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Abstract

It is shown how particle quantities like masses of supposed neutrinos
can be computed on base of a classical theory. The numerical method
is based on discretization of differential equations which is being used
successfully in some parts of theoretical physics but is underestimated
wrongly for application to particles. The method is explained by an ordi-
nary differential equation first. Then it is demonstrated how this simple
method proves successful for non-linear field equations with chaotic be-
haviour. Integration constants of the field equations enter the method
in form of parameters. Using certain discrete values of the integration
constants, a chaos-like behaviour comparable with Mandelbrot sets is
obtained. The known Einstein-Maxwell equations are investigated,
where discrete particle quantities are obtained from a continuous theory
which is possible only by this method. Known particle values are con-
firmed, and unknown values can be predicted. In this paper, supposed
neutrino masses are presented.
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1 Introduction

Although the discretization of differential equations was introduced more

than fourty years ago, the power of this method has not fully been recognized

in all fields of science. In particular, difficult problems of theoretical physics,

for example in the field of general relativity, have traditionally been tried to

solve by rough analytical approximations instead of using numerical methods.

In the last two decades, however, collisions of black holes have been computed

numerically [1] for example, and other detailed problems of relativity. This

gives us confidence that numerical methods are applicable in all fields of theo-

retical physics and can even reveal new insights which were not accessible by

simple analytical models.

An example of successful application of numerics is the field of chaos re-

search. Common literature on chaos is for example [2, 3]. The well known

Mandelbrot set is not possible to be inspected without usage of numerical

calculations on a computer. The convergence behaviour per starting point in

a plane can be graphed nicely. We proceed similarly in this paper, basing the

calculation on solutions of differential equations rather than simple iteration

formulae. The basic calculation scheme is presented in section 2.

As for the physical background, the standard theory being used for describ-

ing structure of matter on nuclear and subatomic level is based on consider-

ations of symmetry and was successful in constructing a classification scheme

of sub-atomic particles. This theory, although considered as being “the best

we have”, has a number of shortcomings. It cannot be unified with general

relativity and there is no way to compute masses of elementary particles by

a method based on first-principles. Instead, masses of sub-atomic and elemen-

tary particles (as well as other properties) have to be introduced as adaptable

parameters. Although there were attempts in the past to overcome this prob-

lem, these approaches have not been considered in mainstream physics up to
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date. They are simply precluded in context with particles. One of these ap-

proaches is the unification of electromagnetism with general relativity by the

Einstein-Maxwell theory which the work of this paper is based on. The re-

sulting geometry from Einstein’s equation using the energy-momentum ten-

sor of electrodynamics was found by Rainich [5, 6] already in 1924. The

related equations are explained in section 3.1. In section 3.2, details of the

computational method for obtaining quantities of elementary particles are dis-

cussed. The results for neutrinos are presented, and compared with results for

atomic nuclei and the electron in section 3.3. While the masses of neutrinos

could not be determined exactly up to now, we present a prediction based on

our calculations which lies within the error limits safely known by experiment.

The method works well on the basis of inherent information in the electro-

vacuum around the particle. It utilizes the inherent chaos of the Einstein-

Maxwell equations. The numerical method in general is explained in the

next section.

2 Explanation of the Numerical Method

In direct numerical solutions of differential equations the differential quo-

tient is replaced by a quotient of finite differences. This leads to recursion

rules on the calculational grid. In the following we will derive a scheme of

differences which is suitable for the type of problems we will solve in section

3.2. We consider a differential equation of the form

f ′′(x, cν) + F (x, f ′(x), cν) = 0 (1)

where F is a function of the derivative of the function f(x) to be found. F

and f depend on a set of constants cν . The function values at discrete points

xn shall be denoted by fn. With difference quotients

∂f

∂x

∣∣∣
xn

=
fn+1 − fn−1

2 ∆x
(2)

and for the second derivative

∂2f

∂x2

∣∣∣
xn

=
fn+2 − 2fn + fn−2

(2 ∆x)2
(3)
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we obtain a recursion formula for the discrete function value of f at xn+2:

fn+2 = 2fn − fn−2 − (2 ∆x)2Fn(cν) (4)

or, rewritten,

f(x + 2 ∆x) = 2f(x)− f(x− 2 ∆x)− (2 ∆x)2F (x−∆x, x, x + ∆x, cν) . (5)

We have chosen a difference of two grid points for the second derivative

in order to obtain a simple recursion formula. The parameters cν denote the

integration constants of the differential equations and are part of the initial

conditions. The latter are obtained from appropriate approximations of f in

the initial range of x. For real-valued x and cν this iteration formula is able to

behave in a chaotic manner, in dependence of the parameters cν . These results

can be generalized for systems of partial differential equations with many vari-

ables. In definition regions where the functions have diverging solutions, we

obtain a map of the “degree of divergence” which can be graphed in a plane if

we have two parameters c1 and c2 for example.

