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Abstract 

The statistical classification of N individuals into G mutually exclusive groups 

when the actual group membership is unknown is common in the social and 

behavioral sciences. The result of such classification methods often has important 

consequences. Let  1 and  2  be  two distinct r-variate Bernoulli populations. 

Given an object  with observation measurement vector (X1,…Xr), the optimal 

classification rule was developed to assign  to either 1  or  2. The performance 

of the optimal classification rule was compared with some existing procedures. 

The classification procedures are Full Multinomial, Predictive, Linear 

discriminant function. The expected cost of Misclassification was also derived. 

The four classification procedures for binary variables were discussed and 

evaluated at each of 118 configurations of the sampling experiments. The results 

obtained ranked the procedures as follows: Optimal, Linear discriminant, 

predictive and full multinomial rule. Further analysis revealed that increase in 

sample size and number of variables increase classification accuracy and lower the 

probability of Misclassification. Also apparent error rate obtained using 

resubstitution method is optimally biased and the bias decreases as the sample 

sizes increases. 
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1   Introduction 

Statistical classification of individuals into observed groups is a very common 

practice throughout the social, behavioural and physical sciences (Arabie, Hubert, 

& Desote, [1]; Keogh, [4]; and Zigler [10]. In education and psychology, 

examples abound in which researches attempt to find statistical models that can be 

used to classify individuals into one of several known categories, such as those 

based on disability status (e.g, Lillvist, [5], Mammarella and Cornoldi, [6], career 

choice (Russel, [9]) and student preferences regarding mode of instruction 

(Clayton, Blumberg & Auld, [10]), to name but a few. In all of these cases, the 

group membership is directly observable rather than latent in nature. It should be 

noted, however, that there is growing interest in a range of techniques designed 

specifically for use when group membership cannot be directly observed but 

rather is latent and thus must be inferred using a set of observed measures. The 

focus of the current study was on the case where group membership is observable 

and on a set of methods that can be used in that case. Generally speaking, these 

methods for the observed group context are not applicable to the situation where 

group membership is latent, and vice versa. Nevertheless, both scenarios are very 

applicable in the behavioural and social sciences and worthy of study. In this 

study, using the error of misclassification, we study the performances of four 

classification rules assuming the underlying populations have multivariate 

Bernoulli distribution. 

Let 1   and 2  be two mutually exclusive parent populations available with 

infinite number of individual objects. Let there be r characteristics of interest with 

corresponding measurement variable x1, x2 ... xr where r ≥ 1. Let the 

measurement vector of an individual in 
1  be )x...x,x(x r112111   and in 

)...,( 222212 rxxxx  . Supposing we find an object   with measurement vector 
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)x...x,x(x r21   outside 1   and 2  and which must belong to 

either 1   or 2 . The problem is how to assign  to 1   or 2  such that the risk 

or expected cost or probability of error is a minimum. The measurement vector 

rX  can be discrete or continuous or a mixture of discrete and continuous 

variables. Our interest is about X  whose arguments are 0 or 1. The case of 

continuous measurement vector X  has been studied extensively and the case of 

mixed variables (discrete and continuous) is yet to be studied in detail. In this 

situation, the researcher can commit one of the following errors. An object from 

1   may be classified into 2 . Likewise, an object from 2  may be 

misclassified into 1 . If misclassification occurs, a loss would be suffered. Let 

C(i/j) be the cost of misclassifying an object i  into j .  For the two population 

setting, we have that C(2/1) means cost of misclassifying an object into 2  given 

that it is from 1 . C(1/2) is the cost of misclassifying an object into 1  given that 

it is from 2 . The relative magnitude of the loss L(j,i) =C(i/j) depends on the 

case in question. For instance, a failure to detect an early cancer in a patient is 

costlier than stating that a patient has cancer and discovering otherwise. 

Therefore, if we are confronted with this kind of problem of classifying an object 

of an unknown origin with measurement vector, how do you choose the “BEST” 

rule so that the expected cost associated with misclassification will be minimum? 

The problem of this study is to find the “best” classification rule when , 1,2i i   

is a multivariate Bernoulli population. “Best” here means the rule that minimizes 

the expected cost of misclassification (ECM), which is the risk of 

misclassification. Such a rule is referred to as the optimal classification rule 

(OCR). We want to find the OCR when X  is multivariate Bernoulli. The three 

classification rules compared with the OCR in this study are (i) the full 

multinomial rule, (ii) the linear discriminant function rule, (iii) the predictive 

rule.   

The problem of classification in the special case of binary variables is 

receiving extensive coverage in statistical literature. One reason for the rebirth of 

interest in the area is frequent use of classification in the social and behavioural 
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sciences where data are often of finite discrete type. In studies involving 

questionnaire data, demographic variables (more often than not measured by a 

two, three or four point scale) are utilized to discriminate between two or more 

groups. In such cases, it is more natural to assume underlying multinomial 

structures and proceed with classification procedures based on such 

characterizations. Could the use of the four approaches of discriminant function 

appropriate in minimizing error rate of misclassification?  

