) = (0.5)2S4.
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In the ADM framework, we choose u0(S, t) = S2− 18S + 45 and therefore,

the Adomian approaches are given in the Figure 1 using the formula (17) and

calculating with Mathematica software package for k = 1, k = 2 and k = 3,

i.e. the approximate solution is given by

for k = 1; uADM(S, t) = u0(S, t) + u1(S, t)

for k = 2; uADM(S, t) = u0(S, t) + u1(S, t) + u2(S, t)

for k = 3; uADM(S, t) = u0(S, t) + u1(S, t) + u2(S, t) + u3(S, t)

In the Figure 1, we compare the solution of the Black-Scholes equation

obtained from (17), for t = 0.5 years, with the exact solution obtained in

[9] through ADM for diffusion-convection-reaction type equations. All the

numerical work was accomplished with the Mathematica software package.

Figure 1: Graph of the values of uADM for k = 1, 2, 3 and uex for t = 0.5 years

6 Summary

In this paper, we used the Adomian decomposition method for approxima-

ting the solution of the Black-Scholes equation, for a situation characterized

by a non-constant volatility, but that depends on asset price S (i.e., a modified



O. González-Gaxiola 41

case). Such nonlinear models frequently occur in financial markets character-

ized by a lack of liquidity or with high volatility. The approach was made

to t = 0.5, that is half of the expiration date T and taking into account the

volatility σ(S) = (0.5)2S4. In addition, we compare the approximate solutions

with the solution for this type of equations obtained in the literature by other

methods.
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