Journal of Statistical and Econometric Methods, vol.5, no.4, 2016, 39-61
ISSN: 1792-6602 (print), 1792-6939 (online)
Scienpress Ltd, 2016

Modeling Multivariate Time Series with

Univariate Seasonal Components
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Abstract

This work focused on method of modeling multivariate time series with seasonal
univariate components. Five variables representing Nigeria’s Gross Domestic
Products (GDP) were found to exhibit seasonal behaviours. These series were
subjected to Box and Jenkins techniques and different univariate seasonal models
were entertained for each component. The residuals from the fitted univariate
models were cross examined. The correlation and cross correlation structures of
these residuals revealed the inter-relationships among the variables, and
multivariate consideration was therefore obvious. Multivariate order selection
technique was employed to obtain the vector autoregressive (VAR) order of the
model. A VAR (1) model was identified and developed to fit the data. Stability of
the VAR process was achieved. Diagnostic checks were applied to the fitted
model and the model was found to be adequate. Hence, forecasts were generated.
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1 Introduction

The analysis of time dependent variables is one of the methods designed for
prediction of future events. Most variables are economical in nature and the
economy of any nation partly depends on the interplay of these variables with
respect to time. Indeed time series plays a vital role in planning and predicting the
future economy of any nation.

Nigerian Economy is not stable over the years and as a result, the country is
facing some economic crises, challenges or shocks which are internally or
externally over some decades. Internally, as a result of investments and
consumption pattern, as well as improper implementation of public policy and
change in expectation. Externally, the crises could be as a result of population
increase, revolution or war etc. Economic development of a country shows its
ability to increase production of goods and services. It clearly defines increase in
the Gross Domestic Product (GDP) of a country.

Macro-economic variables are instrumental in the economic performance
of any country. Nigeria’s Economy has faced numerous challenges which have led
to a fall in its growth rate in both Agricultural and non-Agricultural sectors which
in turn affect the Gross Domestic product (GDP). It is therefore the intent of this
work to study the inter-relationships among these sectors in Nigeria’s GDP. The
variables under consideration are: Agriculture, Industry, Building & Construction,

wholesale and retail, and Services.
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2 Literature Review

A time series is a collection of observations made sequentially in time.
On the other hand, analysis of time series comprises methods for analyzing time
series data to extract relevant statistics and other features of the data with the aim
of making future predictions.

[1] carried out a research on interest rate, Gross domestic product and
inflation in the economy of Jordan using unit root test to check the integration
order of the variables. The result showed that inflation causes interest rate while
other variables were independent with each other. The regression result also
suggested that the current interest rate has influence on growth rate and current
Gross domestic.

[9] researched on inflation and economic growth in Nigeria by applying co-
integration and Granger causality test. The findings suggested that there was a co-
integration between inflation and economic growth. Also through empirical
findings, it was discovered that inflation has no impact on growth.

[8] worked on buy-ballout modeling of Nigerian Domestic crude oil
production using inverse square root transformation to make the variance stable.
Quadratic trends were fitted and the error component was discovered to be
normally distributed with zero mean and constant variance.

[2] examined unemployment and inflation on economic growth in Nigeria. He
also applied causality test on Gross domestic product, unemployment and
inflation. The study revealed that all the variables in the model were stationary.
Further result indicated that unemployment and inflation possesses positive impact
on economic growth.

[11] used quarterly time series data to estimate the threshold level of inflation
using 13% threshold. The findings revealed that inflation has a mild effect on
economic activities; and the magnitude of the negative effect of inflation in

growth was higher.
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[3] modeled time series using South Africa inflation data. The research was
based on financial time series and autoregressive integrated moving average
(ARIMA) model. Conditional heteroscedasticity (ARCH) model was fitted to the
data. Box and Jenkins strategies were employed and the best fitted model was
chosen from the family of models.