 

 

2  The Optimal Classification Rule  

Independent Random Variables: 

Let 1   and 2  be any two multivariate Bernoulli populations. Let )/( jic  be the 

cost of misclassifying an item with measurement x  from j  into i  and let jq be 

the prior probability on i , where 1,2i   with 
1 2

1q q   and probability mass 

Function )(xfi  in i  where 1,2i  . Suppose that we assign an item with 

measurement vector x to 1   if it is in some region 
rRR 1  and to 2  if x  is in 

some region 
rRR 2  where 21 RRRr   and 

1 2 0R R  . The expected cost 

of misclassification is given by: 

2 1

1 1 2 2(2 /1) ( / ) (1/ 2) ( / )
R R

ECM c q f x c q f x                     (2.1)  

where 
2

1( / ) p
R

f x    (classifying into 
2 1/  ) = p(2/1). 

The optimal rule is the one that partitions 
rR  such that  


1

)/( 2

R

xfECM  = p(classifying into 
1 2/  ) = p(1/2) is a minimum.  

   
12

)/()2/1()/(1)1/2( 2211

RR

xfqcxfqcECM               (2.2) 

            
1

1 2 2 1 1(2 /1) (1/ 2) ( / ) (2 /1) ( / )
R

c q c q f x c q f x                              (2.3) 

ECM is minimized if the second term is minimized. ECM is minimized if 1R  is 

chosen such that 
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2 2 1 1(1/ 2) ( / ) (2 /1) ( / ) 0c q f x c q f x                        (2.4) 

1 1 2 2(2 /1) ( / ) (2 /1) ( / )c q f x c q f x                       (2.5) 

1 2
1 2 1

2 1

( / ) (1/ 2)
/ , ( / ), (2 /1) 0

( / ) (2 /1)

f x c q
R x f x c q

f x c q






 
   
 

                       (2.6) 

Therefore the optimal classification rule with respect to minimization of the 

expected cost of misclassification (ECM) is given by classify object with 

measurement 0x  into 
1  if 

1 2
2 1

2 1

(1/ 2)
, , (2 /1) 0

(2 /1)

f q c
f q c

f q c
                                        (2.7) 

Otherwise classify into 2 . 

Without loss of generality, we assume that 2/121  qq  and c(1/2)=c(2/1). Then 

the minimization of the ECM becomes the minimization of the probability of 

misclassification, p(mc) under these assumptions, the optimal rule reduces to 

classifying an item with measurement 
0x  into 1  if 

1 0 1
2 0 2

2 0 2

( / )
: 1 , ( / ) 0

( / )
opt

f x
R f X

f x





                      (2.8) 

Otherwise classify the item into 2 . Since x is multivariate Bernoulli with Pij>0, 

i=1,2, j=1,2…r the optimal rule is: classify an item with response pattern x  into 

1  if  

1

1 1
1

2
1

2 2
1

(1 )
1, 0

(1 )

j j

j

j j

r
x x

j j
xj

jr
x x

j j
j

p p
p

p p













 
 

 
 
 

                     (2.9) 

Otherwise, classify the item into 
2 . This rule simplifies to: 

Classify an item with response pattern x  into 1  if  

2 2

2

12 1

, , 0
r

ij j j

j ij j

jij j j

p q q
x n n q p

q p q
I I



 
    

 
                     (2.10) 

Otherwise, classify into 2 . 

If the parameters are unknown, then they are estimated by their maximum 

likelihood estimators given by 
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1

( )
ˆ

ij

n
ijk i j

ij

k i i

x n x
p x

n n

                                  (2.11) 

Where 
1

1

( )
n

i j ijk

k

n x x


  is equal to the number of observation from 
i  with jth 

variable. The rule for unknown parameters is: classify an item with response 

pattern x  into 1  if  

  
1 2 2

1 11 2 1

ˆ ˆ ˆ

ˆ ˆ ˆ

r r
j j j

j

j jj j j

p q q
n x n

q p q
I I

 

 
   

 
                                 (2.12)  

otherwise classify the item into 2 . 

 

 

2.1  The Optimal Rule for a case of two variables 

Suppose we have only two independent Bernoulli variables, x1,x2. Then 

the rule becomes: classify an item with response pattern x  into 
1  if: 

2

11 21 12 22 21 22
1 2

11 21 12 22 11 12

:B

p q p q q q
R n x n x n n

q p q p q q
I I I I

   
     

   
                      (2.13) 

Otherwise, classify the item into 2 . Written in another form the rule simplifies to: 

classify an item with response pattern x  into 
1  if: 

2 1 1 2 2:BR w x w x c                       (2.14) 

Otherwise, classify the item into 2  where 

11 21 11 21
1

11 21 11 21

1

1 1 1

p p p p
w n n n

p p p p
I I I

 
    

   
                   (2.15) 

12 22
2

12 221 1

p p
w n n

p p
I I 

 
                     (2.16) 

 21 22 11 12
(1 )(1 ) (1 )(1 )c n p p n p pI I                 (2.17) 

To find the distribution of z we note that  

(1 ), 1,2, 1,2
[ / ]

0, otherwise,

j

ij

x

ij

j j i

p p i j
p x x 

   
  



        (2.18) 

Since 
2

1 1 2 2

1

j j

j

z w x w x w x


                       (2.19) 
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The range of z is 

2 1 2 1 2{0, , , }R w w w w         

1 2 1 2[ 0 / ] ( 0, 0 / )i i i ip z p x x q q                         (2.20) 

1 1 2 1 2( / ) ( 1, 0 / )i i i ip z w p x x p q                                     (2.21) 

1 21 2 1 2 1 12( / ] ( 1, 1/ )
i ii i ip z w w p x x p p q q                                   (2.22) 

if 0z   

1 2( / )i i ip z p q   

 if 
1 1z w                                                (2.23) 

