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1 Introduction

In Hurlimann [6] it has been shown that the usual convex order (=stop-loss order
by equal means) provides a natural framework for understanding and unifying the
main immunization results by Fong and Vasicek [3, 4], Shiu [15, 16], Montruchio
and Peccati [11], and Uberti [17]. Also, it has been demonstrated that the “Shiu
measure”, which is an appropriate measure of the immunization risk that has been
introduced by Shiu [14], can be controlled in a linear way.

We look at similar immunization results in the framework of the generalized
s-convex orders considered by Denuit et al. [2]. In the particular case s=3, which
corresponds to a duration and convexity matching immunization strategy, we
show that the Shiu measure can be reduced to a constant, independently of the
time horizon, provided a specific minimax strategy is applied (Theorem 4.1).

Recall the setting of immunization theory (e.g. Panjer et al. [13], Section 3).
Consider a frictionless, competitive and discrete trading economy with trading

dates {012,..,T}, where T is the time horizon. The traded securities in the
economy are zero-coupon bonds of all maturities {0,1,2,...,T} and a money

market account. The price of a zero-coupon bond at time t that pays one unit at

time s>t is denoted P(t,s). Only the current time t=0 is of interest,
in which case we write  P(s) instead of P(0,s). As shown in [6], Section 2,
it suffices to consider a portfolio with non-negative asset inflows {A,..., A, },
occurring at dates  {1,...,m}, and non-negative liability outflows {L,,...,L, }, due

atdates {l,..,n} withtime t=0 portfolio value
V=Ya, -0, =0, (1.1)

where «, =AP(k) and /¢;=L;P(j) are the current arbitrage-free prices

of the asset and liability flows. One is interested in the possible changes of the
current arbitrage-free value of a portfolio at a time immediately following the

current time  t =0, under a change of the term structure of interest rates (TSIR)
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from P(s) to P'(s) such that f(s) :%(:)) Is the shift factor.
Immediately following the initial time, the post-shift change in value is then given
by

AV =V'-V =30 o, F(K)-2544,T()), (1.2)
The classical immunization problem consists to find conditions under which (1.2)
IS non-negative, and give precise bounds on this change of value in case this
change cannot be guaranteed to be non-negative. To establish the connection with

the theory of ordering of risks, one uses elementary probability theory.

Definitions 1.1. The random variable A with support {L..,m} and

probabilities {ql,...,qm}, where g, =a, -(Z{“:lai )71 is the normalized asset
inflow at time Kk, is called asset risk. Similarly, the random variable L with
support  {L..,n} and probabilities {p,,...,p,}, where p, 2/1;'(Zi":1/1i)_1

is the normalized liability outflow at time j, is called liability risk.

With these definitions, the normalization assumption
Yy =204 =1, (1.3)

which will be made throughout, does not lead to a loss of generality. It follows
that the classical immunization measures of durations, M-squared indices, and
convexities of assets and liabilities are just the means, variances and second order
moments of the asset and liability risks, that is

D, =E[A] D, =E[L] MZ=var[A] M?=Var[L] 14

C,=M:+D:, C, =M}+D/.
Similarly, the change in portfolio value (1.2) identifies with the mean difference

between transformed asset and liability risks
AV (f) = E[f(A)]-E[f(L)]. (1.5)
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Now, the theory of integral stochastic orders, studied among others by Whitt [18],
Marshall [10] and Miller [12], describes classes U®  of real functions
f:S—>R (S some domain of definition) such that (1.5) is non-negative for

all feU® provided L is U?®-smaller than A. For example, the class

US  of convex functions with L <_ A the usual convex order corresponds to

the setting discussed in [6].

