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Abstract

The Padé approximation considered as interpolation problem by ra-
tional fractions is widely used to accelerate power series because to
their accuracy. Its generalization in the orthogonal Chebyshev basis,
a family of polynomials that presents a behaviour uniform, have been
applied successfully in the resolution to various dependent problems of
a variable. In this article, our approach aims to extend this generaliza-
tion to functions of two variables. Numerical implementations are also
presented.
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1 Introduction

Approximation methods have always been the subject of intense investiga-

tion because they have been for most of the times inescapable in the resolution
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to some partial differential equations. Among the ones, these consisting to ap-

proach some functions written under forms to series by rational fractions have

proved their efficiency.

Padé approximants, since the pioneer paper [16] of 1892, are up to date

thanks to applications in physical sciences, mathematics, and other applied

sciences with the advent of computers in the 1950s as tool of convergence

acceleration [1, 2]. These approximants are the locally best rational approxi-

mants to a power series. The posed problem by Padé is the following: let f a

given function through its Taylor series expansion at the origin

f (z) = c0 + c1z + c2z
2 + ... + cnz

n + ... (1)

where ck = f (k) (0) /k!, k = 1, 2, .... It concerns to find a set of rational

fractions p(z)/q(z) which validly approach f(z) [2].

There are enough works on Padé approximants [2, 3, 4, 5, 17]. Also, to

generalize certain concepts of Padé approximants to functions of several vari-

ables, we can consult for example [6, 8, 10, 12, 13].

In its article [14], using the Padé approximants, H. J. Maehly has given the

starting point of a method to convert Chebyshev series into rational expres-

sions involving Chebyshev polynomials. To this we must add an other variant

proposed in [7]. The term Chebyshev-Padé approximants will refer Padé ap-

proximants in the orthogonal Chebyshev polynomials basis.

The present paper proposes to extend the contained ideas in [7] and [14] to

functions of two variables. Pseudo-spectral methods are a motivation for the

research of these approximants in the aim to accelerate their convergence.

This paper is organized as follows. In the section 2, are briefly presented

Padé approximants. Results on the extension of Padé approximants in the

Chebyshev basis are given in section 3: the subsection 3.1 presents the uniform

approximation, subsection 3.2 is devoted to Chebyshev-Padé approximants of

univariate functions, and the subsection 3.3 is dedicate to the approach of

Chebyshev-Padé approximants for functions of two variables. In section 4 some

examples are chosen to show the high accuracy of the approach. Conclusions

of the study are summarized in section 5.
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2 Padé Approximants

Considering the power series (1), it is possible to construct, under some

conditions, a double sequences of rational fractions p(z)/q(z) whose the nu-

merator p is a polynomial of degree m and denominator q of degree n [3]:

p(z)

q(z)
=

a0 + a1z + a2z
2 + ... + amzm

b0 + b1z + b2z2 + ... + bnzn
. (2)

The coefficients ai et bj (i = 0, ...,m; j = 0, ..., n) such as am 6= 0, bn 6= 0 of (2)

can be compute so that its increasing power expansion to z coincides with the

one to f(z) as far as possible, ie generally until zm+n including term. In other

words, the difference between the rational fraction (2) and the power series (1)

will begin with a term of degree m + n + 1.

Definition 2.1. The rational fraction (2) is said Padé approximant of the

function f of order m, n if

f (z)− p(z)

q(z)
= O

(
zm+n+1

)
, z −→ 0 (3)

and one denote by [m/n]f(or [p/q](z)) this approximant.

Theorem 2.2. [2] If the Padé approximant [m/n]f (z) exists, then it is

unique.

Concerning the convergence of these approximants, we choose the following

result[2]:

Theorem 2.3 (Montessus de Balloré). Let f be a holomorphic function

from the disc {z : |z| ≤ R} with the poles z1, z2,..., zk. Let n the total order

of multiplicity of poles. Then, the Pad approximant [m/n]f converge on f ,

uniformly on any compact subset {z : |z| < R, z 6= zj, j = 1, 2, ..., k}, as m −→
∞.