1 2i iq p  if 
2z w                                                        (2.24) 

1 2i i
p p if 

1 2, 1,2z w w i                                                         (2.25) 

If 
1 2w w  the distribution function of z is given by 0 if z =0 

1 2i i
q q  if 

10 z w                          (2.26) 

1 2 1 2
( / )

i i i iip z q q p q    if 
1 2w z w   

 
1 2 1 2 1 2i i i i i i

q q p q p q    if 
2 1 2w z w w                                (2.27) 

1   if 
1 2w w z   

 

 

 2.2 Optimal rule for a case of three variables 

Suppose we have three independent variables according to Onyeagu (2003), the 

rule is: classify an item with response pattern x  into 
1  if: 

3

13 23 21 22 2311 21 12 22
1 2 3

11 21 12 22 13 23 11 12 13

:B

p q q q qp q p q
R n x n x n x n

q p q p q p q q q
I I I I

      
          

       
    (2.28)   

otherwise, classify the item into 2 . Written in another form the rule simplifies to: 

classify an item with response pattern x  into 1  if:  

 
3 1 1 2 2 3 3:BR w x w x w x c                                                                     (2.29)     

otherwise classify the item into 2 .  

11 21 12 22
1 2

11 21 12 22

,
p q p q

w n w n
q p q p

I I
   

      
   
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13 23 21 22 23
3

13 23 11 12 13

,
p q q q q

w n c n
q p q q q

I I
   

     
   

                                           (2.30) 

Let 
1 1 2 2 3 3z w x w x w x                                          (2.31) 

 

Then the range of z is 

3 1 2 3 1 2 1 3 2 3 1 2 3{0, , , , , , , }BR w w w w w w w w w w w w       

1 2 3 1 2 3( 0 / ) ( 0, 0, 0 / )i i i i ip z p x x x q q q                                           (2.32) 

1 2 31 1 2 3( / ) ( 0, 1, 0 / )
i i ii ip z w p x x x q p q                                           (2.33) 

1 2 32 1 2 3( / ) ( 0, 1, 1/ )
i i ii ip z w p x x x q q p                         (2.34) 

1 2 33 1 2 3( / ) ( 0, 0, 1/ )
i i ii ip z w p x x x q q p                         (2.35)

1 2 31 2 1 2 3( / ) ( 1, 1, 0 / )
i i ii ip z w w p x x x p p q                         (2.36) 

)/1,0,1()/( 32131 ii xxxpwwzp    

 321 iii
pqp                       

(2.37) 

)/1x,1x,0x(p)/wwz(p i321i32   

 321 iii
ppq                       (2.38) 

1 2 31 2 1 2 3( / ) ( 1, 1, 1/ )
i i ii ip z w w p x x x p p p                             (2.39) 

The probability mass function of z 

 
1 2 3i i i

q q q  if 0z   

 
1 2 3i i i

p q q  if 
1z w  

 
1 2 3i i i

q p q  if 
2z w                         (2.40) 

 
1 2 3i i i

q q p  if 
3z w  

3i2i1i
qpp)/zz(p i   if 21 wwz   

     321 iii
pqp  if 31 wwz   

    321 iii
ppq  if 32 wwz                                          (2.41) 

   321 iii
ppp  if 321 wwwz   

If 321 www   the distribution function of z is 0  if 0z  
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321 iii
qqq  if 10 wz   

 321321 iiiiii
qqpqqq   if 21 wzw            (2.42) 

 321321321 iiiiiiiii
qpqqqpqqq   if 32 wzw   

 
321321321321 iiiiiiiiiiii

pqqqpqqqpqqq   if 213 wwzw   

321321321321321
)/(

iiiiiiiiiiiiiii
qpppqqqpqqqpqqqzp i   

if 3121 wwzww                                  (2.43) 

321321321321321321 iiiiiiiiiiiiiiiiii
pqpqpppqqqpqqqpqqq                   

 if 3231 wwzww   

321321321321321321321 iiiiiiiiiiiiiiiiiiiii
ppqpqpqpppqqqpqqqpqqq     

if 32112 wwwzww   

 1 if zwww  321          (2.44) 

 

 

 

2.3 Optimal rules for a case of four variables 

Suppose we have four independent Bernoulli variables, the rule is classify 

an item with response pattern x  into 
1  if 

 

4

13 2311 21 12 22
1 2 3

11 21 12 22 13 23

2314 24 21 22 24
4

14 24 11 12 13 14

:B

p qp q p q
R n x n x n x

q p q p q p

qp q q q q
n x n n n n

q p q q q q

I I I

I I I I I

    
        

     

 
      

 

                     (2.45) 

otherwise, classify the item into 
2 . Written in another form, the rule simplifies 

to:  

classify an item with response pattern x  into 
1  if:  

4 1 1 2 2 3 3 4 4 1 2 3 4BR w x w x w x w x c c c c                          

 otherwise, classify the item into 
2 . For the case of four variables, let  
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13 2311 21 12 22
1 2 3

11 21 12 22 13 23

14 24
4

14 24

, , ,
p qp q p q

w n w n w n
q p q p q p

p q
w n

q p

I I I

I

    
         

     

 
  

 

                    (2.46) 