As natural generalizations, consider the classes U? of all s-convex

S—CX

functions and the classes U

s—icx

of all s-increasing convex functions described
in detail in Denuit et al. [2]. By definition f:S — R iss-convex, s=1,2,3,...,
if, and only if, for all choices of s+1 distinct points X, <X, <..<X, in S

the determinant

1 1 1
X, X, e X
A (Xgyenn Xgs F) = (1.6)
xtoxTt L x
f(x,) f(x) ... f(x)

IS non-negative. The 1-convex functions are the non-decreasing functions and the
2-convex functions are the usual convex functions. Similarly f:S—>R is
s-increasing convex, s=1,2,3,..., if, and only if, for all choices of k+1 distinct
points X, <X <..<X, in S one has A,(X,,.,X. f)=0, for all
k=1,2,...,s. The 1l-increasing convex functions are the non-decreasing functions
and the 2-increasing convex functions are the usual increasing convex functions.
These classes of generalized convex functions lead to the following stochastic

order relations.

Definitions 1.2. Let X and Y be two random variables taking values in

the continuum subset S cR. Then X is called smaller than Y in the
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s-convex (s-increasing convex) order, written X <®_ Y (X <2 Y), if

E[f(X)]<E[f(Y)] forall feUS (feUS). In the often encountered

case S=[0,;0) the super-script S will be deleted by convention.

In applications, one needs characterizations of the s-convex (s-increasing convex)
functions and orders (see [2] for details). For our purpose, the following

characterizations, valid for the case S = [0,c0), will suffice:

X< .Y < EX|=gf*] k=1..,5-1 and (L.7)
730 (d) = E[(X —d)** |< 75t (d) = E|[(Y —d)**| forall deS,
X< oY < E[X|<g)*] k=1..,5-1 and (1.8)

rytd)<zyt(d) forall deS.
Applied to immunization theory, the above definitions imply through

reinterpretation the following straightforward results.

Theorem 1.1. Let A and L be random variables representing asset and

liability risks as in Definitions 1.1. Then, a portfolio (A,L) is said to be
immunized against s-convex (s-increasing convex) shift factors f(t), that is
E[f(A)]=E[f(L)] for all feU, (feU,) if and only if one has
L<, o A (L< ., A).

— S—CX

In the present paper, we specialize to the second important special case after s=2,
namely s=3. In particular, by (1.7) and Theorem 1.1, a portfolio strategy
achieving immunization against 3-convex shift factors necessarily matches
durations and convexities, that is D,=D, and C,=C,  (see e.g.
Buhlmann and Berliner [1], pp.140-41).

It is also possible to derive bounds on the change in portfolio value for more
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general shift factors, which generalize the bounds by Uberti [17] (Theorem 2.3 in

[6]). For example, assume that L <

—3-cx

A, and suppose that there exist
a, >0 such that f(t)-ia-t* is 3-convex on [Lm] and

1t~ f(t) is 3-convex on [Ln]. Since L<,_, A one has the

—3-cx

inequalities

e[t (L)]_%a. e[| < E[f (A)]—%a-E[N],

speel]-eltwl< S poEln]- el )
hence

ol l-ele) < elrl-elrwls o ERT-El). @

These bounds depend on the skewness increase between the liability and asset

risks because by equal means and variances one has the identity
1 1
g(E[A3]— E[LSD:§(7A—yL)-M3, (1.10)

where M?=M;=M? and y,,y, describe the skewness of the asset and

liability risks. The rest of the paper is devoted to the linear control of the
immunization bounds (1.9), which generalizes the linear control of the Shiu

measure in [6].

2 Maximum skewness increase under the 3-convex orders

Let X and Y be random variables with the common finite arithmetic
support  {0,...,n} and probabilities p, =Pr(X = j), q; =Pr(Y = j), j =0,...,n.
The means, variances and skewnesses are denoted by ., 1y, G4, 07, 75, 7y -

We are interested in the maximum difference E[Y®]-E[X®] under the
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restriction that X and Y are 3-convex or 3-increasing convex ordered. This
optimization problem transforms into a simple linear programming problem as

will be shown below. The following relationship is needed.

