Journal of Computations & Modelling, vol.6, no.3, 2016, 25-42
ISSN: 1792-7625 (print), 1792-8850 (online)
Scienpress Ltd, 2016

Mobile Thread Migration
for Dynamic Load Balancing in Grid

Masaya Miyashita!, Andrii Zhygmanovskyi?,
Noriko Matsumoto® and Norihiko Yoshida*

Abstract

A Grid is mostly heterogeneous system where the computation ca-
pability of each node varies. Therefore, load distribution and load bal-
ancing are among the most important issues in Grid. Some techniques
have been proposed for dynamic and adaptive load distribution, such as
relocating jobs from a high-loaded node to a low-loaded node while re-
taining job execution state based on virtual machine and thread migra-
tion. In this paper, we propose a method for dynamic and adaptive load
distribution between computation nodes using mobile thread migration
which yields lightweight job relocation without unnecessary overhead.
Using an example problem called parallel PrefixSpan, whose compu-
tation cost is absolutely unpredictable and which is used in analysis
of amino-acid sequences, we demonstrate effectiveness of our technique

through experiments.

Keywords: grid computing; load balancing; mobile threads; dynamic migra-

tion

! Saitama University. E-mail: masaya@ss.ics.saitama-u.ac.jp
2 Saitama University. E-mail: andrew@ss.ics.saitama-u.ac.jp
3 Saitama University. E-mail: noriko@ss.ics.saitama-u.ac.jp

4 Saitama University. E-mail: yoshida@ss.ics.saitama-u.ac.jp

Article Info: Received : July 27, 2016. Revised : August 29, 2016.
Published online : October 1, 2016.

26 Mobile Thread Migration in Grid

1 Introduction

Grid systems, which are composed of a number of volunteer commodity
PCs, are already widely used for various scientific computations. A Grid is
mostly heterogeneous system, and the computation capability (as well as net-
work bandwidth) of each node varies. In such system, computation cost of
a job assigned to each node often varies as well. Therefore, load distribution
and load balancing are among the most important issues in Grid, and several
related techniques have been proposed. Some of them are based on static pre-
diction of the computation cost of all the jobs before execution, and can only

be applied to problems with predictable computation cost.

Several techniques have been proposed for dynamic and adaptive load dis-
tribution by relocating jobs while keeping their execution state from high-
loaded node to low-loaded node during execution. Most of them utilize virtual
machine migration [1, 2, 3]. In this scheme, the cost of transferring the data
presents some overhead. Therefore, more lightweight ways of migration are
required.

In this paper, we propose a dynamic and adaptive load distribution tech-
nique for relocating jobs between computation nodes using mobile thread mi-
gration, which leads to lightweight job relocation without unnecessary over-
head. There have already been some proposals on thread migration [4, 5, 6],
however they are based on distributed shared memory (DSM) systems. Mo-
bile thread systems do not require such underlying platform, therefore they are
more lightweight than DSM-based thread migration. We demonstrate effec-
tiveness of our approach using an example problem called parallel PrefixSpan
used in analysis of amino-acid sequences, whose computation cost is abso-
lutely unpredictable. Based on our preliminary study using two PCs [7], we
conducted some extended experiments towards practical evaluation. In this
regard, this paper is an extended version of our previous conference paper [7].

The organization of this paper is as follows. We explain mobile threads,
and our design principle for dynamic migration in Section 2. Section 3 is an
introduction of the example problem, and Section 4 describes a Grid system
based on our technique. We show the results of experiments in Section 5, and

Section 6 presents conclusions of this paper.

M. Miyashita, et al. 27

2 Migration based on mobile threads

A mobile thread, sometimes also called mobile agent, is a kind of thread,
which can move between computers in a network while keeping its own pro-
gram code and execution state [8]. This idea arose to help development and
operation of large-scale network applications. Conventional network applica-
tions are designed based on ”communication”. The idea of mobile threads
separates computation and physical platform, and unifies computation and
communication instead. Communication is now enclosed within computation,
and this encapsulation is also expected to reduce network traffic.