2321 22 24
1 2 3 4

11 12 13 14

, , ,
qq q q

c n c n c n c n
q q q q

I I I I     

Then 
4

1 1 2 2 3 3 4 4

1

j j

j

z w x w x w x w x w x


                                                         (2.47) 

The range of values of z is given by
zR  

1 2 3 4 1 2 1 3 1 4 2 4 3 4 1 2 3

1 2 4 1 3 4 2 3 4 1 2 3 4

{0, , , , , , , , , , ,

, , , }

zR w w w w w w w w w w w w w w w w w

w w w w w w w w w w w w w

       

        
  (2.48) 

1 2 3 41 2 3 4( 0 / ) ( 0, 0, 0, 0 / )
i i i ii ip z P x x x x q q q q                        (2.49) 

)/0,0,0,1()/( 43211 ii xxxxPwzp    

   4321 iiii
qqqp                               (2.50) 

)/0,0,1,0()/( 43212 ii xxxxPwzp    

   
4321 iiii

qqpq                     (2.51) 

)/0,1,0,0()/( 43213 ii xxxxPwzp    

   4321 iiii
ppqq              (2.52) 

)/1,0,0,0()/( 43214 ii xxxxPwzp    

   4321 iiii
pqqq                      (2.53) 

)/0,0,1,1()/( 432121 ii xxxxPwwzp    

        4321 iiii
qqpp         (2.54) 

)/0,1,0,1()/( 432131 ii xxxxPwwzp    

       4321 iiii
qpqp                   (2.55) 

)/1,0,0,1()/( 432141 ii xxxxPwwzp    

           
4321 iiii

pqqp                                (2.56) 

)/0,1,1,0()/( 432132 ii xxxxPwwzp    
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4321 iiii

qppq                    (2.57) 

)/1,0,1,0()/( 432142 ii xxxxPwwzp      

    
4321 iiii

pqpq                     

(2.58) 

)/1,1,0,0()/( 432143 ii xxxxPwwzp    

    
4321 iiii

ppqq                               (2.59) 

)/0,1,1,1()/( 4321321 ii xxxxPwwwzp    

     
4321 iiii

qppp                              (2.60) 

)/1,0,1,1()/( 4321421 ii xxxxPwwwzp    

     4321 iiii
pqpp                             (2.61) 

)/1,1,0,1()/( 4321431 ii xxxxPwwwzp    

            4321 iiii
pqpp                   (2.62) 

)/1,1,1,0()/( 4321432 ii xxxxPwwwzp    

    4321 iiii
pppq                   (2.63) 

The probability mass function of z is given by )/( izzp   

   4321 iiii
qqqq  if 0z  

   4321 iiii
qqqp  if 1wz   

   4321 iiii
qqpq  if 2wz   

   
4321 iiii

qpqq  if 3wz                    (2.64) 

   
4321 iiii

pqqq  if 4wz   

   
4321 iiii

qqpp  if 21 wwz   

   
4321 iiii

qpqp  if 31 wwz   

   4321 iiii
pqqp  if 41 wwz   

43212,1)/(
iiii

qppqzzp ii    if 32 wwz   
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4321 iiii

pqpq  if 42 wwz   

   4321 iiii
ppqq  if 43 wwz   

   4321 iiii
qppp  if 321 wwwz                (2.65) 

   4321 iiii
pqpp  if 421 wwwz   

   4321 iiii
ppqp  if 431 wwwz   

   4321 iiii
pppq  if 432 wwwz   

   4321 iiii
pppp  if 4321 wwwwz   

 

2.4 Evaluating the probability of misclassification for the optimal rule 

Ropt 

The optimal classification rule Ropt for )...,( 21 rxxxx   which is distributed 

multivariate Bernoulli is: classify an item with response pattern x  into 
1  if 

1 2 2

1 11 2 1

:
r r

j j j

opt j

j jj j j

p q q
R x n n

q p q
I I

 

 
   

 
                                 (2.66) 

Otherwise classify into 2  

We can obtain the probability of misclassification for two cases 

Case I Known parameters 

(a) General case where )...,( 211 irii pppp   

(b) Special case where )...,( iiii pppp  with the assumption 21 pp   

(c) Special case (b) with additional assumption that 10,21  pp  

For case (1a) the optimal classification rule optR  for )...,( 21 rxxxx   

which is distributed multivariate Bernoulli is:  

Classify an item with response pattern x if 

1 2 2

11 2 1

:
r

j j j

opt j

jj j j

p q q
R x n n

q p q
I I



 
   

 
                                    (2.67)  

Otherwise classify into 2  
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Case 1b: Special case where ),...( iii pppp   with the assumption that 

21 pp  , the optimal classification rule optR  for the r-variate Bernoulli 

models becomes: classify an item with response pattern x  into 1  if otherwise 

classify into 2 . The probability of misclassification using the special case of 

optR  is  

 
 

2

2

1

1

1

2

1

:

p

q

q

p

q

q
r

j

jopt
n

nr
xR

I
I






           (2.68) 

   






















 


1

2

2

1

1

2

1

1

2

2

1

1

2

),(1

1

1)1/2(

q

q

p

p

q

q

pr

q

qp

q

qr

j

j
n

nr
B

n

nr
xpp

I
I

I
I

p

        (2.69) 

yry
r

y

x

ypr ppxB 



 )1()()(
0

,                  (2.70) 

   






















 