Lemma 2.1. The difference in third moment of two finite arithmetic random

variables X and Y withsupport {0,..,n} isgiven by
1 1 1
5(E[W]— E[x?) =E(E[Y2]— E[x 2])+€(E[Y]— E[X)+X"2c,, (21)

where ¢, =z¢(j+1)—7zg(j+1), j=0,..,n-2 |is the finite sequence of

difference in degree two stop-loss values evaluated at integer points.
Proof. Recall the recursive relationships between higher-degree stop-loss
transforms given by (e.g. Hirlimann [5])

ry(X)=n-["zy (t)dt, n=12,.. .
Through partial integration (e.g. Kaas et al. [9], p.110) or analytically applying the
method of generating functions, one obtains in particular
SE[xC]= A o

To express this as a function of the degree two stop-loss transform values

72 (j+1), j=0,.,n—2, considerthe integral summation
1 1 ks
SEXCl=zi g ak ot

Since the usual (degree one) stop-loss transform is piecewise linear, more
precisely one has

7y () =7y (K)+(t-K)-Vz, (k+1), telkk+1],
the integrand can be rewritten for  x e[k,k+1] as

ri()=2-[ 7z, (Udu=r}(Kk+1)+2 [z, (u)du

i (kK+1D)+2(t—K)z, (k) +(t—k)*Vr, (K+1).
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An elementary integration shows that

k

k”rri(t)dt:ﬂi(k+1)+%7rx(k+1)+§7rx K).
It follows that
1 [ 3]_ n-2_.2 k n-2 k E
3EX =Yooy (K+1)+ 387y ( +1)+37fx(0)
=ZE_§7zf<(k+1)+%E[X2]+%E[X],

where use has been made of equation (4.2) in [6]. 0
A further auxiliary result is required.

Lemma 2.2. The degree two stop-loss transform of a finite arithmetic random

variable X with support {On} satisfies the recursive relationship

72 (j)=pul +02 —2u, - j+j% j=0-1-2,..,

: : (2.2)
V3ﬂ§(1+l)=—(p,- + p,-,l), j=012,...,
where  V°x ., =X, -3X, +3X ,—X_, isthe third order backward difference

operator acting on sequences of real numbers,and p; =0 for j¢ {0 n}.

Proof. Recall that 7% (0)=u’ +0; (e.g. Kaas et al. [9], Exercise I1.1).
Since 7, (t)=u, -t for t<0, one obtains the first formula in (2.2)
through integration from
mi()=2-[my@dt+ui +o%, j=-1.2.. .
Similarly, using that 7, (t) is linear in each interval [j,j+1] j=012,...,
one obtains
Vai(j+1) =-2-["z, (O)dt = [z, (§) + 74 (j +D)],

where VX, = X,,; — X, - Applying the well-known relationships
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”x(j):,ux _j! j=0,—1,—2,..., VZ7Z'X(j+:|-): pj! j=0,1,2,...,

one obtains without difficulty the second formula in (2.2). 0

Given u,, u,, os, o, it follows from Lemma 2.1 and 2.2 that the maximum

difference in third order moment under the restriction X <,,. Y is given by
the linear programming problem

SN -elx)

3 (2.3)

1 1 N
=5 (o7 =)+ 5 (uy — 1,))Bay + 1) +1]+ Xikc, = max.

under the linear constraints
c; 20, 0<qg;=-q.,+p;+p;4-V’; <L j=0..n,
T:}J _vacj =2(uy — 1y), (2.4)
YIIT Vi, =2(0% — o)+ (g — i )[20uy + p1) +1]
where use has been made of the following “dummy” variables
Cs :”\3(_2)_”3( (=2) = (uy = a1y Nty + iy +4)+05 —O'i,
C., :”3(_1)_”32( (=D = (aty =y )ty + piy +2)+O-$ _O->2<1

C, :7[5(0)_”>Z< (0) = (rty — 115 )1y +/Jx)+0$_o-)2<’
Cpy =C, =Cpyy =0.