[4] conducted a study for 131 countries using Vector autoregressive analysis.
It was discovered that higher crude oil prices were more severe for the oil
importing poorer countries as compared to the developed countries. The work
further revealed that with 10 Dollars per barrel increase in the price of crude oil,
economic growth could decrease up to 4%.

[7] carried out a research on the inflation rate of three African Countries.
The series were observed to exhibit non seasonal behavior; thus non seasonal
ARIMA models were applied to each series and were adequately represented. The
three series were modeled using the multivariate approach. The multivariate
method was found to give adequate representation than the non seasonal linear
approach.

[5] used Autocorrelation and partial Autocorrelation to identify multivariate
time series model after confirming stationarity. The Akaike information criteria
(AIC) and Schwartz (Bayesian) information criteria(SIC) were used to select the
best model among the identified. VAR (2) multivariate model was identified as
the best fitted model.

[10] compared the pared the performance between the univariate and
bivariate time series models. Several tests were carried out in the comparative
study. In the work, the bivariate model was found to be superior to the univariate
models. The bivariate model was also found to give optimal forecasts than the
univariate models. [10] concluded that if two variables are found to be
interrelated, a bivariate model should be adopted rather than giving them separate

univariate models.
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Due to the present fall in the oil price which Nigeria so much depended on
as the major source of revenue, there is need to go back to Agriculture. However,
focusing attention only on Agricultural sector may not solve the problem. There is
need for Government to consider other sectors that are involved in making up
Nigeria’s Gross Domestic products (GDP). This work intends to capture these
variables along with Agricultural sector with the aim of studying their inter-
relationships with respect to time and possibly develop a model for predicting the

future of the various sectors under consideration.

3 Methodology

3.1 The Univariate Case

3.1.1 Stationarity

A time series is said to be stationary if the statistical property e.g. the mean
and variance are constant through time. A non stationary series X, can be made

stationary by differencing. The differenced series is given as

Yt =Xt _Xt—l .

3.1.2 Backward shift Operator
The Backward shift Operator B is defined by

B™X= Xt m

3.1.3 The Backward Difference Operator

The backward difference operator, V, is define by

V=1-B
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3.1.4 Seasonal Autoregressive Integrated Moving Average

Seasonal autoregressive integrated moving average (SARIMA) model is used
for time series with seasonal and non seasonal behaviour. The SARIMA
multiplicative model is written as

SARIMA (p,d,q) X (P,D, Q) 1)

and this can expressed explicitly as
¢p (B)Dp(B*)VIVIX, = 0q(B)Oq(B*)e (2
where

¢(B) =1—¢1B — ¢,B* — - — ¢,B?,

®(B) =1 — @ (BS — ®y (B> — - — ©,, B,
V=1-B, V,;=1—-B°, 6(B)=1—6,B—6,B>—-— 6,8,
O(B®) =1 —0,4B° — 0, ;B* — - — 0y (B,

X, is the time series at period t, &, is the white noise process, s is the season,

p is the order of autoregressive components,

P is the order of seasonal autoregressive components,

d is the order of non-seasonal differencing, D is the order of seasonal
differencing,

q is the order of moving average component,

Q is the order of seasonal moving average component.

3.1.5 Autocorrelation Function (acf)
This is covariance between X, and X,,, seperated by k interval of time or

lag k and is given by

_ _ Cov(Xe Xevio)
Jvar(Xpvar(Xerx)

Pk
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3.1.6 Partial Autocorrelation Function
This is the correlation between X; and X;,, after mutual linear dependency

in the intervening variable X; ., X;42, ..., Xt 41 has been removed and is given by

Gk = Corr(Xe Xevr [/Xex1Xe43s oor Xewk—1)

3.2 Multivariate Time Series

Multivariate time series is a time series that does not limit itself to the past or
present of its previous information but also to the present and past information of

other series.

3.2.1 White Noise Process
A white noise process & = (&4 ...,&ye) IS @ continuous random vector

satisfying

E(e) = 0,3, = E(grep) , & and g are independent for s # ¢.