We shall see from the Einstein-Maxwell equations that different val-

ues of the integration constants (as parameters) lead to a varying divergence

behaviour. While f immediately diverges in most cases, there are discrete

values of the parameters cν where f diverges at a relatively sharply defined x

value which stands for the radius here. (Further details are given in section

3.2.) These special values of the parameters represent a special set leading

to a kind of “semi-stable” solutions of f . – In practice, this behaviour will

be smeared over due to rounding errors. (Otherwise, we would not find the

relevant discrete values.)

3 Demonstration of the Numerical Method

with Einstein-Maxwell Equations

3.1 The equations

The theory is based on the relativistic tensor equations [8] of Riemannian

geometry:

Rik = κ (
1

4
gikFabF

ab − FiaFk
a) , (6)
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Fij,k + Fjk,i + Fki,j = 0 , (7)

F ia
;a = 0 , (8)

in which gik are the components of metrics, Rik those of the Ricci tensor and

Fik those of the electromagnetic field tensor. κ is Einstein’s gravitation con-

stant. The partial derivative is denoted by a comma, the covariant derivative

by a semicolon. If we express the field tensor by a vector potential A with

Fik = Ai,k − Ak,i , (9)

equation (7) is identically fulfilled. Thus, we can base our calculations on

quantities having the character of potentials that are metrics and the electro-

magnetic vector potential.

These equations are known as Einstein-Maxwell equations. The

energy-momentum tensor of electrodynamics is equated to the energy-

momentum tensor of Einstein’s theory [4]. In detail, the homogeneous

Maxwell equations are used. Only these fulfill force equilibrium and conser-

vation of energy and momentum (mathematically expressed by the Bianchi

identities). These equations describe the electro-vacuum around a particle and

involve geometry described by the Einstein part (equation (6)) of the equa-

tions. The involved geometry was found by Rainich already in the year 1924

[5, 6].

We shall use these equations as an example in what follows, not considering

the physical significance they may or may not have. This significance will

become visible by the achieved results.

The sources of related inhomogeneous equations [4] are the right-hand side

of

Rik −
1

2
gikR = −κTik (10)

with

T ik = σ
dxi

ds

dxk

ds
(11)

( σ = mass density) for distributed masses and momenta, and

F ia
;a = Si (12)

for distributed charges and currents.

Equation (10) was introduced by Einstein and Grossmann, and equations
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(7), (12) actually are the covariant Maxwell equations. The sources are

replaced by integration constants [7]. Mass, spin, electric charge, and magnetic

moment are the first integration constants. It is demonstrated in [7] how to

determine the integration constants of geometric equations from integrals of

sources.

These equations yield only 10 independent equations for 14 components

gik, Ai. It will be demonstrated that the omnipresent quantization has nothing

to do with this indeterminacy. The quantization is the consequence from the

chaotic behaviour of these geometric equations, even also if we override the

indeterminacy of the above variables with additional conditions. – We will

consider only the diagonal elements of gik plus two off-diagonal elements for

practical calculations, which reduces the number of equations.

3.2 Numerical calculations

Analytic solutions of equations (6, 8, 9) commonly lead to singularities.

There are two types of singularities. The first type is a singularity inferred

by assuming point masses and charges in order to simplify the equations so

that analytical solutions are feasible. This is often considered as a deficit

when comparing a calculation with the situation in reality. However, in our

calculations, these formal singularities are placed into the inner of the particle

(according to observer’s coordinates) which is not subject of calculation. With

spherical coordinates, the formal singularity is at the centre. This is the first

type of singularity.

The basic idea of calculation is as follows. The equations (6, 8, 9) are eval-

uated on a radial grid from outer to inner and so one approaches the unknown

inner region successively. At a certain radius, the calculation starts to diverge

because the central singularity becomes predominant. It is important to notice

that this radius of divergence is clearly separated from the central singularity

so a second type of singularity, a “numerical singularity” here appears. This

is the “chaos behaviour” we want to investigate.