(2.5)

As explained in Section 1, one is especially interested in the case of equal means

and variances, for which the above linear program simplifies considerably and can
be solved analytically. Under the assumption s, = u, = u, 65 =o! =0,
and p,=0q,=0,thatis c,=0 (which is no essential loss of generality), one

shows that the maximum skewness increase when X <

—3-cx

Y is given by the

linear program
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1 . :
(LP) §(7Y -y )o’ = 2'};§Cj = max., under the linear constraints

(LC) ¢;20, 0<d;=-0;,+p;+Pp4-V’c
Z:rl];lz(_l)j_lcj =0, C,=C,=C =C,;,=C, = 0,

<1, j=1..,n,

n

where the vanishing of the alternating sum follows from the equality of the mean
and variance of X and Y. Since the special case n=3 has the trivial
solution ¢, =0, hence Y =, X (equality in distribution), one assumes
n>4 from now on. To solve analytically this linear program, one requires the

following Lemma.

Lemma 2.3. The linear constraints (LC) imply the formulas

qn = pn - ZIH=—3 (_l)i Cn—2—i '
Ong = Ppa — 3Cn—3 -4 2:1;14 (_1)i Cosi

qn—z = pn—z + 3Cn—s - 6Cn—4 -7 Zlnz_ls (_l)i Cn74—i ) (26)
Onj =Pnj—Cojt4C, ;1—7C -8- 31 (_1)Icn—j—i+l’
j=34,.,n-1.

Proof. Use induction on n. O

To describe our main result, we set  R(c) = X}7c; , where  ¢=(c,,...,C,_,).

Theorem 2.1. The maximum skewness increase for finite arithmetic random

variables with support {L,..,n}, n>5, under the restriction X <, Y s

—3-cx

given and attained at 3-atomic random variables Y. as follows:

n

Casel: ¢, =Q,=..=(Q,,=0

The maximum equals Rc)==-3123(n-K)(n-k-D(n-k-2)p, , with

W
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. . . 1 .
Cj:Zﬂ:l(J_k+1)2pk’ J=1..,n-3, Cnfz:E'Zsz(n_k_l)(n_k_z)pk'

and is attained at Y, under the following precise conditions on X :

. 1 . .
Qo2 = 5 Y (=D -2)p,_i

q:—l =Py 2 (i =D -3)p,i., 20,

« 1 . .
q, = E ' Zin:él (I - 2)(' _3) Proisa-

Case2: g, =Q,=..=Q,,=0, ¢ ,=0
2

The maximum is R(c’) = 3 P,y +%-ZE;“(n -K)(n-k-2)(n-k-3)p, , with

¢; =h(i-k+D)°p,, j=L..n-4,

3,5 = Py +2- 2 (n-k=2)(n-k-3)p,,

) 1.
3Cn—2 = pn—l +E'Zk=f(n_k_2)(n_k_3)pk )

and is attained at Y, under the following precise conditions on

. 1 . .
Oys = g (Zin=4 (' _1)(| _3) Proia — pn—l) 2 01

* 1 ., .. )
Oy = Poa T Pr _E‘Zizs (i-D(-4)p,i. =0,

) 1 1
g, = P, +§ Pns +€ ' Zi:s (I - 3)(' - 4) Pnisa-

Case3: ¢, =¢,=..=0,.=0, q,,=0q,,=0

The maximum is R(c") = % (6p,, +4p,, +ia(n=Kk)(n-k=3)(n-k-4)p,),

with ¢; =3/, (j—-k+1)?p,, j=1..,n-5,
. 3
2C, 4 =Pyt Pz +E'Zk:§(n_k -3)(n-k-4)p,,

3,5 =3P,y +2p,, + Zis(n—k=3)(n-k-4)p,,
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*

n

6C. , =3P, + Prs +%-2Ej(n -k-3)(n—-k—-4)p, , and is attained at Y
under the following precise conditionson X :
N N A
Uos = 5 (E'Zizs (=D -4)Pyis— Poa— Prs) 20,
.1 N
qn—S = 5 ’ (3 Poat 4 Prot 3pn—3 - Zi:(ﬁ (I _1)(| _5) pn—i+1) 2 01
.1 1 oor o o
q, = E (6 P, t+ 3pn—l + Prz +E' Zi:ﬁ (I - 4)(' _5) pn—i+1)'

Proof. Using the constraint Y-$(-1) J"1cj =0, one gets the formula

2-¥'%.c,. ., n even,
R(c) = e 2.7)
2-3#Cy;, N odd.