3.2.2 Vector Autoregressive (VAR) Model

One of the models that describes the multivariate times series is the Vector
Autoregressive (VAR) Model. VAR model is an independent reduced form
dynamic model which involves constructing an equation that makes each
endogenous variable a function of its own past values and past values of all other
endogenous variables: The basic p-lag Vector autoregressive VAR(p) model has
the form.

ye=c+ILye 1 +1Lye o+ + pyep te ;t=0,%1,%2, .. (3)
where

Ve = Vi - Yne) IS an (n x 1) vector of time series variable,

I1; are fixed (n X n) coefficient matrices,
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c = (cy,...,cy) isafixed (n x 1) vector of intercept terms allowing for the
possibility of non zero mean E (y,),
& = (14, -, Ene) iS@N (n x 1)  white noise process or innovation
process. That is,
E(g) = 0,E(ge)) = X, and E(epes) = 0fors # ¢
¥, = covariance matrix which is assume to be non singular if not otherwise
stated.

The model can be written in the matrix form as

1 1 1
Vit 1 Ti1 Ty S | 7% Yit-1
C 1 1 .. 1 _
Yot 2 Ty1 Ty oy, YVot-1
. = . + . . . . . . +

TR A W
ynt/ Cn/ Tp1  Tno oo Ynt-1

2 2 2
Ty T - T Vit-2
3 T, C Ty, Yat—2
w2, w2, © o2, / Ynt—Z/
14 14 14
Ty Ty o Ty yn—v\ /Elt\
14 14 . . 14 _ &
Ty Ty Ton Yat-p 2t
Foe . ' .o . . +1 . 4)
14 14 . . 14 _ &
M1 T Thn Ynt—p nt

3.2.3 Stationary Process
A stochastic process is said to be stationary if its first and second moments are
time invariant. In other words, a stochastic process y; is stationary, if
E(y;) = forall t
and
E[ye = WWe-x —W)T=Ty(k) =Ty (=k) foralltand k =0,1,2 ...
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3.2.4 Stable VAR (p) Processes
The process (3) is stable if its reverse characteristic polynomial of the VAR(p)

has no roots in and on the complex unit circle. Formally y, is stable if
det (I, — lyz — - — ,zP) # 0 for |z| < 1. (5)

A stable VAR(p) process y;,t = 0,+1, 2, ..., is stationary.

3.25  Autocovariances of a Stable VAR(p) Process
For a vector autoregressive process of order p [VAR(p)], we have
Yt_li=7T1(3’t—1—ll)+"'+7Tp(Yt—p_H)+5t, (6)
Post multiplying both sides by (y,_, — )" and taking expectation, we have for
k=0 using I'y(i) = T'y(—i)’
ry(o) =my (Veog — )+ + 7Tp(}’t—p - H) + 2
= mLy(1) + -+ mply(p) + =, (7)
Ifh>0
Iy(k) =mly(k—1) + - +m,Iy(k—p) (8)

These equations can be used to compute the autocovariance functions I'y (k) for

k >p, ifmy,...,myand I'y(p — 1), ...,T'y(0) are known.

3.2.6 Autocorrelation of a Stable VAR(p) Process
For a stable VAR (p) process, the autocorrelations are given by

R, (k) = DT, (k)D~! 9)

Here D is a diagonal matrix with the standard deviation of the component of y; on

the main diagonal. Thus,
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0
Vr11(0)

Dl=| : : (10)

0 1

V¥nn(0)

and the correlation between y; . and y; ;_ is
yl._](k)

pl]( ) WW (11)

which is just the ij — th element of R, (k).

3.2.7 VAR Order Selection
This work considers three basic ways usually called model selection criteria

for determining the order p of the VAR process. The criteria are:
(i) Akaike Information Criterion
This is given by
AIC(p) = In| T.(p) | +2 (number of estimated parameter)

an

The estimate (AIC) for p is chosen so that this criterion is minimized.