In [9], this theorem genelirazed to the multivariate case.
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3 Extension of Padé Approximants in the Cheby-

shev Polynomial Basis

3.1 Uniform Approximation

Let f a continuous function on the interval [−1, 1] and expanded in the form

of the Chebyshev series

f (x) =
∞∑

k=0

′
ckTk (x) , k = 0, 1, ..., (4)

where
∑ ′

means here and in the rest of our work that the first term in the

summation is halved, and ak is defined by the relation

ck =
2

π

∫ 1

−1

(
1− x2

)− 1
2 f (x) Tk (x) dx. (5)

The ck are called the Chebyshev coefficients, Tk (x) = cos (k arccos (x)) is the

Chebyshev polynomial of degree k of the first kind and ω (x) = (1− x2)
− 1

2 the

weight function [15]. These polynomials verify the property

Ti (x) Tj (x) =
1

2

[
Ti+j (x) + T|i−j| (x)

]
. (6)

The zeros of Chebyshev polynomials Tk(x) in the interval [−1, 1] are

xn = cos

(
(2n + 1) π

2k

)
, n = 0, 1, ..., k − 1. (7)

It is indeed known that the truncated expansion of a function in the form

of Chebyshev series is the near-best polynomial approximant, in the sense of

the uniform norm, on the interval [−1, 1]. To obtain uniformly the accuracy to

rational fractions approximations, we use the Chebyshev polynomials, a family

of orthogonal polynomials that present an uniform behaviour.

3.2 Chebyshev-Padé Approximants of Functions of Sin-

gle Variable

As in section 2, we can approach f under its form (4) by a rational fraction

[m/n] ([7], [14]). But, we formulate the following definition:
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Definition 3.1. One calls a Chebyshev-Padé approximant of the power se-

ries (4) every rational fraction

p (x)

q (x)
=

m∑
k=0

′
akTk (x)

n∑
k=0

′
bkTk (x)

, (8)

satisfying (
fq − p

)
= O

(
Tm+n+1(x)

)
, (9)

where the notation O
(
Tm+n+1(x)

)
means that the first term nonzero in the

orthogonal expansion of the function has an index greater than or to m+n+1.

Theorem 3.2. [2] If it exists, the Chebyshev-Padé approximant (8) satis-

fying the condition (9) is unique.

To extend the definition (8) to functions of two variables, we recall the

Padé-Chebyshev method in the case univariate functions showed in [7] for

n ≤ m:

1

2

n∑
j=0

′
bj

(
ci+j + c|i−j|

)
= 0, i = m + 1, m + 2, . . . ,m + n, (10)

1

2

n∑
j=0

′
bj

(
ci+j + c|i−j|

)
= ai, i = 0, 1, 2, . . . ,m. (11)

The equations (10) determine the coefficients bj, and the equations (11) prod-

uct the ai. Experience has shown that the system of equations (10) is fairly

well conditioned.

In the following discussion, we propose an analogous approach to (8) for func-

tions of two variables ie the calculus of coefficients aij and brs in expressions

p(x, y) =
m∑

i=0

m∑
j=0

aijTi(x)Tj(y) (12)

q(x, y) =
n∑

r=0

n∑
s=0

brsTr(x)Ts(y) (13)
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3.3 Chebyshev-Padé approximants of fonctions of two

variables

We start by expressing the following theorem:

Theorem 3.3. [15] Let f : [−1, 1] × [−1, 1] −→ C a continuous function

and of bounded variation in the interval I = [−1, 1]× [−1, 1] (see also [15] for

a definition of bounded variation for bivariate functions). If one of its partial

derivatives exists and is bounded in I, the function f has a bivariate Chebyshev

expansion,

f (x, y) =
∞∑
i=0

∞∑
j=0

cijTi(x)Tj(y), (14)

converges uniformly on I.

Proof. We can refer to [15].

This means that the truncated bivariate Chebyshev (14) in x and y of

respective degrees n and m can being defined for functions satisfying hypothesis

of theorem 3.3 by

f (x, y) ≈
n∑

i=0

m∑
j=0

cijTi(x)Tj(y). (15)

where the coefficients cij are calculed in [11]:

cij =
εij

(n + 1)(m + 1)

n∑
k=0

m∑
l=0

f(xk, yl) cos

(
i(2k + 1)π

2(n + 1)

)
cos

(
j(2l + 1)π

2(m + 1)

)
(16)

with

ε = 4 for i 6= 0 and j 6= 0,

ε = 2 for i = 0 and j 6= 0 or i 6= 0 and j = 0,

ε = 1 for i = 0 and j = 0.
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By the relation (9) and applying the property (6), we have:

f (x, y) Q (x, y) =

(
∞∑
i=0

∞∑
j=0

cijTi(x)Tj(y)

)(
n∑

r=0

n∑
s=0

brsTr(x)Ts(y)

)

=
∞∑
i=0

∞∑
j=0

n∑
r=0

n∑
s=0

cijbrsTi(x)Tr(x)Tj(y)Ts(y)

(17)

=
1

4

∞∑
i=0

∞∑
j=0

n∑
r=0

n∑
s=0

cijbrs

(
Ti+r(x)Tj+s(y) + Ti+r(x)T|j−s|(y)

+ T|i−r|(x)Tj+s(y) + T|i−r|(x)T|j−s|(y)
)
.

