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On a new Differential Operator

Deborah Olufunmilayo Makinde1

Abstract

In this paper, we give a new differential operator for the class of
analytic functions of the form:

f(z) = z +
∞∑

n=2

anzn.

and we obtained a univalent condition for the harmonic function defined
by the said differential operator as well as its coefficient bounds.
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1 Introduction

Let A denote the class of all analytic functions f(z) defined in the open

unit disk U = {z ∈ C : |z| < 1} and of the form:

f(z) = z +
∞∑

n=2

anz
n (1)
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A continuors complex valued function f = u+iv defined in a simply connected

complex domain D ⊂ C is said to be harmonic in D if both u and v are real

harmonic in D. In any simply connected domain, we write f = h + ḡ, where

h and g are analytic in D. We call h the analytic part and g the co-analytic

part of f . A necessary and sufficient condition for f to be locally univalent

and sense preserving in D is that |h′(z)| > |g′(z)| in D.

Let H denote the family of functions f = h + ḡ that are harmonic univalent

and sense preserving in the unit disk U = {z ∈ C : |z| < 1} for which f(0) =

fz(0)−1 = 0. The harmonic function f = h+ ḡ reduces to an analytic function

f = h when g ≡ 0.

Many Authors [1,3,4,5] and several others have studied the family of harmonic

univalent functions. In 2012, Makinde and Afolabi [2], introduced and studied

the subclass TH(α, β, t) of harmonic univalent functions.

In this paper, for f(z) ∈ A, we introduce the differential operator F kf(z)

denoted by

F kf(z) = z +
∞∑

n=2

cnkanzn (2)

where cnk = n!
|(n−k)|! and

F kf(z) = zk

[
z−(k−1) +

∞∑
n=2

cnkanz
n−k

]
, k ≥ 0

and

F 0f(z) = f(z),

F 1f(z) = z +
∞∑

n=2

cn1anzn = z +
∞∑

n=2

nanzn

Thus, it impies that F kf(z) is identically the same as f(z) when k = 0 and

when k = 1, we obtain the first differential coefficient of the Salagean differ-

ential operator.

For f = h + ḡ ∈ H, we express the analytic functions h and g as;

h(z) = z +
∞∑

n=2

cnkanz
n, (3)

and

g(z) =
∞∑

n=1

cnkbnzn, |b1| < 1 (4)
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We present and prove the main results of this paper in what follows.

2 Main Results

Theorem 2.1. Let the function f = h+ ḡ be such that h and g are as given

in (3) and (4) respectively and for z1 6= z2. If
∑∞

n=1 cnk|bn|
1−∑∞

n=2 cnk|an| < 1, k ≥ 0, an, bn are complex numbers

Then f is univalent in U .

Proof If z1, z2 ∈ D, then
∣∣∣∣
f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣

g(z1 − g(z2)

h(z1)− h(z2)

∣∣∣∣

= 1−
∣∣∣∣

∑∞
n=1 cnkbn(zn

1 − zn
2 )

(z1 − z2) +
∑∞

n=2 cnkan(zn
1 − zn

2 )

∣∣∣∣

> 1−
∑∞

n=1 cnk|bn|
1−∑∞

n=2 cnk|an| > 0, by hypothesis.

Hence f is univalent in U .

Corollary 2.2. Let the function f = h + ḡ be univalent in U such that h

and g are as given in in (3) and (4) respectively . Then,

|bn| < 1

cnk

−
∞∑

n=2

|an|.

Corollary 2.3. Let the function f = h + ḡ be univalent in U such that h

and g are as given in in (3) and (4) respectively . Then,

|an| < 1

cnk

−
∞∑

n=1

|bn|.

Theorem 2.4. Let the function f = h + ḡ be univalent in U such that h

and g are as given in in (3) and (4) respectively. If

1−
∞∑

n=2

ncnk |an| >
∞∑

n=1

ncnk |bn|

Then f is sense preserving and locally univalent in U .
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Proof Let

h(z) = z +
∞∑

n=2

cnkanzn

Then

|h′(z)| =

∣∣∣∣∣1 +
∞∑

n=2

ncnkanzn−1

∣∣∣∣∣

≥ 1−
∞∑

n=2

ncnk|an|

≥
∞∑

n=1

ncnk|bn| = |g′(z)|

Hence f is sense preserving and locally univalent in U .
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