(i) Hannan-Quin Criterion
This is given as

HQ(p) = In| ) (p)| + 2nin (freely estimated parameters)

— ITll S (P) | + 2InInN pnz

The estimate (HQ) is the order that minimizes HQ (p) for p = 0,1, ..., P

(iii) Schwarz Criterion
This is given by
SC(p) = In| >.(p) | + % (freely estimated parameters)
= In|S.(p)| + 2 pn?

The estimate (SC) is chosen so as to minimize the value of the criterion;
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where p is the VAR order,
¥, is the estimate of white noise covariance matrix X,
n is the number of time series components of the vector time series

N is the sample size.

3.3 Diagnostic Checks

After fitting the model, we need to examine whether the model is adequate or
not. One of the ways of checking the adequacy of the model is by examining the
behaviour of the residuals matrices. This is simply to examine whether it follows a
white noise process or not. According to [6] ; if py, (i) is the true correlation
coefficients corresponding to the r,, (i), then we have the following hypothesis
test at 5% level to check whether or not a given multivariate series follows a white

noise process or not. The hypothesis states:

Hy: pyuy (i) = 0
Against
Hy: pyy (i) # 0
Decision
Reject Hy if |VN7y,; | >2 or
Equivalently
| Piwi| > \/iﬁ

Thus in practical sense, we compute the correlation of the series to be tested

(possibly after some stationary transformation) and compare their absolute value

. 2
with N
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3.4 Forecasting

Suppose that  y, = (Vif, .., Yne) IS an n — dimensional stable process
VAR(p). Then the minimum MSE predictor for forecast h at forecast origin time

t is the conditional expected value given as:

EWisn) = E(yt+h | Qt) = E(yt+h | {}’sl s = t}) ,

and by recursion, VAR(1) process gives

E:(Yt+n) = (In + T+t ﬂ{l_l)c + ﬂ{l}’t-

4 Data Analysis and Results

The data used in this work is a quarterly data obtained from Nigerian National
bureau of Statistics (NNBS) for the period of 1981-2013. The five GDP variables
of interest are Agriculture (y,;), Industry (y,;), Building & Construction (ys;),
Wholesale & Retail (y,;), and Services (ys;).

4.1 Raw Data Plots
The raw data plots of the five variables are shown below in Figure 1 below.
The above plots reveal that the series are not stationary and were all differenced to

obtain stationarity.

4.2 Modeling of the Univariate component

Figure 1 clearly shows that each component series exhibits seasonal
behaviour. Since the major aim of this work is to build a multivariate (vector)
model, we might not delve deep into univariate preambles. However, employing
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the univariate techniques in section 3.1, the following seasonal ARIMA models
were fitted and found adequate for the five variables representing the sectors of

Nigeria’s Gross domestic products and the residuals were obtained for further

analysis.
Time Series Plot of y1t, y2t, y3t, y4t, y5t
5000+ Variable
—o— yit
—l— y2t
4 y3t
4000 —A - yat
y5t
3000
©
]
c
[a}
2000+
1000+
0_
T T T T T T T T T T
13 26 39 52 65 78 91 104 117 130
Index

Figure 1: Series plots of the sectors in Nigeria’s GDP

Q) Agriculture (y;¢) : SARIMA (1,1,1)(1,0,1),4
(i) Industry (y,;) : SARIMA (0,1,1)(1,0,1)4
(iii)  Building & Const. (y5:): SARIMA (1,1,1)(1,0,1)4

(iv)  Wholesale & Retail (y,;) : SARIMA (1,1,0)(2,0,1)4

(V) Services (ys¢): SARIMA (1,1,1)(2,0,1)4

4.3 Residual Correlation and Cross Correlation

The residual correlations and cross correlations of the fitted univariate

components are shown in the tables below:
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Table 1: Residual Correlation Table of the Differenced Series

Vit Yot Y3t Vat Vst
Yit- 1
Vot 0.954784 1
V3t 0.666825 0.664304 1
Vat 0.767769 0.864995 0.695682 1
Vst 0.682775 0.667073 0.794183 0.892509 1

Table 2: Residual Cross Correlation Table of the Differenced Series

Vit Vot Y3t Vat Vst
B4TE 0.855 0.767 0.768 0.683
Vot 0.764 0.765 0.667
Y3t 0.696 0.794
Vat 0.993

Vst

As seen above, the raw correlations and cross correlations are quite high;
suggesting strong relationship among the variables. Thus, multivariate

consideration is obvious.