1

2

2

1

1

2

2

1

2

2

1

1

2

),(2

1

)2/1(
q

q

p

p

q

q

pr

q

qp

q

qr

j

j
n

nr
B

n

nr
xpp

I
I

I
I

p

             (2.71) 

    















































1

2

2

1

1

2

2

1

2

2

1

1

2

2 ),(),(1
2

1
)(

q

q

p

p

q

q

pr

q

q

p

p

q

q

pr
n

nr
B

n

nr
Bmcp

I
I

I
I

            (2.72) 

Case 1c: Special case (1b) with additional assumption that 21 pp   and 

211
11 ppq   and 

22
1 pq  . The optimal classification rule optR for 

)...,( 21 rxxxx   distributed multivariate Bernoulli is: classify the item with 

response pattern x into 1  if 

 
 


























2

2

2

2

1

1

1

1

1

:
P

p

p

pr

j

jopt
n

nr
xR

I
I






                    (2.73)  

and to 2  otherwise. 

The probability of misclassification using the special case of optR  when 

21 pp   is 
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 
 

2

2

2

2

2

1

1

1

1

),(1)1/2(

p

p

p

p

pr
n

nr
Bp

I
I
















                    (2.74) 

 
 

2

2

2

2

2

1

1

1

1

),()2/1(

p

p

p

p

pr
n

nr
Bp

I
I














  

 
 

 
 

2 2

2 2

2 22 2

2 2

1 1

1 1

( , ) ,1 1

1 1

1
( ) 1

2

p p

p p

r p r pp p

p p

r n r n
p mc B B

n n

I I

I I
 



  

 

 

 

 

    
      

    
    

                               (2.75) 

For the fixed values of r and different values of 
1p  and 

2p  

Case 2: Unknown parameters 

(a) General case )...,( 21 ikiii pppp   

In order to estimate 
1p  and 

2p we take training samples of size 
1n  and 

2n  from 
1  

and 
2  respectively. In 

1  we have the sample 

11 111 121 131 1 1 1 1

12 112 122 132 1 2 1 2

1 1 11 1 12 1 13 1 1 1 1 1

( , , ,... ,... )

( , , ,... ,... )

.

.

.

( , , ,... ,... )

k r

k r

n n n n kn rn

x x x x x x

x x x x x x

x x x x x x







                                          (2.76) 

The maximum likelihood estimate of 
1p  is  

1
1

1

1 1

ˆ
n

kj

k

j

x
p

n

                                  (2.77) 

Similarly the maximum likelihood of estimate of 
2p  is  

2
2

2

1 2

ˆ
n

kj

k

j

x
p

n

                       (2.78) 

We plug in this estimate into the rule for the general case in 1(a) to have the 

following classification rule: classify an item with response pattern x into 
1  if  

2 2

1 2

ˆ ˆ ˆ
:

ˆ ˆ ˆ

r
ij j j

Br j

j ij j ij

p q q
R x n r n

q p q
I I



 
   

 
                                                               (2.79)   

otherwise classify into 
2   
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(b) Special case of 1b where ( , ... )i i i ip p p p  with the assumption that 

ii pp 21   

In this special case 

 
 


11 11

1 1

1

1 1 1

1

1

12

1 1

11

1 ......ˆ
n

j

rj
n

j

n

j

kjj
n

j

j

n

x

n

x

n

x

n

x
p                 (2.80) 




r

j

ijx
1

is distributed ( , )iB r p  


 

1

1 1

1

n

k

r

j

jkx  is distributed 
1 1( , )B rn p  

The maximum likelihood estimate of 
1p  is  

 

1

1

1 1

1

1

ˆ

nr

jk

k j

x

p
rn

 



                     (2.81) 

Likewise, the maximum likelihood estimate of 
2

p  is 

 

2

2

1 1

2

2

ˆ

nr

jk

k j

x

p
rn

 



                                (2.82) 

We plug in these two estimates into the equation for the special case (1b) to have 

the following classification rule: classify the item with response pattern x into 
1  

if 

 
 

 

ˆ2

1̂

ˆ1 2

1̂ 2
1

ˆ

ˆ

q

q

q

q

r

j

j
p

p

r n
x

n

I

I




                                            (2.83) 

Otherwise classify into 
2  

The probability of misclassification is given by 

 
 

 

ˆˆ 22

ˆ11

ˆ2 1ˆ 1 21 2

ˆ ˆ2 12 1

ˆ( , ) ( , ) ˆˆ

ˆ ˆ

1
ˆ ( ) 1

2

qq

q

qq

p q

q

r p r p pp

p q

r nr n
p mc B B

nn

II
II

  
    
    
   

                            (2.84) 

 2 1

1
ˆ ˆ ˆ( ) 1 ( , , ) ( , , )

2
p mc B r p B r p     

Where 
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 
 

ˆ2

ˆ1

ˆ ˆ1 2

ˆ ˆ2 1

q

q

p q

p q

r n

n

I

I
 


 

0

( , , ) ( ) (1 )
k

k y k y

y

y

B k x   



                                  (2.85) 

(c) Special case of 2b with 
1 2 1 2

, ,0 1p p p p      we take training 

samples of size 
2n  from 

2   and estimate 
2p by  

2

2

1 1 2

ˆ
n r

jk

k j

x
p

rn 

                                  (2.86) 

For a fixed value of 
21

ˆˆ, pp    

The classification rule is: classify the item with response pattern x into 
1  if 






























2

2

2

2

ˆ1

ˆ1

ˆ1

ˆ1

:
1

p

p
n

p

p
nr

xR

I

I
r

j

jB r




                       (2.87) 

otherwise classify into 2 . 