The numerical simulations according to the Einstein-Maxwell equa-

tions show that the numerical singularity is not a problem, for the following

reason: Numerical simulations using iterative, non-integrating methods lead

always to a boundary at the conjectural particle radius. As a result, the second
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singularity is always within a geometric limit, i.e. a geometric distance from

the centre. The region within this geometric limit according to observer’s coor-

dinates is not accessible to further investigation but this is even not required.

The geometric limit is the mathematical reason for the existence of discrete

“semi-stable” (explained in section 2) solutions. This has to do with chaos, see

[7] and previous sections. These discrete solutions involve discrete values of the

integration constants, which are also called eigenvalues. We shall see that the

electro-vacuum is able to produce such eigenvalues, and that the eigenvalues

perform a set identical with the entirety of the particle characteristics.

In order to gain eigenvalues, one has to do lots of tests, because the particle

quantities are integration constants and have to be inserted into the initial

conditions (for more details see [7]), which are defined for the electro-vacuum

around the particle.

As already mentioned, the basis for computations are equations (6, 8, 9).

For the sake of simplicity, we restrict equations (6, 8, 9) to time independence

and rotational symmetry. That results, with spherical coordinates

x1 = r , x2 = ϑ , x3 = ϕ , x4 = jct ,

in 6 independent equations for 8 components with character of a potential,

A3, A4, g11, g12, g22, g33, g34, g44, the other vanish. In order to override the

indeterminacy by the two missing equations, we define

g12 = 0 (and, consequently, g12 = 0) (13)

and

g = det |gik| = r4 sin2 ϑ . (14)

These conditions are arbitrary, in which the second is taken from the free-field

Minkowski metric. In combination, they are leading to reasonable results.

The integration constants from equations (6, 8, 9) result from a series ex-

pansion. The first coefficients of expansion are the input for the simulations

and are inserted into the initial conditions [7]. The output is the number of

grid points along the radius until divergence occurs, which is a measure for the

stability of the solution.

The first coefficients (integration constants) are

c1 = − κ m

4π
=⇒ κ m

4π
(15)
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(mass),

c2 = j
κ s

4πc
=⇒ κ s

4πc
(16)

(spin),

c3 = −j
µ◦

1
2 Q

4π
=⇒ κ

1
2 µ◦

1
2 Q

4π
(17)

(charge), and

c4 = − ε◦
1
2 M

4π
=⇒ κ

1
2 ε◦

1
2 M

4π
(18)

(magnetic moment).

As explained, these follow from a comparison of series expansion from the

Einstein-Maxwell equations (homogeneous Maxwell equations) with the

solutions of equivalent inhomogeneous equations, see [7]. The dimensionless

terms after the arrow are taken for computation, and have positive values. The

imaginary unit has been eliminated. The unit radius (r = 1) corresponds to

10−15m. By this, the initial conditions become, using T = π
2
− ϑ,

g11 = 1 +
c1

r
− 1

2
(
c3

r
)2 +

( c4
r2 )

2(1 + cos2 T )

10
, (19)

g22 = r2{1 + (
c4

r2
)2(

1

3
cos2 T − 3

10
)} , (20)

g33 = r2 cos2 T{1 + (
c4

r2
)2(

cos2 T

15
− 3

10
)} , (21)

g44 = 1− c1

r
+

1

2
{(c3

r
)2 + (

c4

r2
)2 sin2 T} , (22)

g34 = r cos2 T (
c2

r2
− 1

2

c3c4

r3
) , (23)

A3 = r cos2 T
c4

r2
, (24)

A4 =
c3

r
. (25)

The physically relevant parts of the metrical components are called physical

metric components. These are the complement to unity in equations (19-22).

Denoting the complements by g(11) etc. the above equations read

g11 = 1 + g(11) , (26)

g22 = r2 (1 + g(22)) , (27)

g33 = r2 sin2 ϑ (1 + g(33)) , (28)

g44 = 1 + g(44) . (29)
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The physical metric components have a magnitude of ca 10−40. Since several

components contain unities, the physical components would have no effect due

to lack of numerical precision during computation. Therefore, the actual com-

putation is done with quantities performed from these physical components,

with the consequence that the unity summands in the equations are eliminated.

We have to insert the values of the integration constants into the modified

initial conditions (with physical components), see program in the data package

(available at the author’s website3). The conversion of physical into normalized

(dimensionless) values and vice versa is described in detail in [7, 10]. Table 1

shows some values with radius unit of 10−15m. These examples allow for

convenient conversion.