4.4 VAR Order Selection

Using the obtained data for this work, the values of the three model selection
criteria were computed using gretl software and are displayed in Table 3. It is
clearly seen in the table that the three model selection criteria attain their
minimum at lag 1 as indicated by the values with the asterisk. Thus, the selected
model is VAR(1).
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Table 3: Model selection criteria table

lags loglik p(LR) AIC BIC HQC
1 464.07333 —11.2345553* | —12.53768" | —12.951552"
2 531.21692 | 0.00000 | -10.936949 -10.659348 | -10.418109
3 589.49804 | 0.00000 | -8.491634 -6.633306 -7.736958
4 674.85161 | 0.00000 |-9.497527 -7.058472 -8.507015
5 768.61450 | 0.00000 | -10.643575 -7.623792 -9.417227
6 788.63349 | 0.02890 | -10.560558 -6.960048 -9.098374
7 802.20315 | 0.34896 | -10.370052 -6.188815 -8.672033
8 819.69297 | 0.08857 | -10.244883 -5.482918 -8.311027
9 858.89334 | 0.00000 | -10.481556 -5.138863 8.311863
10 881.00490 | 0.01024 |-10.433415 -4.509995 -8.027887
11 896.66187 | 0.17883 | -10.277696 -3.773550 -7.636334
12 918.5338 0.01158 | -10.225564 -3.140689 -7.348363

4.5 Final model with the significant parameters

Examining Table 4 below, we observe that some parameters of the above

model (4) are not significant and thus have to be removed from the expression.

Hence, the final model of the VAR(1) process becomes:
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Yt
Yar
Ya |=
Yar
Yt

18.2057
32.4675
0.0272
-3.2784
—-1.51173

0.6268
0.0106
0.007
—0.0143
0.0000

—-0.0125 0.3028
0.7796  0.0000
0.0051 0.5229
0.0636 —0.9170
0.0217 —0.1356

This can be expressed explicitely as:

y1¢ = 18.2057 + 0.6268y;,_; — 0.0125y,,_, + 13.3028y3,_; + 2.0804y,,_,

Y3 = 0.0272 4 0.007y;,_1 + 0.0051y,,_, + 0.5229y5,_, + 0.0127y,,_, +

—3.1373y5,_4
Yor = 324675 + 0.0106y;,_; + 0.7796y,,_, — 0.8521ys,_,

0.0044ys,_,
Var = —3.2784 — 0.0143y,,_; + 0.0636y5,_1 — 0.917y3,_1 + 0.627y,,_1

Ys¢ = —1.51173 + 0.0217y,;_, — 0.1356y5,_; + 0.2351y5,_4

2.0804
0.0000
0.0127
0.6270
0.0000

~31373 (Vs

~0.8521 || Yo
0.0044 |y, |+
0.0000 ||y,
02351 |y,

Table 4: Estimated Parameters for the VAR(1) model

Modeling Multivariate Time Series with Univariate Seasonal Components

(12)

15 = (0.00002)

Ty, = —0.0125(0.0010
13 = 0.3028(0.00410)
14 = —3.1373(0.00010)

Model | Coefficients (P — values) Significant
parameters
Vit = 18.2052(0.0311) 11, 12, T13, T14, Tq5
m1 = 18.2052(0.0020)
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Yot

c,= 32.475 (0.16139)
5, = 0.1064(0.0045)
,, = 0.7796(0.00001)
,5 = —0.1223(0.98150)
7,4 = —0.2514(0.48450)
,5 = 0.8521(0.00091)

