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Abstract

Charles[1] proved the convergence of Picard-type iterative for generalized @ -
accretive non-self maps in a real uniformly smooth Banach space. Based on the
theorems of the zeros of strongly ® —accretive and fixed points of strongly @ —
hemi-contractive we extend the results to Mann-type iterative and Mann iteration
process with errors.
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1. Introduction

In[2], we can see a Mann-type iteration method for a family of hemi-contractive
mappings in Hilbert spaces; In[3], we can see a Halpern-Mann type Iteration for
fixed point problems of a relatively nonexpansive mapping and a system of
equilibrium problems; In[4], we can see that convergence of Mann’s type iteration
method for generalized asymptotically nonexpansive mappings; In[5], we can see
that some Mann-type implicit iteration methods for triple hierarchical variational
inequalities, systems variational inequalities and fixed point problems; In[6], we
can see a Mann-type iteration method for solving the split common fixed point
problem; In[7], we can see that Mann and Ishikawa-type iterative schemes for
approximating fixed points of multi-valued non-self mappings.

In 2009, Charles[1] proved the convergence of Picard-type iterative for generalized
® — accretive non-self maps in a real uniformly smooth Banach space. In this paper,
we will consider to extend the result of Charles[1] to Mann-type iterative and Mann
iteration process with errors.

In 1995, Liu[8] introduced what he called the Mann iteration process with errors.
In 1998, Xu[9] introduced the following alternative definitions:

Let K beanonempty convex subset of E and T :K — K be any map. For any
given X,,U, € K, the process defined by

X ., =aX +bTx +cu, n=0, (1.3)
where  {u} is bounded sequences in K and the real sequences
{a,},{b,} .{c,}=[0,1] satisfy the conditions

a,+b +c, =1 vn>0.
It called the Mann iteration process with errors.

However, the most general Mann-type iterative scheme now studied is the following:
X €K,

Xp1 =(1-C,) %, +€,TX,,N=0,1,2, ... (1.2)

where {c,}” <=(0,1)is areal sequence satisfying appropriate conditions (see, e.g.,
Chidume[10], Edelstein and O’Brian[11], Ishikawa[12]). Under the following

additional assumptions (i) limc, =0; and (ii) ) c, =, the sequence {x}
n=0
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generated by (1.2) is generally referred to as the Mann sequence in the light of
Mann[13] .

2. Preliminary Notes

Definition 2.1[1] Let (E, p) be a metric space. Amapping T:E —E iscalled
a contraction if there exists k €[0,1) such that p(Tx,Ty)<kp(x,y) for all
x,yeE.If k=1,then T is called nonexpansive.

Definition 2.2[1] Given a gauge function ¢ , the mapping J :E — 2% defined
by

J xi= {u* cE": <x, u*> = ||x||||u*|| ||u*|| = go(||x||)} (2.1)
is called the duality map with gauge function @ where E isany normed space.
In the particular case ¢(t)=t, the duality map J=J, is called the normalized
duality map.

Proposition 2.3[14] If a Banach space E has a uniformly Gateaux differentiable
norm, then J:E — E" is uniformly continuous on bounded subsets of E from

the strong topology of E to the weak topology of E”.

Definition 2.4[15] A mapping T:E — E is called strongly pseudo-contractive if
for all x,yeE ,the following inequality holds:

Ix=yl<[@+r)(x=y)-rt(Tx-Ty)| (22)

forall r>0 andsome t>1.If t=1 ininequality (2.2),then T is called pseudo-
contractive. As we know that T is strongly pseudo-contractive if and only if

(1=T)x=(1=T)y, J(x=y)) 2 kIx-y (23)

holds for all x,yeE and for some j(x-y)ed(x-y) ., Where
1

k=2(t-2)<(0).
Definition 2.5[1] Recall that an operatorT : D(T) c E —> E is strongly accretive
if there exists some k>0 such that for each x,yeD(T) , there exists

j(x—y)eJ(x—y) such that
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(Tx=Ty, j(x—y)) = k[x—y|". (2.4)
Proposition 2.6[1] A mapping T : E — E is strongly pseudo-contractive if and only
if (1-T) isstrongly accretive, and is strongly ¢ —pseudo-contractive if and only

if (I —T)is strongly @ —accretive. Then T is generalized @ — pseudo-contractive
if and only if (1 —T)is generalized ® — accretive.