Table 1: Physical and normalized values for conversion

physical value norm. value

proton mass 1.672× 10−24g 2.48× 10−39

electr.mass 0.911× 10−27g 1.35× 10−42

h̄ 1.054× 10−27cm2g/s 5.20× 10−40

elem. charge 1.602× 10−19As 1.95× 10−21

µB 1.165× 10−27Vs cm 3.70× 10−19

Higher moments are missing in the equations because of lack of knowledge,

their influence is estimated to be rather small. In the results section we will

insert known values and values deviating from them, and compare the results.

The algorithm for evaluating the equations requires numerical differentia-

tion. We do this by separating the quantity with highest radius index at the

left-hand side as described in section 2. All previously evaluated quantities are

at the right-hand side. These quantities come from equations (6) and (8) using

(9). For example when we calculate spherical shells from outside to inside, the

new quantity is fm+2,n. In the following difference equations f stands for any

3http://www.bruchholz-acoustics.de/physics/neutrino data.tar.gz
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potential-like quantity:

∂f

∂r

∣∣∣
rm,Tn

=
fm−1,n − fm+1,n

2 ∆r
, (30)

∂2f

∂r2

∣∣∣
rm,Tn

=
fm+2,n − 2fm,n + fm−2,n

(2 ∆r)2
, (31)

∂f

∂T

∣∣∣
rm,Tn

=
fm,n+1 − fm,n−1

2 ∆T
, (32)

∂2f

∂T 2

∣∣∣
rm,Tn

=
fm,n+1 − 2fm,n + fm,n−1

∆T 2
. (33)

From equation (31), and secondarily from equations (30), (32), (33), we obtain

recursion formulae of the kind

fm+2,n = 2fm,n − fm−2,n − (2 ∆r)2Fm,n(cν) , (34)

see also section 2. The Fm,n are very complex, and contain the non-linearities

of the Einstein-Maxwell equations. Detailed formulae are available in the

Pascal code. (The Pascal code is in the supplementary data.) This method is

made possible by the fact that 2nd derivatives in the tensor equations appear

always linearly. Therefore the doubling of grid distances in equation (31) was

introduced.

When the program runs, the values of the several components are succes-

sively quantified in one spherical shell after the other. The computation is

done for all components along the inclination (ϑ values) at a given radius, and

along the radius (with all inclination values) from outside to inside step by

step until geometric limits are reached. After starting the procedure, we get

the values as expected from the initial conditions. Suddenly, the values grow

over all limits. At this point geometric limits are reached and the calculation

is stopped.

The step count (number of iterations) up to the first geometric limit of

a metrical component (where the absolute value of the “physical” component

becomes unity) depends on the inserted values of the integration constants.

A relatively coarse grid reflects strong dependencies, however, the referring

values of the integration constants are imprecise. Computations with finer grid

lead to smaller contrast of the step counts, but the values are more precise.

The resulting eigenvalues of the integration constants are obtained where

the step count until divergence is at maximum. Round-off errors have to be
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respected because these can be in the order of step count differences for the

formulae.

In order to see the eigenvalues, lots of tests were run with parameters more

and less deviating from reference values. The output parameter (used for the

plots discussed in the results section) is the mentioned step count. In order to

make visible the differences, the step count above a “threshold” is depicted in

resulting figures by a more or less fat “point”.

Though neutrinos are uncharged, one has to use always the full Einstein-

Maxwell equations (with zero charge and magnetic moments) to account for

the inherent non-linearity. Because the information is in the entire field outside

the geometric boundary, one has to do so even if charge and magnetic moment

are zero. Higher moments exist anyway and are included in the calculation.

Only in the (outer) initial conditions (when starting the calculations) they are

neglected.

3.3 Computational results

3.3.1 Spins, electric charges, magnetic moments

Tests including parameters different from mass had to be run with an initial

radius close to the conjectural particle radius. Here, the influences of the four

relevant parameters onto the metric (about 10−40) are comparable.

The best result has been achieved with the free electron, see [7, 10]. The

magnetic moment of the electron arises in particularly sharp form, due to

the dominant influence. Unfortunately, the mass gets lost in the “noise” from

rounding errors. Only cases with charge and mass together can be made visible

in exceptional cases, see for example [9].

3.3.2 Masses

The influence of mass on metrics prevails in a certain distance from the con-

jectural particle or nucleus radius, respectively. It proves being possible to set

the remaining parameters to zero.

It was necessary in the pure mass tests to “pile up” the data. For this

purpose, several test series with slightly different parameters (mostly initial
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radius) have been run, and the related step counts (the output) have been

added. So the “noise” from rounding errors is successively suppressed. With

80 bit floating point registers, the rounding error is in the 20th decimal. As

well, the relative deviation of difference quotients from related differential

quotients in the first step is roughly 10−20 – that is the limit, where the onset

of chaotic behaviour can be seen. Consequently, calculations with only 64 bit

(double) lead to no meaningful results.