In order to simplify different expressions, we formulate the following proposi-

tions:

Proposition 3.4.

Let (αi)i≥0 and (βi)i≥0 two series of real numbers, and (γi(x))i≥0 a series of

functions, we have:

∞∑
i=0

n∑
r=0

αiβrγi+r(x) =
∞∑
i=0

n∑
r=0

α̃i−rβrγi(x) (18)

∞∑
i=0

n∑
r=0

αiβrγi−r(x) =
∞∑
i=0

n∑
r=0

α̃i+rβrγi(x) (19)

∞∑
i=0

n∑
r=0

αiβrγ|i−r|(x) =
∞∑
i=0

n∑
r=0

α̃r−iβrγi(x) +

(20)
∞∑
i=1

n∑
r=0

αi+rβrγi(x)

where the coefficients α̃i verify

α̃i =

{
αi, if i ≥ 0,

0, otherwise.
(21)
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Proof. To prove (18), we made a change of index ĩ = i + r, it follows:

∞∑
i=0

n∑
r=0

αiβrγi+r(x) =
n∑

r=0

∞∑
ĩ=r

α ĩ−rβrγ ĩ(x)

=
n∑

r=0

∞∑
i=r

αi−rβrγi(x)

=
∞∑
i=0

n∑
r=0

α̃i−rβrγi(x)

The proof (19) is similar to (18), it suffices to set ĩ = i− r.

Indeed to show (20), first a decomposition gives:

∞∑
i=0

n∑
r=0

αiβrγ|i−r|(x) =
n∑

r=0

r∑
i=0

αiβrγr−i(x) +
n∑

r=0

∞∑
i=r+1

αiβrγi−r(x).(22)

Then, the change of respective index ĩ = r − i and ĩ = i − r for two terms of

the right-hand side of (22), it comes

∞∑
i=0

n∑
r=0

αiβrγ|i−r|(x) =
n∑

r=0

0∑
ĩ=r

αr−ĩ βrγ ĩ(x) +
n∑

r=0

∞∑
ĩ=1

α ĩ+rβrγ ĩ(x)

=
n∑

r=0

r∑
i=0

αr−i βrγi(x) +
n∑

r=0

∞∑
i=1

αi+rβrγi(x)

=
∞∑
i=0

n∑
r=0

α̃r−i βrγi(x) +
∞∑
i=1

n∑
r=0

αi+rβrγi(x)

with the α̃i are defined as in (21).

In the following we consider the coefficients (c̃ij) such that

c̃ij =

{
cij, if i ≥ 0 and j ≥ 0,

0, otherwise.
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Using the proposition 3.4 we obtain:

4f (x, y) Q (x, y) =
∞∑
i=0

∞∑
j=0

n∑
r=0

n∑
s=0

c̃i−r,j−sbrsTi(x)Tj(y)

+
∞∑
i=0

∞∑
j=0

n∑
r=0

n∑
s=0

c̃i−r,s−jbrsTi(x)Tj(y)

+
∞∑
i=0

∞∑
j=1

n∑
r=0

n∑
s=0

c̃i−r,s+jbrsTi(x)Tj(y)

+ 2
∞∑
i=0

∞∑
j=0

n∑
r=0

n∑
s=0

c̃r−i,s−jbrsTi(x)Tj(y)

+ 2
∞∑
i=1

∞∑
j=0

n∑
r=0

n∑
s=0

c̃i+r,s−jbrsTi(x)Tj(y)

+
∞∑
i=0

∞∑
j=1

n∑
r=0

n∑
s=0

c̃r−i,s+jbrsTi(x)Tj(y)

+
∞∑
i=1

∞∑
j=1

n∑
r=0

n∑
s=0

c̃i+r,s+jbrsTi(x)Tj(y) (24)

Since (12), (13) and (14) must verify (9), this helps by identification of coeffi-

cients for i, j = m + 1, ...,m + n, to obtain the following homogeneous system

of unknowns brs:

n∑
r=0

n∑
s=0

(c̃i−r,j−s + c̃i−r,s+j + c̃i+r,s+j) brs = 0. (25)