Definition 2.7[1] Let E be an arbitrary real normed linear space. A mapping
T:D(T)cE—E is called strongly hemi-contractive if F(T)=, and there

exists t>1 suchthatforall r>0,
HX—X*HsH(1+r)(x—x*)—rt(Tx—x*)H (2.5)

holds for all xeD(T), x eF(T). If t=1, then T is called hemi-contractive.

Finally, T is called generalized ®—- hemi-contractive, if for all
xeD(T), x"eF(T), thereexists j(x—x")eJ(x—x") such that

<(I ~T)x—(1 —T)x*,j(x—x*)>2CD(||x—x*||). (2.6)

It follows from inequality (2.6) that T is generalized @ —hemi-contractive if
and only if

<Tx— X, j(x- x)> <[x- X*HZ —(D(Hx— XH) , Wn=0. (2.7)

Definition  2.8[1] Let N(T)={xcE:Tx=0}=2 . The mapping
T:D(T)cE—E is called generalized @- quasi-accretive if, for all
xeE, x eN(T), there exists j(x—x")eJ(x—x") suchthat

<Tx—Tx*, j(x—x*)>2d>(Hx—x*H). (2.8)

Proposition 2.9[1] If F(T)={xcE:Tx=x}=@, the mapping T:E—>E is
strongly hemi-contractive if and only if (1 —T) is strongly quasi-accretive; it is
strongly @— hemi-contractive if and only if (I —T) is strongly @— quasi-
accretive; and T is generalized ® — hemi-contractive if and only if (I -T) is
generalized ® — quasi-accretive.

Proposition 2.10[1] Let E be a uniformly smooth real Banach space, and let
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J:E—2% beanormalized duality mapping. Then

%+ <" +2(y. 3 (x+)) (29)
forall x,yeE.

Proposition 2.11[1] Let {1} and {y,} be sequences of nonnegative numbers and

{a,} be asequence of positive numbers satisfying the conditions Zan =00 and
n=1

VAN ,as n— oo, Let the recursive inequality

a,

Ao S —aw (A)+7,,n=12,... (2.10)

be given where y :[0,00) —[0,00) is strictly increasing continuous function such
that it is positive on (0,0) and (0)=0.Then 4, —»0,as n—o.

3. Main Results

In this section, we will consider to extend the result of Charles[1] to Mann-type
iterative and Mann iteration process with errors under the following assumptions.

First, we extend the result of Charles[1] to Mann-type iterative.

Theorem 3.1 Suppose K is a closed convex subset of a real uniformly smooth
Banach space E . Suppose T:K —K is a bounded generalized ® — hemi-
contractive map with strictly increasing continuous function @:[0,00)— [0,)

suchthat @»(0)=0and x"eF(T)=@.Forarbitrary x K, define the sequence
{x,} iteratively by

Xn+1:(1_cn)xn +CnTXn,n=O,l, 2, (31)

where {c }<=(01), limc,=0 and ch =oo . Then, there exists a constant
d, >0 suchthatif 0<c, <d,, {x,} converges strongly to the unique fixed point
x of T.

Proof. Let r be sufficiently large such that x, < B, (x). Define G:=B (x")nK.
Then, since T is bounded we have that (1-T)(G) is bounded.
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Let M =sup{|(1-T)x,

TX, eG}. As j is uniformly continuous on bounded

ut

—=—Z2  there exists a >0 such that
2M

subsets of E , for &=

T . . . r o
, D(T),|x— o I - .Set d, = 1,——>".
x,yeD(T),|x-y||<5 implies |[j(x)-j(y)|<e.Set d, mln{ o ZM}

Claiml: {x,} isbounded.