Masses of nuclei

Related tests are reported in [9]. The figures in [9] show up a possible

assignment of maxima to nucleus masses in the display. One can see certain

patterns in these figures, which could arise from errors by neglecting other

parameters.

The tests have been done up to the oxygen nucleus. With appropriate

effort, it should be possible to test the whole periodic system of elements,

with predictions about its end.

Masses of leptons

It is principally possible to deduce the masses of all free particles, if they are

stable to some extent. Since the electron mass is relatively small, one needs an

initial radius of about 4×10−13 m in order to be able to neglect the influence of

spin, charge, magnetic moment to some extent, see Fig. 1 [10]. One step count

maximum (piled) appears fairly correctly at the experimental value, flanked

by adjoining maxima, possibly caused by the neglected parameters.

Figure 1: Tests for the free electron. Initial radius 400, 51 values, 9 times piled
(459 tests)

The success in detecting known masses gives us confidence for trying a pre-

diction of neutrino masses. That implies that neutrinos are stationary parti-

cles, i.e. have rest mass at all. Then they can never reach light speed.



U.E. Bruchholz and H. Eckardt 65

The Particle Data Group [11] commented in the year 2002:

There is now compelling evidence that neutrinos have nonzero mass from the

observation of neutrino flavor change, both from the study of atmospheric

neutrino fluxes by SuperKamiokande, and from the combined study of so-

lar neutrino cross sections by SNO (charged and neutral currents) and Su-

perKamiokande (elastic scattering).

The neutrino has the advantage of being electromagnetically neutral. As

well, the spin does not perceptibly influence other components of metrics than

those for the spin itself. So we can unscrupulously neglect the spin, and search

for quite tiny masses.

Quoting the Particle Data Group (in 2002) again [11]:

Mass4 m < 3 eV.

Interpretation of tritium beta decay experiments is complicated by anomalies

near the endpoint, and the limits are not without ambiguity.

Newer experiments re-verify this ambiguity, just providing multiple mass

bounds.

Ten plausible maxima have been found in our calculations for the electron

neutrino, see Figs. 2, 3, 4, 5, 6, and the supplementary data. Obtained values

are 0.068 eV, 0.095 eV, 0.155 eV, 0.25 eV, 0.31 eV, 0.39 eV, 0.56 eV, 1.63 eV,

2.88 eV, 5.7 eV. Smaller values (Fig. 2) are less convincing.

The mentioned ambiguity goes along with the fact that multiple mass val-

ues have been detected. It could be possible that the set of values is reduced by

computation with spin. The precision with 80 bit registers is not sufficient for

such calculations. However, it could well be possible interpreting some values

as composites from smaller values. Here we could have comparable circum-

stances like in nuclei so that there is no reason for the assumption that only

one value can exist. This conclusion is supported by multiple experimental

mass bound values.

Many mass values are integer multiples of ∼ 0.08 eV, within the tolerances

of the method. At the place of this value there is a hole in the figure, flanked

by maxima at 0.068 eV and 0.095 eV. This could be:

1) a methodical error resp. effect, or

2) both values are a kind of basic values, where the other values are composites

from.

4of electron neutrino
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Other interpretations cannot be precluded.

Figure 2: Tests for the electron neutrino, masses < 0.11 eV. Initial radius 5, 100
values, 9 times piled (900 tests)

Figure 3: Tests for the electron neutrino, masses < 0.4 eV. Initial radius 5, 100
values, 9 times piled (900 tests)

4 Conclusion

It has been shown in this paper that neutrino masses can be predicted by

numerical calculations based on Einstein-Maxwell theory. Starting from

a finite difference scheme for differential equations, chaos properties of these

equations were investigated in dependence of parameters being integration

constants of the theory. The resulting masses for supposed electron neutrinos
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Figure 4: Tests for the electron neutrino, masses < 1 eV. Initial radius 5, 99 values,
9 times piled (891 tests)

Figure 5: Tests for the electron neutrino, masses < 4 eV. Initial radius 5, 99 values,
9 times piled (891 tests)

Figure 6: Tests for the electron neutrino, masses < 11 eV. Initial radius 5, 100
values, 9 times piled (900 tests)
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come out to lie in the range being known by experiments. This is probably

the first time that supposed neutrino masses are predicted by a theory based

on first principles.
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