The system (25) is homogeneous and includes n2 equations and (n + 1)2 un-

knowns. It is thus a system over determined. Generally, it does not admit

solutions. A way possible to solve is to normalize certain terms. In our case,

(2n + 1) conditions of normalizations are needed (recall that other normaliza-

tions are possible):

b00 = 1, (26)

br0 = 1 with r = 1, 2, ..., n, (27)

b0s = 1 with s = 1, 2, ..., n. (28)
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In these specific cases, the system (25) contains n2 equations and n2 unknowns:

n∑
r=1

n∑
s=1

Θijrsbrs = −3cij −
n∑

r=1

Θijr0 −
n∑

s=1

Θij0s, (29)

with

Θijrs = c̃i−r,j−s + c̃i−r,s+j + c̃i+r,s+j.

In the same way, the coefficients aij are determined by solving the following

system:

1

2

n∑
r=0

n∑
s=0

c̃rsbrs = a00, i, j = 0,

1

4

n∑
r=0

n∑
s=0

(c̃r,s+j + 2c̃r,s−j) brs = a0j, 1 ≤ j ≤ m,

1

4

n∑
r=0

n∑
s=0

(2c̃r+i,s + c̃i−r,s + 2c̃r−i,s) brs = ai0, 1 ≤ i ≤ m,

1

4

n∑
r=0

n∑
s=0

(c̃i−r,s+j + 2c̃i+r,s−j + c̃r−i,s+j + c̃i−r,j−s + c̃i−r,s−j

+ 2c̃r−i,s−j) brs = aij, 1 ≤ i, j ≤ m.

(30)

Remark 3.5. Different normalisations enable to prove the existence of these

approximants but no the uniqueness.

4 Numerical Experimentation

To illustrate the efficiency of the previous method, we give three estimated

examples at the N = 30 Chebyshev points. One the one hand, we have

established a table of values showing absolute errors between exact values of

each function and its approximate by truncate Chebyshev series fap, and one

the other hand with its Chebyshev-Padé approximant f(x, y)ChebPade on the
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same grid points N ×N . Thus, we could exhibit a positive integer n (degree

of denominator in x and y) for which f(x, y)ChebPade −→ f(x, y) varying m

(degree numerator in x and y).

Table 1: f(x, y) = sin (πx) sin(πy)

[m/n] ||f − fap||∞ ||f − fChebPade||∞

[15/7] 0.17844680 0.00989083

[16/7] 0.17219250 0.00956546

[17/7] 0.16663555 0.00768792

[18/7] 0.16210627 0.00761395

[19/7] 0.15787886 0.00666526

[20/7] 0.15341211 0.00605857

Table 2: f(x, y) = exp (−xy)

[m/n] ||f − fap||∞ ||f − fChebPade||∞

[20/9] 0.08544526 0.00993883

[21/9] 0.08331408 0.00964092

[22/9] 0.08153698 0.00945850

[23/9] 0.07971592 0.00868023

[24/9] 0.07783491 0.00813102

[25/9] 0.07594786 0.00775546
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Table 3: f(x, y) = exp(x) (sin(y) + xy2)

[m/n] ||f − fap||∞ ||f − fChebPade||∞

[25/10] 0.12392750 0.00955737

[26/10] 0.12102090 0.00917107

[27/10] 0.11822960 0.00813607

[28/10] 0.11557987 0.00802139

[29/10] 0.11303214 0.00714170

[30/10] 0.11060684 0.00335623

Three tables of absolute errors show clearly that it is more accurately to

approach functions by rational functions than by polynomials with the same

number of degrees of freedom. Therefore, this method confirms the conver-

gence acceleration of pseudo-spectral methods.

5 Conclusion

In this article, an approach of Chebyshev-Padé approximants for functions

of two variables have been proposed. We obtained algebraic systems to de-

termine the numerator and denominator coefficients of these approximants.

Numerical examples made proved the efficiency of this method in the conver-

gence acceleration of pseudo-spectral methods.
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versity Press, Cambridge, UK, 1996.

[3] C. Brezinski, Algorithmes d’accélération de la convergence. Etudes

numériques, Editions techniques Paris, 1978.



Siniki Ndeuzoumbet, M.S. Daoussa Haggar and Benjamin Mampassi 115

[4] C. Brezinski, History of continued fractions and Padé approximants,
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