Suffices to show that x, isin G for all n>1. The proof is by induction. By our
assumption, x, €G . Suppose X, €G . We prove that x ,€G . Assume for

contradiction that x,,«#G . Then, since X, €K ¥n>1, we have that

n+1

X —x*H>r.

n+1

Thus we have the following estimates:

Xn+l_X*HS X, —¢, (1 —T)xn—x*H
g”xn—x*HJrcn (1-T)x,
<r+d,-M
<2r,

Hxn—x*Hz xm—x*H—cn (1-T)x,

>r-c,-M
-1
2

(Xpr =X7) = (%, —x*)Hﬁcn (1-T)x,
<c,-M

$é<5,
2

therefore,

Hj(xm—x*)— i(%, —x*)H<g.
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Then from (3.1), the above estimates and Proposition 2.10 we have that

*|2 «||12
X, — X H =|x,—¢, (1 -T)x, —x H
< Hxn —X*HZ -2c, <(I -T)X,, j(xm—x*)— j(xn —x*)>
-2¢, <(I ~T)X,, j(xn—x*)>
< Hxn —X*HZ +2¢,|(1-T)x, j(xn+1—x*)— j (xn —x*)H
—chd)( X, —X )
e r
<X, —X H —2cn®(5j+2cn-M &
°[3)
<r?+2d, TZ—CDGJ
<r? (3.2)
ie., XM—X*H <r, a contradiction. Therefore x ,, €G. Thus by induction {x}

is bounded. Then, {Tx,},{(1-T)x,} are also bounded.
Claim2: x — X",

Let A =Hj(xn+1—x*)— i(%, —x*)H , Note that x_,-x, —0 as n—wo and
hence by the uniform continuity of j on bounded subsets of E we have that

A —0as n—w.

We obtain that

xm—x*H2 <|x, —X*H2 +2¢, (V=T )% 3 (%o =X7) = 3 (%, —x*)H
—ch®(Hxn X )
<|x, —X*HZ +2c, [Zn —(D( X, —xm

< Hxn —~ X*HZ —2cn®( X — x*H)+2ann , (3.3)
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where Z, =MA —0 as n—oo.

Let 4, =

X, — XH and y, =2c.Z, ,then from inequality (3.3) we obtain that

n=n 1

A

n+1

<,—2c,®(4,)+7,, where ’n 50 as n—»oo. Therefore, the conclusion of
c

n

the theorem follows from Proposition 2.11.

We ve done the proof of the theorem 3.1.

The following corollary follow trivially,since definition 2.5.

Corollary 3.2 Suppose E is a real uniformly smooth Banach space, and
T:E—E is a bounded generalized @ — accretive map with strictly increasing

continuous function @:[0,00) —[0,0) such that ®(0)=0and the solution x’
of the equation Tx=0 exists. For arbitrary x, € E, define the sequence {xn}

iteratively by
X, =(1-C, )X, —C,Tx,,n=0,1,2,...

where {c,}=(0,1), limc,=0 and ) c, =oo. Then, there exists a constant

d, >0such that if 0<c, <d,, {xn} converges strongly to the unique solution of
Tx=0.

Now, we consider to generalize to a more general case, we extend the result of
Charles[1] to Mann iteration process with errors as follows.

Theorem 3.3 Suppose K is a closed convex subset of a real uniformly smooth
Banach space E . Suppose T:K — K is a bounded generalized & — hemi-
contractive map with strictly increasing continuous function @:[0,%0)— [0,)

such that @(0)=0 and X eF(T)=&. For arbitrary x €K, define the

sequence {x,} iteratively by

X, =aX +bTx +c.u.,n>0, (3.4)

n-n?’
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where {u,} is bounded sequence in K and {a,},{b,},{c,} are sequences in

[0,1] satisfying the following conditions:

b

Il
8.

(i)a, +b,+c, =1 vn=>0; (ii)

M- 04

(iii)limb, =0;c, =o(b,); (iv)

>
Il
o

Then, there exists a constant d, >0 such that if 0<b,,c,<d,,{x,} converges

strongly to the unique fixed point x™ of T.

Proof. Let r be sufficiently large such that x, € B, (X"). Define G:=B, (X" )nK.
Then, since T is bounded we have that (1-T)(G) is bounded.