T4, T2, M5

V3t

c5= 0.0272 (0.9704)

3, = 0.007(0.00450)
73, = 0.0051(0.00001)
33 = 0.5229(0.00030)
T34 = 0.0127(0.00221)
35 = 0.044(0.00251))

Tl31, T3, 33, T34, T35

Vat

c,= -3.2784 (0.65485)
4, = —0.0143(0.00450)
T4, = 0.0636(0.00001)
43 = —0.9170(0.00030)
Tas = 0.6270(0.00221)
.5 = 0.4784(0.00681))

TT11, 012, 13,14

Vst

cs=-1.51173 (0.75384)
e, = 0.0668(0.04610)
<, = 0.00217(0.00362)
3 = 0.1356(0.00081)
s, = 0.6270(0.03501)
s = 0.2351(0.0041))

Tl5p, Ts3, Tisg

4.6 Stability of the VAR (1) Process

Using expression (5), the roots of I,, — I,z —---—II,zP =0 are

7, =523, z, = =741, z3 = —1.57, z, = 11.2, zs = 8.11.
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Since |z;| > 1 Vv j, the process is stable. In other words, it is stable since all the

rootsof I, —Il;z—--—1II,zP = 0 lie outside the unit circle.

5 Diagnosis

After obtaining the above model, the next step is to carry out diagnostic
checks to ascertain whether the above VAR(1) model is adequate or not. This is
achieved by following the hypothesis stated in section 3.3 of the methodology.

Thus we have

Hy: puv(i) =0
Against
Hl: puv(i) * 0
Since
2
N=132> Ni 0.1741
Then

H, is rejected if | 7,;| > %N = 0.1741.
Now, examining the residual correlation matrices at different lags in Appendix
A, it clearly shows that none of the residual autocorrelations | ru,,,l-| is greater than
0.1741. In other words, the residuals follow a white noise process. This shows that

the fitted model is adequate.

6 Forecasts

Since the obtained model is adequate, it can now be used for prediction. The

quarterly forecasts generated for the next seven years are displayed in Table 5.
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Table 5: Forecasts

Year Vit Yot Y3t Yat Vst
2014 | 4472.11 | 3761.21 172.03 | 1922.23 1612.56
5112.28 | 3928.16 181.35 | 1969.35 1689.63
5321.27 | 4110.23 193.42 | 1023.44 1813.69
5621.88 | 4203.21 209.12 | 1213.99 2005.23
2015 | 4235.21 | 3845.15 175.44 | 1434.23 2100.43
4623.44 | 3925.23 198.11 | 1623.19 2325.92
4324.92 | 4070.53 232,52 | 1925.32 2372.14
4428.10 | 4061.29 275.17 | 1710.92 2410.11
2016 | 4312.43 | 4010.53 297.26 | 1525.20 2472.43
4305.25 | 4100.20 310.19 | 1395.5 2602.42
4295.92 | 4325.19 390.75 | 2010.59 2825.59
5100.52 | 4591.75 400.2 2125.52 3617.29
2017 | 5105.29 | 4479.56 426.79 | 2159.70 3721.52
5279.22 | 4505.62 446.26 | 2295.44 3961.28
5295.59 | 4579.16 487.15 | 2515.66 3995.21
5362.61 | 4756.49 42596 | 3385.18 4509.17
2018 | 5235.77 | 4778.21 451.34 | 3481.42 4762.17
5305.60 | 4942.26 467.86 | 3976.33 5162.32
5385.62 | 5100.29 440.96 | 4222.76 5351.86
5499.02 | 5202.49 439.56 | 4317.28 5561.78
2019 | 5602.88 | 5293.62 459.67 | 5526.86 5418.66
5756.24 | 5372.66 486.34 | 5716.37 5321.75
5861.16 | 5511.17 495.05 | 5962.73 4930.86
5802.74 | 5434.67 498.67 | 5612.34 4741.97
2020 | 5995.78 | 5657.14 501.34 | 5534.78 5601.46
6100.56 | 5854.67 520.58 | 5345.77 5695.90
6025.89 | 5802.46 540.67 | 5788.91 5789.62
6378.43 | 6002.31 598.62 | 6100.09 5886.67