To implement this feature, a mobile thread must be able to transfer not
only its information but also its execution context over a network. The source
node suspends the mobile thread, transfer information required to continue ex-
ecution to the destination node, and the destination node resumes the thread.
Mobile thread systems already proposed so far include Aglets [9], MOBA [10],
AgentSpace [11], and JavaGo [12], all of which are based on the Java language.

The Java language and its environment provides multi-platform remote
invocation mechanism. Its serialization facility also enables us to send and
receive not only simple values (integers and strings) but also complex objects
even in heterogeneous network environments. However, Java only provides
such mechanisms for mobile objects, but not for mobile threads. The execution
context of threads cannot be transferred. The systems mentioned above extend
Java language and/or its byte-code interpreter to provide context mobility and
basic mechanism for dynamic class loading.

In order to implement job relocation from a high-loaded node to a low-
loaded node during execution and achieve dynamic load distribution in Grid,

mobile threads have several advantages over virtual machine migration.

e Migration overhead:
The amount of data to be transferred for mobile threads is much smaller

than for virtual machines.

e Variation of execution platform:
Underlying hardware vary from node to node, and sometimes execution
of a virtual machine has some restrictions. Execution of mobile threads

does not have any.

28 Mobile Thread Migration in Grid

To apply the mechanism of mobile threads to dynamic load distribution,
the system should migrate a thread executing a job from a high-loaded node
to a low-loaded node, or from a low-performance node to a high-performance

node. To realize this approach, we introduce the following two parameters:

e Performance of a computation node E,, ..

e Estimated computation cost of a job E...

E04e indicates the processing capacity which the node can execute in a unit
of time. F., indicates the workload of a job. We introduce time T required
to complete the job on the node as T' = Euyst/ Epoge. We use T as a parameter
for job migration. Figure 1 shows some examples of criteria for job migration
in the case of two nodes, with the maximum number of jobs being executed
concurrently on a single node is set to 2 for simplicity.

We could make a node control the migration in an autonomous manner,
however it is actually difficult to find an appropriate destination node for
migration in a decentralized manner, therefore we put a central manager which
always monitors the load of all nodes and controls every migration. Figure 2
shows an outline of the proposed procedure.

The process flow is shown in Figure 2 in general case of more nodes and

larger capacity.

(1) A worker tells its value T to the manager periodically, and asks the

manager for an appropriate destination node.

Origin Destination Origin Destination Origin Destination
The number of jobs: 1 The number of jobs : 0 The number of jobs: 1 The number of jobs: 1 The number of jobs: 1 The number of jobs: 2
[N O
. R . O . N\ O
Migration occurs if the processing performance Migration occurs if it is possible to anticipate Migration does not occur.
of destination node is higher than origin node. shortening of calculation time by exchanging
the jobs.
Origin Destination Origin Destination Origin Destination
The number of jobs: 2 The number of jobs: 0 The number of jobs: 2 The number of jobs: 1 The number of jobs: 2 The number of jobs: 2
N SN
[J O o @——xX—0O
Migration always occurs. Migration occurs if it is possible to anticipate Migration does not occur.

shortening of calculation time by migrating
the job.

Figure 1: Criteria for job migration.

M. Miyashita, et al. 29

(2) The manager replies with the information about the lowest-loaded node,

which has the smallest value 7" out of all nodes.

(3) The worker determines whether to migrate its job or not, according to

the criteria whose simple version is shown in Figure 1.

3 Example problem: PrefixSpan

As an example problem in which the computation cost of each job changes
dynamically and cannot be predicted before computation, we use “PrefixSpan”
proposed by Pei et al. [13] [14], which is an algorithm for sequential pattern
mining. Sequential pattern mining is extracting frequent substrings out of a
given database of sequences, and is often applied to analysis of amino-acid
sequences.

The essence of PrefixSpan is as follows (quoted from [13]):

A sequence is a linear combination of characters such as alpha-
bets. A sequence database is a set of tuples (sid, s), where sid is a
sequence ID and s is a sequence. A tuples (sid, s) is said to contain
a sequence «, if « is a subsequence of s, i.e., &« C s. The support
of a sequence « in a sequence database S is the number of tuples

in the database containing «, i.e.,

supports(a) = | {(sid, s) | ((sid,s) € S) A (« C s)} |.