Through backward analysis, this can be rewritten in three different ways (proof

through induction).

Case 1: Insert successively the expressions for ¢ obtained from the

n-j

equations for g, ; in (2.6) into R(c) for j=34,..n-1 to get
R(c) = %-zg;ﬁ(n -K)(n-k-)(n-k-2)(p, —q,). Given X, that isthe p,’s,

this is maximal exactly when ¢, =q,=..=0,,=0, which yields the
probability conditions stated under Case 1 as well as the maximum R(c”). The

expressions for ¢’

i» J=1..,n-3,  are obtained from the equations (2.6)

setting successively q; =0, j=1..,n-3. The remaining c._, is obtained
from the vanishing alternating sum in (LC). Inserting the c]f s into the

remaining equations of (2.6), the maximizing probabilities ¢ ,,q,, and ¢

are obtained.



W. Hirlimann 25

Case 2: Insert successively c, ,, ¢, ;, j=4,5,.,n-1, from the corresponding

equations for Opas O j into R(c) to get

2 1 . . .
RO =5 (P =Qhs) + 3 (n—k)(n-k-2)(n—k-3)(p, —q,) , which is
maximal  when g,=9,=..=0¢,,=0,0,, =0 . Setting successively

q;=0, j=1..,n-4, q,, =0 in (26), one determines c;,

j=1..,n-3.

The remaining ¢, aswellas q ,,q., and g, follow asin Case 1.

n

Case 3: First, insert c,, from the equation for ¢,, into R(c). Second,
add the equations for q,,,q,, to get an expression for c, ,, which is
inserted into  R(c). Third, insert successively c, ;, j=5,..,n-1, from the

corrresponding equations for ¢, ; into R(c) to get

1
R(c) = 5 -(6( P~ qn—l) +4( Pho— qn—2)
+Xir(n=k)(n—k =3)(n -k - 4)(p, —q,)),
which is maximal when ¢,=q,=..=0,:=0,0,,=0,,=0. The rest is

shown similarly to Case 2 and Case 3.

It remains to show that the above three cases exhaust all possible random variables
X. Let C be the space of all probability vectors p=(p,,.., p,) such that
p; 20, j=L..n, ¥p;=1, Xjp,=u,and I j’p;=u’+0c?, which
describes the set of all possible X’s. Corresponding to the constraints imposed on

the maximizing probability vector q”, define the subsets

Case1: C,={peC:p,, >3, (i-1i-3)p, .}
Case 2:
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. . 1 . .
CZ = {p eC: Pna < Zin=4 (I _1)(| _3) Poisar Paa + Poss 2 E ’ Zin=5 (I _1)(| _4) pni+l}

PeC:p,y+Pus <Ins(i—1)(—-4)p, i, }
3pn—l + 4pn—2 +3pn—3 2 Zin:G (I _1)(| _5) pn—i+1

Butonehas C, uC, uC, =C. The complete solution has been found. 0

Case 3: C, :{

Examples 2.1. For illustration and to better grasp the regular pattern of the

solution, let us rewrite the lower dimensional cases n=4,5,6 explicitly. The

special case n=4 is obtained immediately applying the method of proof in
Theorem 2.1.

n=4.
Casel: p,2>3p,
R(C*) = 2p11 ¢ = (pl! pl)! q* = (0’ P, +3p1' Ps _3p11 p, + p4)

Case2: p,<3p,

o 2 P 1 < 1 1
R(C)ngg, c :(§p31§p3)a q =(§(3p1—pg),p2+p3,0,§(p3+3p4))

n=5:

Casel: p,=3p,+8p,

R(c’)=2(p,+4p,), ¢ =(p,,p,+4p;, P, +3p,),
q*:(O’Orp3+3p2+6p1’p4_3p2_8p1’3p1+p2+p5)
Case2: p,<3p,+8p,, Pp;+p,=2p,

o 2 . 1 1
R(C ):g(p4+4p1)v c :(pl’g(p4+4p1)1§(p4+ pl))’

. 1 1
q = (0,5(3[32 +8p1 - p4)’ P+ Ps _2p1'0’§(3p5 + Pyt pl))

Case3: p,+p,<2p
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a2 . 1 1 1
RC)=5@pa+2p), ¢ = (Pat Pa). 5 (3Ps +2Ps). < (3P4 + D5)).