The probability of misclassification is given by  

2 2

2 2

2 2

2 2

2 2

( , ) ,

ˆ ˆ(1 ) (1 )

ˆ ˆ(1 ) (1 )1
ˆ ( ) 1

2 ˆ ˆ(1 ) (1 )

ˆ ˆ(1 ) (1 )

r p r p

p p
r n r n

p p
p mc B B

p p
n n

p p

I I

I I


 

 
 

       
      

         
       
      

       

                   (2.88) 

 2 2

1
ˆ ˆ( ) 1 ( , , ) ( , , )

2
p mc B r p B r p      





























2

2

2

2

ˆ1

ˆ1

ˆ1

)ˆ1

p

p
n

p

p
nr

I

I





                                 (2.89) 

If ),,(
1111

pppp   and ),,(
2222

pppp   

3tt3tx1x
3

1i

x1x
3

1i
1 1111

1

1

1

1

1

i1

1

i1321
qqpqpqp)x,x,x(f  






 

where 
1

1

1

q

p
  and 




3

1i

ixt                     (2.90) 

Similarly, 
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3

2 22321
),,( qxxxf t  where 

2

2

2

q

p
  

3

3

1

2

3212

1

1

2321

),,(

),,(
q

q

q

xxxf

xxxf t

t






















                    (2.91) 

where 
1

2

1

2 ,
q

q
q 




  

The classification rule is: classify the item with response pattern x into 
1  if 

13 qt  otherwise classify into 2 . 

For our case 
21

pp  so we have 
21

qq   and both imply that  

1
1

2 
p

p
 and 1

2

1 
q

q
.                     (2.92) 

Therefore 1
2

1

1

2

1

1

2

2

1

2 
q

q

p

p

p

q

q

p




 which implies that 0nI  

Therefore 13 qt  if and only if  

 
n

qn
t

I
I3

  

The rule is classify the item with response pattern x into 
1   

 
n

qn
t

I
I3

  or  
n

qn
x

I
I

i

i

33

1






  

otherwise classify into 2 . 

Let 



3

1i

ixy  then ]3,2,1,0[yR  


























2`23

`0

3`3

0`3

1`23

)/( 1 yifiqip

otherwise

yifip

yifiq

yifiqip

yYP                     (2.93) 

For )3,.3,.3(.
1
p  
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


























2``189.01

2
13

`00

3`027.03
1

0``343.03
1

1``441.02
113

)/( 1 yifqp

otherwise

yifp

yifq

yifqp

yYP                          (2.94) 

For )4,.4,.4(.
2
p  




























2``288.02

2
23

`00

3`064.03
2

0``216.03
2

1``432.02
223

)/( 2 yifqp

otherwise

yifp

yifq

yifqp

yYP                                     (2.95) 

9

14

18

28

6.0

7.0

3.0

4.0

2

1

1

2  x
q

q

p

p
  

441832.0In  

7

6
7./6./

12
 qqq  

Substituting we have 04666.1
3




n

qn

I
I

 

The classification rule is: classify the item with response pattern x into 1  if 

 1,0
3

1


i

ixy  

Otherwise classify into 2  

The probability of misclassification for this rule is: 

 12 /3,2[]/1,0[
2

1
)(   YpYpmcP  

 )027.0189.0432.0216.0(
2

1
  

 4320.0)864.0(
2

1
  

The general classification rule is:  
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classify into 
1  if rny  ,...1,0                                (2.96)  

classify into 2  if nrny 3,...1  

The probability of misclassification is given by 

 ]/1[]/[
2

1
)( 12   rnYprnYpmcP                             (2.97) 

Where Y is Binomial ),3( ipn  2,1i  
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The following table consists of 27 population pairs with their classification rules 

and optimum probabilities of misclassification computed using the formula above 

Table 1: Population pairs with their classification rules 

 

S/N 

     𝜋1                         𝜋2                           Classification                                                       p(mc) 

    𝑝1                         𝑝2                                     Rule 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

.3,.3,.3                             .4,.4,.4               classify into 𝜋1 if y=0,1  Classify into 𝜋2 if y=2,3                           0.432    

.3,.3,.3                         .5,.5,.5                                            “                                                               0.358 

.3,.3,.3                         .6,.6,.6                                             “                                                              0.284 

.3,.3,.3                          .7,.7,.7                                              “                                                            0.216 

.4,.4,.4                              .6,.6,.6                                          “                                                            0.352 

 .4,.4,.4                            .7,.7,.7                                            “                                                            0.284 

.5,.5,.5                             .7,.7,.7                                           “                                                             0.358 

.6,.6,.6                           .7,.7,.7                                                  “                                                        0.432 

.3,.3,.3,.3                      .4,.4,.4,.4                                               “                                                        0.4117 

.3,.3,.3,.3                     .5,.5,.5,.5                                                “                                                        0.3304  

.3,.3,.3,.3                    .6,.6,.6,.6                                                 “                                                        0.2637 

.3,.3,.3,.3                    .7,.7,.7,.7              classify into 𝜋1 if y=0,1,2 classify into 𝜋2if y=3,4                               0.216 

.4,.4,.4,.4                    .5,.5,.5,.5              classify into 𝜋1 if y=0,1  classify into 𝜋2if y=2,3,4                              0.4186    