(1) The destination O Manager
node is inquired. (4) Job is migrated and
(2)The destination g;c;%eiﬁzllgg Is executed
node is notified. _ .

/'— \\‘
N e]
Y/ (3) Migration judgment is executed. “s.__-/

Computation node A Computation node B

Figure 2: Outline of migration mechanism.

30 Mobile Thread Migration in Grid

Given a positive integer £ as the support threshold, a sequence «
is called a frequent sequential pattern in the sequence database S
if the sequence is contained by at least & tuples in the database,
i.e., supports(a) > £. Given a sequence database and a minimum
support threshold, the problem of sequential pattern mining is to
find the complete set of sequential patterns in the database.
Given a sequence s = (ay, ag, . . ., ay,), the sequence (ay, ay, .. ., a;)

(1 <j<m)where a; #a, as #a, ..., a1 #a, a; = a is called
a prefix of s for a(prefiz(s,a)), and the sequence (a1, ..., ap) is
called a postfix of s for a(post fiz(s,a)). Let a be a frequent sequen-
tial pattern in the sequence database S. A projected database S|a
is made by solving post fix(s,a) for each sequence s in S. Search-
ing of frequent sequential patterns is done by making projected

databases repeatedly.

Now we present a parallel processing version of PrefixSpan. It is based on
the master-worker framework. A frequent sequential pattern with length £ is
called an k-frequent pattern. A job is to extract k + 1-frequent patterns and
the ones after them from a k-frequent pattern. Initially, the central manager
creates some jobs which correspond to k-frequent patterns extracted using the
user-specified threshold k. Each job is assigned to a thread extracting all the
following frequent sequential patterns with the depth-first search method. A
thread completing its job asks the manager for a new job repeatedly until all
the jobs in the manager are processed. There has been a proposal similar to this
[15], however they are a parallel version of their own “Modified PrefixSpan.”

The parallel PrefixSpan has the following characteristics:

(1) A job does not have any mutual dependences, and can be processed

independently.

(2) It is not possible to predict the number of frequent sequential patterns
extracted out of one job, nor the time required for extraction in a static
analysis before computation. This is because both of them depend on

the characteristic of the sequence.

(3) The difference between the computation cost of jobs tends to get larger

during execution.

M. Miyashita, et al. 31

4 System design and implementation

Our system prototype implements dynamic load distribution based on mo-
bile threads applied to a problem with inherently unpredictable characteristics,
namely the parallel PrefixSpan. Job migration is implemented using a mobile
thread system, JavaGo [12], because it does not require any special runtime
environment unlike other systems. Figure 3 shows an overview of our system,
in which the migration server is a part of JavaGo.

According to the process flow shown in Figure 3, each Grid node performs

the following steps.

(1) The master process extracts k-frequent patterns from given 1-frequent
patterns using a user-specified threshold & with breadth-first search.

(2) All jobs are stored in the global job pool.
(3) The master thread picks a job out of the global job pool.

(4) The master thread receives a global job request from the worker process,
and sends a job to it. The worker process extracts s-frequent patterns

(where s > k) from the k-frequent pattern using breadth-first search.

(5) All jobs are stored in the local job pool.

Sequence || PrefixSpan Master [PrefixSpan PrefixSpan | 5| Manager
data 0 (breadth-first search) thread 1 (4) \(breadth-first search) (depth-first search) P @ '@ad 1
R —
Local job
2) pool) (8)
Migration server
— e
Global job et Database
pool N | i e
. . A
Migration server
[
Local job
pool
weeee® Input of data
——3 Communication Master ‘ PrefixSpan PrefixSpan le 5| Manager
== Movement of job thread N \(breadth-ﬁrst search) (depth-first search) \ thread N
Master process Worker process Manager process

Figure 3: System overview.

32 Mobile Thread Migration in Grid

(6) The worker process picks a job out of the local job pool unless the local

job pool is empty, and does extraction using depth-first search.

(7) The worker process periodically communicates with the manager process
during extraction, reporting its searching cost, and asking for appropriate

destination migration server.