- 1 1 1
q = (5(2 P, — P; - p4),§(3p4 +4p, +3pz),0,0,g(6p5 +3p, + P3))

n=6:
Casel: p,=>3p,+8p,+15p,

R(C*):Z(ps +4p2 +1Op1)’ C* :(pl’ P, +4p1' Ps +4p2 +9p1’ Ps +3p2 +6p1)!
q" =(0,0,0,p, +3p, +6p, +10p,, p; —3p; —8p, —=15p;, P, + P, +3p, +6p,)

Case2: p,<3p,+8p,+15p,, p,+ps=2p,+5p,
w2

R(C )=§(p5+4p2 +15p1)|

« 1 1

c =(pl,pz+4p1,§(p5+4p2+12p1),§(p5+p2+3pl)),

. 1 1
q = (0,0,5(3p3 +8p, +15p, — Ps), P, + Ps — 2P, —5|ol,0,§(3|o6 + Ps + P, +3py))

Case3: p,+ps<2p,+5p;
w2
R(C )=§(3p5+2p4+5p1),
. 1 1 1
C =(p1,5(p5+ p4+3p1),§(3p5+2p4+2p1),g(3p5+ P, + Py)),
. 1 1
q :(015(2p2 +5p1_ P, — p5)1§(3p5+4p4+3p3_5p1)1

1
010,E(6p6+3p5+ p4+ pl))

3 The absolute maximum skewness increase

The maximum skewness increase R, . (p) = R(c") =R(c"(p)) (note that

¢’ =c’(p) dependson p) has been determined in Theorem 2.1. First, we ask
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for the absolute maximum skewness increase when X <, . Y and both X
and Y may vary with the same support {1n} that is we determine the

quantity
Rimax = max{Rn'maX(p)}. (3.1)
p

Theorem 3.1. The absolute maximum skewness increase for finite arithmetic

random variables with support  {l..,n}, n>4 , under the restriction

X<,.Y,but X and Y are arbitrary, is given and attained at biatomic

—3-cx

random variables X ,Y  as follows:

Casel: n=4
- ., 11 . 1 3 . 3 .1
Rn,masz(C (p ))! C(p)=(Z!Z)1 p =(110!Z!O)1 q =(O!Z!0’Z)
Case2: n=>5
ety 2 (n=1)(n-4)
Rn,max - R(C (p )) - 3 (n_3)
oo 2o D= e
(n-2)(n-3) (n-2)(n-3) "’
¢ ( *)——2 =1..,n-5
T ym-g T
o 20=47 . (-4En-13) .. 2(0-4)
G (P =y P s ymosy s P Ty
q:_3=M < _2An-4) q;=0, j=n-3n

3n-3) " 3(n-3)’

Proof. The special case n=4 is derived from the Examples 2.1. In Case 1 one

has R(c) s% p, andinCase2onehas R(c")<2p,. Inboth cases the upper

bound is attained when  p,=3p,. Setting p,=p,=0 the absolute
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maximum is obtained. Letnow n>5 and consider Case 3. From the constraint

q,,>0 onegets

R, e (P) < §~(2 Pas +2- S04 —K)(N—k—-3)p,
LSS —K)(n—k-3)(n—k—4)p,)

1
=3 @P+8-P + Xz (n=k)(n—k-2)(n -k =3) py).

This upper bound is attained when g, =0 and is maximum in case one has
p,=p;=..=p,,=0p,=0,hence 2p,, =(n-1)(n-4)p,, which yields the
maximizing probability vector p~. The corresponding upper bound equals

_2 (n-D(n-4)

Rn,max(p ) 3 (n _3)

It is straightforward to see that the same

maximizing upper bound holds in Case 2. In Case 1 one proceeds similarly to

Case 3. An upper bound is obtained from the constraint q,, >0 and attained
when q,,=0 and p,=pP;=..=p,,=0,p, =0 , hence
2p,., =(n-1)(n-3)p,, which yields the maximizing probability vector p”.