.4,.4,.4,.4                   .6,.6,.6,.6               classify into 𝜋1 if y=0,1,otherwise into 𝜋2if y=3,4                               0.3520      

.4,.4,.4,.4                   .7,.7,.7,.7                                              “                                                              0.2637 

.5,.5,.5,.5                  .6,.6,.6,.6                                               “                                                              0.4187 

.5,.5,.5,.5                  .7,.7,.7,.7                                              “                                                               0.3304 

.6,.6,.6,.6                  .7,.7,.7,.7                                              “                                                                                      0.41175 

.3,.3,.3,.3,.3              .4, . 4,.4,.4,.4         classify into 𝜋1 if y=0,1 otherwise into 𝜋2if y=2,3,4,5                                         0.40437 

.3,.3,.3,.3,.3             .5,.5,.5,.5,.5                                              “                                                                                   0.32964 

.3,.3,.3,.3,.3             .6,.6,.6,.6,.6              classify into 𝜋1 if y=0,1,2  otherwise into 𝜋2 if y=3,4,5                                    0.24026 

.3,.3,.3,.3,.3             .7,.7,.7,.7,.7                                                 “                                                                                0.16308 

.4,.4,.4,.4,.4              .5,.5,.5,.5,.5                                                 “                                                                               0.408725 

.4,.4,.4,.4,.4              .6,.6,.6,.6,.6                                                 “                                                                               0.31744 

.4,.4,.4,.4,.4              .7,.7,.7,.7,.7                                                  “                                                                              0.24026 

.5,.5,.5,.5,.5              .6,.6,.6,.6,.6                                                “                                                                                0.40872 

.5,.5,.5,.5,.5             .7,.7,.7,.7,.7             classify into 𝜋1 if y=0,1,2,3 otherwise into 𝜋2 if y= 4,5                                     0.32964       

.6,.6,.6,.6,.6              .7,.7,.7,.7,.7                                                 “                                                                               0.40437                                                                                                                                                       

 

3. Other Classification Procedures 

3.1 The Full Multinomial Rule 

Suppose we have a d-dimensional random vector ),...( 1

1

dxxx   where 

each djx j ,...1,   assumes one of the two distinct values: 0 or 1. The sample 

space then has a multinomial distribution consisting of the 2
d
 possible states. 
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Given two disjoint populations,  1  and 2  with priori probabilities 1p  and 2p , 

the density is  

)()()( 2211 xfpxfpxf              (3.1) 

The two group problem attempts to find an optimal classification rule that assigns 

a new observation x  to 1  if   

1221 /)(/)( ppxfxf             (3.2) 

When x  has only two states, it will be a binomial random variable with )(xni  

observation from i  and expected value .2,1),( ixfnp ii  Estimates for prior 

probabilities can be obtained by 
n

n
p i

i ˆ , where 21 nnn   represents the total 

number of sample observations. The full multinomial model estimates the class-

conditional densities by  

n

xn
xf i

i

)(
)(  , .2,1i            (3.3) 

where )(xni  is the number of individuals in a sample of size in  from the 

population having response pattern X . The classification rule is: classify an item 

with response pattern X into i  if 

 
2

2

1

1 )()(
21

n

xn
q

n

xn
q              (3.4)      

and to 2  if  
2

2

1

1 )()(
21

n

xn
q

n

xn
q             (3.5)       

and with probability 
2

1
 if  

2

2

1

1 )()(
21

n

xn
q

n

xn
q            (3.6) 

The full multinomial rule is simple to apply and the computation of apparent error 

does not require rigorous computational formula. However, Pires and bronco 

(2004) noted as pointed out by Dillon and Goldstein (1978) that one of the 

undesirable properties of the full multinomial Rule is the way it treats zero 

frequencies. If 0)(1 xn  and 0)(2 xn , a new observation with vector X will 

be allocated to 2 , irrespective of the sample sizes 1n  and 2n  
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3.2 The Linear Discriminant Function (LDF). 

 The linear discriminant function for discrete variables is given by 

 )ˆˆ()ˆˆ()ˆˆ()(ˆ 12122
1

12 kk

kj

jjk

kj

jj
kj

ppsppxsppxL             (3.7)             

where 
kjs are the elements of the inverse of the pooled sample covariance matrix, 

j
p

1



 and 
j

p
2



 are the elements of the sample means in 1  and 2  respectively. The 

classification rule obtained using this estimation is: classify an item with response 

pattern X into v if 

 0)ˆˆ()ˆˆ()ˆˆ( 12122
1

12   kk

kj

jj

j k

k

kj

jj
kj

ppsppXspp       (3.8)                

and to 2  or otherwise.  