(8) The manager thread updates and maintains the database based on the

reports and requests from the worker process.

(9) If necessary, a thread is migrated to the migration server in another

process on another node.

(10) When the local job pool is empty, the flow goes to (11). Otherwise, it
goes back to (6).

(11) When the global job poolis empty, all the processes terminate. Otherwise,
the flow goes back to (3).

We need two parameters to realize the flow, which are mentioned in Section
2: the performance of a computation node and the estimated computation cost
of a job.

The performance is approximated by the number of branches in a search
tree which the computation node can search in one second. The value can be
obtained from a preliminary benchmarking of the system.

The estimated computation cost of a job must be estimated using both
(1) the current progress of searching Nyone, and (2) the number of branches
already traversed Tp,s. From the computation cost for the past search T,

the computation cost for the remaining search 7'y, re is calculated as

Tfuture - Tpast X (1 - Ndone)/Ndone

We estimate Ng,,e assuming that the search tree is balanced, i.e. the size
of each subtree is the same. Figure 4 shows the detail of estimation using three
subtrees. In this case, after completing the search in one subtree, we estimate
that Ngene = 1/3.

M. Miyashita, et al. 33

We assume that a one third
search was finished when a
° method call returned.

. . . . The searched number of
: : : D branches is recorded at
Recursive call of method. \2"Y time.

Figure 4: Example of cost prediction.

5 Experiments and evaluation

We conducted some preliminary experiments, using two and four PCs.

5.1 Experiments using two PCs

We have implemented a prototype for experimental evaluation of our sys-
tem design. It is composed of two PCs of different performance as shown in
Table 1. Table 2 shows migration overhead between PCs measured during the
experiments. JavaGo does not actually achieve the optimal performance com-
pared to other mobile thread systems, however it is much faster than virtual
machine migration [16].

Table 1: Experiment setup.

High-perf. PC Low-perf. PC
CPU Intel 3.00GHz AMD 1.80GHz
Memory 2GB 1GB
OS Linux 2.6
Network 1000Base-T
Mobile threads JavaGo 3.1.1
Performance 180,000 17,000
(branches/sec)

Table 2: Migration overhead.

Maximum 1,356ms | Minimum 598ms | Average 820ms

34 Mobile Thread Migration in Grid

Character strings of the alphabet used in the experiments are taken from
public sequence data at PROSITE [17]. They contain 6 sequences of 50 char-
acters with 300 characters in total. The minimum support is set to 6. The
threshold of the workers is between 1 and 3, and the threshold of the master
is also between 1 and 3. The number of jobs that a node can execute simulta-
neously is set to 2. Therefore, the policy of the job migration is the same as
one shown in Figure 1.

We compared the processing times of execution without migration and
execution with migration. The results are shown in Figures 5 (a), (b), (¢) and
Figures 6 (a), (b). The numbers in parentheses indicate the threshold of the
master and the threshold of the workers. Each worker communicates with the

master every 100,000 cycles of branch traversals.

Figures 5 (a), (b), and (c) show that the processing times of the PCs

(1,1) (1,2)
1800.0 6676 1800.0 1706.8
= 16000 - Migration frequency [~ = 16000 - Migration frequency |~
@ 14000 - —— Low > High: 9 times |~ 9 1400.0 - — Low -> High: 25 times |~
o 12000 | High - Low: 1times | o 12000 - | High—> Low: 1times |-
'g 1000.0 g 1000.0
&2 8000 &2 8000
a a
8 6009 8 6009 343.4 3434
S 400.0 O 400.0 . -
= 2829 2822 =
200.0 = - — 2000 ——gg5— —
0.0 |- . . 0.0 4 — i .
Without Migration With Migration Without Migration With Migration
| M High-performance PC Low-performance PC | | M High-performance PC Low-performance PC |
(a) The case of (1,1). (b) The case of (1,2).
(1,3)
1800.0 17100
ey 1600.0 1 Migration frequency [~
9 1400.0 - ——| Low -> High: 68 times |~
v 12000 - | High>Low: 0times [
-§ 1000.0
ugn 800.0 749.4 7606
a
¢ 600.0 —
o
© 4000 S
o
200.0 7 —
0.0 | . .
Without Migration With Migration
| M High-performance PC Low-performance PC |

(¢) The case of (1,3).