Let M =max{sup|(1-T)x,

,sup||xn—un||:xneG} . As j is uniformly

r
q>(
continuous on bounded subsets of E, for ¢:= ﬁ there existsa 6 >0 such

that x,yeD(T), |x—y|<o implies |[j(x)-j(y)|<e.

r
Set d, =min41, ' : ° , 2 :
AM 4M  8Mr

Claim1: {x,} is bounded.

Suffices to show that x, isin G for all n>1. The proof is by induction. By our
assumption, x, €G . Suppose x,€G . We prove that x.,,€G . Assume for

contradiction that x,,#G . Then, since X, €K ¥n>1, we have that

n+1

X

n+1

—X'|[> r . Equation (3.4) becomes
Xpu =%, =0, (1 -T)x, —C, (X, —Uu,). (35)

Thus we have the following estimates:
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X =X H HX _X‘ ) n”Xn_un”
<r+d,(M +M)
<2r,
Xn_X*HZ Xns1 — (I_T)Xn _Cn”Xn_un”
>r—d,(M+M)
r
>—=,
2
(Xn+l_x*) X, — X H n( - )Xn n”xn_un”
<2d,M
<§<5
2

therefore,
(502 -)- 30 <o

Then from (3.5), the above estimates and Proposition 2.10 we have that
X~y (1=T) %, —¢, (%, ~u,) X[
<l 2,00 -T) 10 )26, (1)
<l T 28, (1T 1§50 =)=, )
=20, (1=T)%,, (%, = X))+ 26, (%, Uy, (%, = X))

~T) X[ (%0 =X7) = i (% =)

g )+20n X, —u, [l

X

n+l

~2b,@([x,

x|

n+1

<r2+2d,| M -5—@(%)+2Mr}

o5) v
o0 2 o)

2 2
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ie.,

X, —X | <1, acontradiction. Therefore x,,, €G . Thusbyinduction {x,} is

bounded. Then, {Tx,},{(1-T)x,} arealso bounded.
Claim2: x, — X",

Let A\qZHJ'(XM—X*)—J'(Xn—X*)H , Note that x

hence by the uniform continuity of j on bounded subsets of E we have that

-X,—>0 as n—o and

n+1

A —>0as n—>o.

We obtain that

*2 *2
X, — X H SHxn—x H +2b,

(1-T)x, j(xm—x*)— j(xn —x*)H

)+ 2¢, %, = u, |

—2an1>( X, =X

X xH

n+l

<

x,~ x| +2b,M - A — 20,0 (

X, —X*H)+ 2c,M -2r

)|

<

x, X[ +2b{M A +2;—”Mr—d>(

%))

X, - x*H)+2ann : (3.7)

<

X, —X*H2 +2b, [Zn —(D(

<

X, — x*H2 - 2bn®(

where ZH:MA1+ZE—”Mr—>O as n— oo,

n

Let 4, =

X, — XH and y,=2b Z_ ,then from inequality (3.7) we obtain that

Ay A, =20, ®(4,)+7,, where % —0 as n—>o. Therefore, the conclusion of

n

the theorem follows from Proposition 2.11.

We 've done the proof of the theorem 3.3.

The following corollary follow trivially,since definition 2.5.

Corollary 3.4 Suppose E is a real uniformly smooth Banach space, and
T:E —E is a bounded generalized ® —accretive map with strictly increasing
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continuous function @:[0,00) —[0,0) such that @®(0)=0 and the solution x"

of the equation Tx=0 exists. For arbitrary x € E, define the sequence {xn}
iteratively by

,=ax,—bTx +cu,n=0,

n=n?

where {u,} is bounded sequence in Kand {a },{b,}, {c,} are sequences in

[0,1] satisfying the following conditions:
(a,+b,+c, =1 ¥n>0; (ii)D b, =
n=0

(iii)ib2 ;¢ =0( |v)icn<oo

n=0 n=0

Then, there exists a constant d, >0 such thatif O<b, ,c, <d,, {x,} converges
strongly to the unique solution of Tx=0.

This work is supported by Applied Basic Research Foundation of Sichuan Province
of China(Grant No. 2018JY0169).
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