57
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7 Discussion and Conclusion

This research focused on building a multivariate time series model for the
variables representing the different sectors of the Nigeria’s Gross Domestic
products (Agriculture, Industries, Building & Construction, wholesale & Retail
and Services). It is interesting to note that modeling a univariate time series
without considering the influence of other variables could be misleading. This was
noted by [10]. In line with [10], this work has covered a more general case where
five variables are interrelated. Besides; unlike [7], this work has also addressed a
situation where the multivariate components exhibit seasonal behavior. Hence,

multivariate approach can also be applied to series with periodic nature.
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Appendix A

Residual Correlation Matrices( R; Matrix fori =0,1,2,...,10)

1.000
0.012
0.144
—-0.137
0.074

0.112
0.021
—0.042
—-0.137
0.074

0.152
0.012
0.019
—-0.137
0.074

0.016
0.023
0.004
—-0.155
0.135

0.130
0.003
0.138
—-0.013
0.074

Modeling Multivariate Time Series with Univariate Seasonal Components

1.000
0.130 1.000
0.033 -0.012 1.000
0.023 -0.054 0.110 1.000
-0.024 0.061 0.124 0.007
0.134 -0.005 -0.038 -0.102
0.008 -0.071 0.003 0.151
0.025 -0.012 0.011 0.112
0.131 -0.054 0.113 0.005
0.031 0.003 0.013 -0.113
0.142 -0.005 0.004 0.042
0.002 -0.026 0.003 0.151
0.033 -0.012 0.011 0.112
0.131 -0.054 0.110 0.071
0.024 0.014 0.090 -0.143
0.009 -0.034 0.041 0.136
0.132 -0.141 0.161 0.122
0.164 -0.021 0.006 0.115
0.016 -0.113 0.041 0.009
0.007 0.143 0.001 -0.134
0.143 -0.119 0.061 0.139
0.121 -0.121 0.005 0.002
0.033 -0.012 0.011 0.112
0.146 -0.008 0.110 0.071




LA, lwok

0.150
0.001
0.004
—0.080
0.132

0.025
0.012
0.034
—-0.137
0.074

0.110
0.047
0.122
—-0.155
0.113

0.004
0.009
—-0.153
—-0.153
0.062

0.150
0.031
0.160
—-0.037
0.030

0.151
0.022
0.136
—-0.136
0.116

0.141 0.163
0.142 -0.144
0.146 -0.019
0.043 -0.022
0.007 -0.160
0.043 0.002
0.142 -0.005
0.130 -0.002
0.033 -0.012
0.118 -0.054
0.005 0.002
0.038 0.019
0.135 -0.135
0.033 -0.012
0.071 -0.008
-0.138 0.142
0.132 -0.118
0.002 -0.101
0.002 -0.101
0.073 -0.099
0.052 0.012
0.132 -0.136
0.023 -0.005
0.118 —-0.012
0.008 -0.133
0.103 0.163
0.017 -0.144
0.109 -0.116
0.131 -0.022
0.138 —0.054

—-0.006 0.116

0.128
0.090
0.053
0.154

0.146
0.004
0.003
0.111

0.120

0.010

0.006
0.121

0.031
0.042

0.151

0.112

0.110 -0.103

0.146
0.088
0.158
0.011
0.107

0.031

-0.031

0.014

0.160

0.112
0.071

0.124

—-0.153 -0.142

0.119
0.119
0.128

0.003
0.122

0.051
0.052
0.159

-0.123

0.110

0.153 0.129

0.011
0.117

0.112

0.026

—0.006 0.116

0.128
0.010

0.053

0.160

0.120
0.110
0.124
0.003