Figure 5: Simulation results (1).

M. Miyashita, et al. 35

differ much without migration, while they are almost equal with migration.
This is because a job with high computation cost is migrated from the low-
performance PC to the high-performance one.

Figures 6 (a) and (b) show that without migration, the difference of the
processing times between two PCs becomes small when the threshold of master
is increased. This is because when the threshold is high, the master makes
many jobs, each of which is small enough, so that the load of workers is well
balanced. However, in this case, most searches are done not on the workers
but on the master. Such case does not make sense in practical Grid systems.
Figures 6 (a) and (b) also show that the processing time is shorter without
migration. This is because of the migration overhead.

Figure 7 shows the result when the communication intervals between the
workers and the master are changed from 100,000 to 300,000 cycles of branch
traversals. The figure shows that the communication interval does not affect
the outcome much.

Next, we investigated the effect of the PC performance. We used two high-
performance PCs, one of which had variable CPU utilization from 10% to
100% and acted as a low-performance PC. Then we measured the performance

increase rate (or improvement), which is defined as

(]_ — Tmig/Tnomig) x 100 [%]

where 1},;, is the processing time with migration, and 7},mis is the one

(2,1) (3,1)

1800.0 1800.0
= 1600.0 Migration frequency [~ = 1600.0 Migration frequency [
9 1400.0 Low - High: 5 times [~ 4 1400.0 Low -> High: 5 times |—
;‘ 1200.0 High - Low: O times | ‘;‘ 1200.0 High - Low: O times |
-é 1000.0 é 1000.0
& 5000 & 8000
a a
¢ 600.0 £ 600.0
8 400.0 8 400.0
a ’ 1920 -0 2537 2539 & ' 2300 2304 2710 2713

200.0 A F—— 200.0 |

0.0 + T 1 0.0 -
Without Migration With Migration Without Migration With Migration
| M High-performance PC Low-performance PC | | W High-performance PC Low-performance PC |
(a) The case of (2,1). (b) The case of (3,1).

Figure 6: Simulation results (2).

36 Mobile Thread Migration in Grid

without migration. Figure 8 shows that the larger is the difference between
the PC performance, the more is the effect of migration. If one PC has only
10% power of the other, the migration improves 87.7% of the processing time,
while if two PCs have the same performance, migration actually degrades the

processing time.

We also measured load transition in two PCs. Figure 9 shows the transition
when one PC’s CPU utilization is limited to 50%. The solid line corresponds
to the high-performance PC, while the dashed line shows the low-performance
PC. Migration took place around the 370th time slot, then the load of the low-
performance PC decreased and the load of high-performance PC increased.
The same was observed around the 20th, 490th, 540th, and 660th time slots as
well. The load of the low-performance PC was rising from the 220th time slot

to the 370th, however the migration took place when the high-performance

L1

Migration frequency
| tow > High: 9 times 8 times 9 times
@ 12000 +——— o High->Low: 1times Otimes Ttmes |-

4000 +—— PP RTR] 3L 3043
0.0 | E—

0 100,000 200,000 300,000
(Without Migration)

Interval of migration judgement [branches]

w High-performance PC__ = Low-performance PC_|

Figure 7: Result of (1,1) with different intervals.

100%

Qm% —@—Ppeformance increase rate
80%

\{i
60% 63.5%

40%

49.6%
42.1%

29.9%

20% 21.1%

7.5%

Performance increase rate

4.4%

\. -7.3%
L)

0%

-20%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CPU utilization of low-performance PC

Figure 8: Performance improvement by variable PC performance.

M. Miyashita, et al. 37

PC became ready to accept a new job after completing its own jobs.

5.2 Experiments using four PCs

The system configuration composed of four PCs is shown in Table 3. Table
4 shows migration overheads between PCs measured during the below experi-
ments in this configuration. The thresholds of the master and workers are set

to 1. We compared the processing times of following three executions:

(1) Execution without migration.

(2) Execution with random migration.