_(n=-D(n-3)
~ 3(n-2)

The corresponding upper bound is Rn'max(p*) . Since this is

strictly less than the upper bound in Case 2 and 3, the absolute maximum is
attained in Case 3. The remaining quantities are obtained through calculation

using Theorem 2.1. 0

4 The minimax skewness increase

From the Examples 2.1 and Theorem 2.1, it is not difficult to see when

R, max (P) =0, which implies in particular that X =, Y (the distribution

functions of two 3-convex ordered random variables are identical if both have
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equal mean, variance and skewness). It is interesting and useful to consider the

minimum possible values of the maximum skewness increase when X <, _ Y

—3-cx
and X and Y wvary, given the maximum skewness increase is strictly
positive. As will be seen in the proof below, there are three continuous sets of
possible minimum values, which correspond to the three cases distinguished in
Theorem 2.1 (note that for n=4 there are only two such sets). The minimum of
the infimum superior of these sets is called minimax skewness increase and is
defined by

inf (R, ee (D) > o}}, n>5, (4.1)

peC;

R min = min{

i=1,2,3

where C. is defined in the proof of Theorem 2.1. A similar definition applies

in the special case n=4. It is remarkable that this quantity is a constant, which

does not depend on n.

Theorem 4.1. The minimax skewness increase for finite arithmetic random

variables with support {1..,n}, n>4, under the restriction X <, Y, but

—3-cx

n,min

X and Y are arbitrary, equals R :% and is attained at biatomic

random variables X

n?'

Y™ with probabilities p:_szi, p:_lz% p; =0

- I
else, qn—2=Z' q”:Z' q; =0 else.

Proof. First, consider the special case n=4. From the Examples 2.1, we
distinguish between two cases:

Casel: p,+p;,+p,=1-¢ 0<p, =¢<1

The condition p, >3p, implies that & g%, and thus R, .. (p)=2¢ s%,
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where equality is attained for p, = % p, = %

Case2: p,+p,+p,=1-¢, 0<p,=¢<1
. T 3 2 1
The condition p, <3p, impliesthat ¢< 2 and thus R, ..(p) = Eg < >

*

where equality is attained for p; = % Py = %

Let now n>5. One proceeds similarly according to the cases distinguished in
Theorem 2.1:

Casel: p,,+p, +p,=1-¢

It is straightforward to see that micn {Rn max(p)}z 2¢ for p,;=¢. The
pet, '
restriction on the probabilities p,,=1-¢-p,,—-p, =23p, ;=3¢ implies

that &< % . The result follows.

Case2: p,,+p,,+p,=1-¢

One has an{Rn maX(p)}: %g for p,,=¢. The first restriction on the
peC, '

probabilities p,, =¢<3p,;=31-c-p,,—p,) implies that &< % and

the second restriction is always fulfilled. The result follows.

Case3: p,,+pP,z+Pp,=1-¢

One has an{anax(p)}:%E for p,,=¢ . The restriction on the
pels '
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probabilities p,,=&<2p,,=2(1-&-p,,—p,) Iimplies that & s% :

Since @{Rn max (P) > 0} = % > % this concludes the proof of Theorem 4.1. ¢
peCy '

Remarks 4.1
The long term growth of the absolute maximum skewness increase when

X <

—3-cx

Y s linear in n with the following sample values:

n 4 5 6 10 20 30
Romax | L 4 20 36 608 | 1508
2 3 9 7 51 81

This is to be compared with the absolute maximum variance increase when

X <L

—2-Cx

Y , which is also linear in n, but with a higher slope (see [6], Example 5.1).

In contrast to the constant minimax skewness increase when X <, Y, the

—3-cx

minimax variance increase when X <, Y is also linear in n. These

—2-Cx
observations are of significance applications to financial immunization for fixed

income securities. Two further related papers on this topic are Hirlimann [7, 8].
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