 

3.3 The Predictive Rule (P-Rule)  

If the non-informative conjugate prior distribution for the parameter Pi of the 

multinomial model is chosen, that is the Dirichlet distribution with parameter α=1, 

then the posterior distribution will be a Dirichlet distribution with parameter zi+1, 

where zi = (ni1,…nis)
T
.  (Note that 




s

j

iij nn
1

). The Dirichlet distribution with 

parameter has a density function given by  

0,1,10,
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Therefore the predictive density is simply 
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nn

ns
pzxh pnik

ik

s

kisi

i

p
ijii 

11 )1()...1(

)(
)/(




                                    (3.10) 

  
sn

xn

sn

n

i

i

i

ij











1)(1
 




s

j

ijij pp
1

1,10(                             (3.11)               

which leads to the predictive rule (or the P-rule) 

Classify in 1  if: 
sn

xn

sn

xn










2

2

1

1 1)(1)(
                            (3.12) 

Classify in 2  if: 
sn

xn

sn

xn










2

2

1

1 1)(1)(
                   (3.13) 



I. Egbo, S.I. Onyeagu  and D.D. Ekezie                                                                       175 

 
 

Classify randomly if: 
sn

xn

sn

xn










2

2

1

1 1)(1)(
                   (3.14) 

Once again for n1 = n2, this rule is equivalent to the M-rule. The P-rule also avoids 

the zero frequency problems. For instance n1(x) =0 and n2(x) < (n2+s)/ (n1+s)-4 

leads to classification in 1 .   

 

4. The Simulation Experiments and Results 

The four classification procedures are evaluated at each of the 118 configurations 

of n, r and d. The 118 configurations of n, r and d are all possible combinations of 

n = 40, 60, 80, 100, 200, 300, 400, 600, 700, 800, 900, 1000, r = 3, 4, 5 and d = 

0.1, 0.2, 0.3, and 0.4. A simulation experiment which generates the data and 

evaluates the procedures is now described. 

(i)  A training data set of size n is generated via R-program where 21
nn   

observations are sampled from 1  which has multivariate Bernoulli 

distribution with input parameter 1p  and 22
nn   observations sampled 

from 1 , which is multivariate Bernoulli with input parameter 

rjp ...1,2  . These samples are used to construct the rule for each 

procedure and estimate the probability of misclassification for each 

procedure is obtained by the plug-in rule or the confusion matrix in the 

sense of the full multinomial. 

(ii)  The likelihood ratios are used to define classification rules. The plug-in 

estimates of error rates are determined for each of the classification rules. 

(iii)  Step (i) and (ii) are repeated 1000 times and the mean plug-in error and 

variances for the 1000 trials are recorded. The method of estimation used 

here is called the resubstitution method. 

 

 

 

The following table contains a display of one of the results obtained 

 

Table 4.1(a) Apparent error rates for classification rules under different parameter 

values, sample sizes and Replications  

 P1 = (.3, .3, .3, .3, .3)    P2 = (.7, .7, .7, .7, .7) 
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Sample sizes Optimal Full M. PR LD 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.157125 

0.161900 

0.163290 

0.162967 

0.162565 

0.162783 

0.404243 

0.163018 

0.163075 

0.163463 

0.163354 

0.163273 

0.110074 

0.127855 

0.143526 

0.149837 

0.156384 

0.159788 

0.384500 

0.161992 

0.162454 

0.163084 

0.163508 

0.162916 

0.110787 

0.127958 

0.143680 

0.150407 

0.155280 

0.159641 

0.381672 

0.162603 

0.162878 

0.163318 

0.163218 

0.163162 

0.204512 

0.207491 

0.209940 

0.209826 

0.211542 

0.211480 

0.414226 

0.213520 

0.213358 

0.213873 

0.214135 

0.214277 

p(mc) = 0.16308 

 

Table 4.1(b) Actual Error rate for the classification rules under different parameter 

values, sample sizes and replications. 

 P1 = (.3, .3, .3, .3, .3)  P2 = (.7, .7, .7, .7, .7) )(ˆ)( mcpmcp   

Sample size Optimal Full  M. PR LD 

40 

60 

100 

140 

200 

300 

400 

600 

700 

800 

900 

1000 

0.040271 

0.032751 

0.027786 

0.022462 

0.017981 

0.0150903 

0.012793 

0.010874 

0.009666 

0.009308 

0.008725 

0.010713 

0.052706 

0.042691 

0.037015 

0.031623 

0.026657 

0.020882 

0.018476 

0.014643 

0.013574 

0.012778 

0.012243 

0.022517 

0.037112 

0.031487 

0.026152 

0.022112 

0.018218 

0.015743 

0.013194 

0.011278 

0.009999 

0.009379 

0.008765 

0.012981 

0.041686 

0.033007 

0.027125 

0.024082 

0.019071 

0.015671 

0.014210 

0.011926 

0.010861 

0.009582 

0.0090252 

0.010732 

 

Tables 4.1(a) and (b) present the mean apparent error rates and standard deviation 

(actual error rates) for classification rules under different parameter values. The 

mean apparent error rates increases with the increase in sample sizes and standard 

deviation decreases with the increase in sample sizes. From the analysis, optimal 
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is ranked first, followed by linear discriminant analysis, predictive rule and full 

multinomial come last. 

Classification Rule     Performance 

Optimal (OP)       1 

Linear Discriminant Analysis (LDA)    2 

Predictive Rule (PR)      3 

Full Multinomial (FM)     4 

 

 

5 Conclusion 

 We obtained two major results from this study. Firstly, using the 

simulation experiments we ranked the procedures as follows: Extended Optimal, 

Linear Discriminant Function, Predictive and Full Multinomial. The best method 

was the extended optimal procedure. Secondly, we concluded that it is better to 

increase the number of variables because accuracy increases with increasing 

number of variables. Moreover, our study showed that the extended optimal are 

more flexible in such a way to allow the analyst to incorporate some priori 

information in the models. Nevertheless, this does not exclude the use of other 

statistical techniques once the required hypotheses are satisfied. 
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