Load transition

,L,/ f

&

70 "/

cessing time [sec]
8

'~
~y

Predicted remaining pro
3

i
10 /iur' '}I

0 100 200 300 400 500 600

The prediction number of times of computation cost

= High-performance PC__==="Low-performance PC

Figure 9: Load transition in two PCs.

Table 3: Experiment setup.

PC1 & PC2 PC3 PC4
CPU Intel Intel Intel
CPU Core 2 Duo Pentium 4 Core Duo
3.00GHz 3.06GHz 1.20GHz
Memory 2GB 1GB 1GB
OS Linux 2.6
Network 1000Base-T
Mobile threads JavaGo 3.1.1
Performance ratio
(PC1 as 100) 100 50 30

38 Mobile Thread Migration in Grid

(3) Execution with migration based on the appropriate cost prediction.

In random migration, a job is migrated to any random destination node
with a fixed probability. The probability is determined so that the total mi-
gration number of times becomes almost the same as (3). In the experiment
1, CPU utilization is not limited in each PC. In the experiment 2, CPU uti-
lization of PC2 is limited to 60%. By repeating each experiment five times,
we obtained average values. The results are shown in Figure 10 (a) and (b).

Figure 10 (a) and (b) reveal that the processing times of the PCs differ
much without migration, while they are almost the same with random mi-
gration and with our migration technique. Furthermore, the processing time
with our migration technique is faster than the time with random migration.
This is because a job with much computation cost is migrated from the low-
performance PC to the high-performance one appropriately.

We also measured working ratio in four PCs. Working ratio is defined as

where T}.,, is the running time of the PC, and 7,,,, is the latest processing
time in four PCs. The results are shown in Figure 11 (a) and (b). All values
are average of five trials.

Figure 11 (a) and (b) reveal that the working ratios of the other than PC4

are low without migration and with random migration. As a result, the entire

Table 4. Migration overhead.

Maximum 1,216ms | Minimum 583ms | Average 836ms

1200 1200

1000 1000

800

800

600

400 — 400 +— -
0 0 -

Without Migaration With Random With Migration Without Migaration With Random With Migration
Migration Migration

600

Processing time [sec]

Processing time [sec]

WMPC1 mPC2 mPC3 pPCa EmPC1 mPC2 ®mPC3 PC4

(a) Experiment 1. (b) Experiment 2.

Figure 10: Processing time.

M. Miyashita, et al. 39

processing time gets longer. With our migration technique, the working ratios
of more than 80% are kept for PCs, and any PC of the computation resource
is used effectively. The results of Experiment 1 and 2 are similar regarding

processing time and working ratio.

Finally, we show an example of load transition. Figure 12 shows the load
transition of four PCs with random migration and Figure 13 shows the one
with our migration technique. In Figure 12, the loads of PC3 and PC4 are
high, while the loads of PC1 and PC2 are low, and the entire processing time
becomes long. Meanwhile, Figure 13 shows that the loads of PC3 and PC4
are less than half of those with random migration, and as a result, the entire

processing time becomes short.

100% 100%

90% 90%
o 80% — o 80% —
B 70% — = 70% —
= 60% - — S 60% —
& s0% - — 2 50% A -
2 40% - — X 40% - —
QO 30% - — S 30% - —
3 o A — 2 % —

10% — 10% - —

0% - 0% -
Without Migaration ~ With Random With Migration Without Migaration ~ With Random With Migration
Migration Migration
(a) Experiment 1. (b) Experiment 2.

Figure 11: Working ratio.

_ 500
S
& as0
o
2 a0
= 350 —
F 300
=
% 250 Il
2 200
R ~ Y
£
£ 100 / \/ -
5 R)
A i | N
K 0 S0 100 150 200 250 300 350 400 450
&
Elapsed time [sec]
——PC1 e PC2 ——PC3 pca |

Figure 12: Load transition with random migration.

40 Mobile Thread Migration in Grid

6 Conclusion

In this paper, we proposed dynamic live migration for Grid using the mobile
thread mechanism and proved its efficiency compared to Grid without migra-
tion and with random migration, especially in the case where the disproportion
of the jobs’ computation cost is large. Our migration technique is especially
effective for applications of dynamic nature such as PrefixSpan. However, it
is necessary to design an appropriate system for each specific application, for
example, to introduce appropriate parameters.

We are still at the starting point of this research, therefore there are still
many issues that must be dealt with, such as examining our design in more

rigorous manner on a practical Grid platform.

References

[1] Franco, T., et al., Seamless Live Migration of Virtual Machines over the
MAN/WAN, Future Generation Computer Systems, 22(8), (2006), 901—
907.

2] Clark, C., et al., Live Migration of Virtual Machines, Proc. 2nd
ACM/USENIX Symp. on Networked Systems Design and Implementa-
tion, (2005), 273-286.

(3] Tatezono, M., et al., Making Wide-Area, Multi-Site MPI Feasible Us-
ing Xen VM, Frontiers of High Performance Computing and Networking,
Lecture Notes in Computer Science, 4331, Springer, (2006), 387-396.

500
450
400
350
300
250
200
150
100

o
8

0 50 100 150 200 250 300 350 400 450

Predicted remaining processing time [sec]

Elapsed time [sec]

——PC1 e PC2 ——PC3 pca |

Figure 13: Load transition with migration.

M. Miyashita, et al. 41

4]

[10]

[11]

[12]

[13]

Thitikamol, K. and Keleher, P., Thread Migration and Load balancing
in Non-Dedicated Environments, Proc. 14th IEEE International Parallel
and Distributed Processing Symposium, (2000), 583-588.

Hai, J. and Chaudhary, V., MigThread: Thread Migration in DSM Sys-
tems, Proc. IEEE Workshop on Compile/Runtime Techniques for Parallel
Computing, (2002), 583-588.

Cheng, P.C., et al., A Multi-Layer Resource Reconfiguration Framework
for Grid Computing, Proc. 4th ACM International Workshop on Middle-
ware for Grid Computing, (2006), 13 pages.

Miyashita, M., et al. Dynamic Load Distribution in Grid Using Mobile
Threads, Proc. 3rd IEEE International Workshop on Internet and Dis-
tributed Computing Systems, (2010), 629-634.

Chess, D., et al., Mobile Agents: Are They a Good Idea?, Mobile Object
Systems towards the Programmable Internet, Lecture Notes in Computer
Science, 1222, Springer, 1997, 25-45.

Lange, D.B. and Oshima, M., Programming and Deploying Java Mobile
Agents with Aglets, Addison-Wesley, 1998.

Shudo, K. and Muraoka, Y., Asynchronous Migration of Execution Con-
text in Java Virtual Machines, Future Generation Computer Systems,
18(2), (2001), 225-233.

Satoh, I., A Mobile Agent-Based Framework for Active Networks, Proc.
IEEE Systems, Man, and Cybernetics Conference, (1999), 71-76.

Sekiguchi, T., et al., A Simple Extension of Java Language for Control-
lable Transparent Migration and Its Portable Implementation, Coordina-
tion Languages and Models, Lecture Notes in Computer Science, 1594,
Springer, (1999), 211-226.

Pei, J., et al., PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth, Proc. 17th IEEE International Conf.
on Data Engineering, (2001), 215-224.

42

[14]

[15]

[16]

Mobile Thread Migration in Grid

Yamamoto, K., et al., Learning Sequence-to-Sequence Correspondences
from Parallel Corpora via Sequential Pattern Mining, Proc. 2003 Work-
shop on Building and Using Parallel Texts: Data Driven Machine Trans-
lation and Beyond, 3, (2003), 73-80.

Sutou, T., et al., Design and Implementation of Parallel Modified PrefixS-
pan Method, High Performance Computing, Lecture Notes in Computer
Science, 2858, Springer, (2003), 412-422.

Voorsluys, W., et al., Cost of Virtual Machine Live Migration in Clouds:
A Performance Evaluation, Cloud Computing, Lecture Notes in Computer
Science, 5931, Springer, (2009), 254-265.

Swiss Institute of Bioinformatics, PROSITE - Database of Protein Do-
mains, Families and functional sites, http://prosite.expasy.org/ (Last ac-
cessed on 27 July 2016), (2014).

