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Abstract 

A severe limitation of the original autoregressive process of order one or AR(1) 
process is the Gaussian nature of the assumed residual error distribution while the 
observed sample residual errors tend to be much more skewed and have a much 
higher kurtosis than is allowed by a normal distribution. Four non-Gaussian noise 
specifications are considered, namely the normal inverse Gaussian, the skew 
Student t, the normal Laplace and the reshaped Hermite-Gauss distributions. 
Besides predictive distributional properties of some of these AR(1) processes, an 
in-depth analysis of the fitting capabilities of these models is undertaken. For the 
Swiss consumer price index, it is shown that the AR(1) with normal Laplace (NL) 
noise has the best goodness-of-fit in a dual sense for four types of estimators. On 
the one hand the moment estimators of the NL residual error distribution yield the 
smallest Anderson-Darling, Cramér-von Mises and chi-square statistics, and on 
the other hand the minimum of these three statistics is also reached by the NL 
distribution. 
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1  Introduction  
The economic importance of the inflation phenomenon is ubiquitous. For 

example, in actuarial science the inflation rate has been identified as the driving 
component of a comprehensive stochastic investment model in [45], [46]. This 
model has been widely discussed (e.g. [28], [40]) and also extended and refined 
(e.g. [16], [44]). 
     A severe limitation of the AR(1) inflation model is the Gaussian nature of the 
residual error while the observed sample residual errors tend to be much more 
skewed and have a much higher kurtosis than is allowed by a normal distribution. 
In fact, the Bera-Jarque statistic (see [10]) yields a simple test of rejection for the 
normal distribution. A brief outline of the content follows. 
     Section 2 recalls the modeling features of the force of inflation. Four 
non-Gaussian noise specifications are retained in Section 3. These are the normal 
inverse Gaussian (NIG) and the skew Student t (ST) members in the class of 
generalized hyperbolic distributions ([8]), the normal Laplace (NL) distribution 
([39]), and the new analytical reshaped Hermite-Gauss (HG) distribution in [47]. 
Predictive distributional properties are stated in Section 4. Estimation of the 
residual error distribution is discussed in Section 5. Besides the moment and the 
minimum chi-square estimators, we consider those obtained by minimizing the 
Cramér-von Mises and Anderson-Darling statistics. Finally, Section 6 discusses 
the fitting capabilities of the specified non-Gaussian distributions for the Swiss 
consumer price index and shows that the NL noise has the best goodness-of-fit in 
a dual sense. On the one hand the moment estimators of the NL residual error 
distribution yield the smallest Anderson-Darling, Cramér-von Mises and 
chi-square statistics, and on the other hand the minimum of these three statistics is 
also reached by the NL distribution. 

 

 

2  The Force of Inflation as Non-Gaussian AR(1) Process 
Assume that “inflation” is measured by a price index whose value at time  t   

is denoted by  tQ . One is interested in the following related quantities: 

 1/ln  ttt QQq  :  force of inflation over the time period   tt ,1  

 tt qR exp   :  accumulation factor for inflation over the period   tt ,1  

I     :  (long-term) average force of inflation 
     :  deviation of the force of inflation from its average 

Note that  1 tt RJ   represents the (annual) rate of inflation over the time 

period   tt ,1 . Rather than modeling the index itself, one looks at the force of 
inflation, for various reasons: 
(i)   The starting point is arbitrary and only the proportional changes of the index 
matter. 
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(ii)   The index is positive and its growth can be very quick and high. 
(iii)   The logarithm of the index   tQln   is not expected to be stationary (i.e. 

no fluctuation around a fixed mean) while the series  )( tq   might be almost 

stationary. 
The simplest discrete time series used to model the force of inflation is an 
autoregressive process of order one or AR(1) process, described by the linear 
difference equation 

,...2,1,0,,1   kIqXZXX kkkkk  ,  (2.1) 

where the noise (also called residual error or innovation)  ZkkZ )( , is an 

independent and identically distributed (i.i.d.) real-valued sequence. The normal 

distribution specification  ),0(~ 2NZk , with error variance  2 , yields the 

so-called Wilkie inflation model. 
     The study of various financial time series, including inflation data, has 
revealed a clear evidence of dependence, heavy tails and asymmetry (e.g. [34]). 
These features require the availability of a variety of AR(1) processes driven by 
i.i.d. noise with non-Gaussian distributions exhibiting non-zero skewness, high 
kurtosis and heavy-tails. 
     Before proceeding let us recall some standard results in time series analysis. 
Recursive substitution shows that a solution of (2.1) takes the form 

,...2,1,
1

0
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where   NkX   is an initial value  N   time periods back from  k . The limit as  

N   of (2.2) exists if and only if  1 , and then  
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0
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j
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j
k ZXX    is a stationary solution. 

     The parameters  ),( I   are estimated in a classical way. For a sample of 
size  n   the ordinary least squares (OLS) estimators are given by 
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In [20] it is shown that  ̂   converges almost surely to     and a confidence 
interval based on the inequalities of Bernstein-Fréchet type is derived. 
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3  Some Non-Gaussian Noise Specifications 
We begin with a brief survey about non-Gaussian AR(1) processes, which 

have been considered so far, and introduce those candidates that are attractive both 
from an analytical computational point of view and felt to fit financial data 
especially well. 
     After the first non-Gaussian process appeared in [32], an elaborate study of 
these models followed in [25]. An inverse Gaussian model is found in [2], a skew 
Laplace one in [41], a normal-Laplace one and a generalization as well as 
references to many other ones are given in [30]. A recent unified framework is 
[33]. 
     We have retained four non-Gaussian noise distributions. They all enable 
capturing of the extra skewness and kurtosis of financial data. The first three are 
the normal inverse Gaussian and the skew Student t members in the class of 
generalized hyperbolic distributions and the normal Laplace distribution. The 
fourth one is the new “Hermite-Gauss” distribution proposed by [47]. 
Alternatives, which possess natural multivariate generalizations but are not 
considered here, include the four parameter modified skew normal by [3], which 
extends the three parameter skew normal by [12] (see [7]), and the skew Student t 
of [26] (see also [23] and [29]). More complex models might also be considered, 
for example the GARCH type models introduced by [13] (see [4], Section II.4, for 
a readable introduction). We mention that a primary goal of the ARCH model by 
[22] has been inflation modeling. 

 
 
3.1 Normal Inverse Gaussian (NIG) 

The normal inverse Gaussian distribution is a special case of the class of 
generalized hyperbolic distributions introduced by [8]. It has been considered in a 
finance context by [9] and is nowadays widely used. Consider a NIG distributed 
random variable      ,0,),,(,,,,~ NIGZX , 

with  ),(~ SNIGZ   a standard NIG random variable with  1,0   . Its 
cumulant generating function equals   

2222 )()( ttC   . 

Setting  1,/  cc  , the mean, variance, skewness and (excess) kurtosis of 

this distribution are given by 
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The distribution function satisfies the normal mean-variance mixture 
representation 

 
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with   x   the standard normal distribution. 

 
 
3.2 Skew Student t (ST) 

The probability density function of a skew Student t distributed random 

variable    ,,,~ tZYYX  , with  )1,0(~ NZ  (standard 

normal),   22

2

,~ IY  (inverse Gamma),  ZY ,   independent, is defined for  

0   by (e.g. [1]) 
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The mean, variance, skewness and kurtosis parameters are obtained as follows: 
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The distribution function satisfies the integral representation ([21], Theorem 1) 
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The symmetric special case  0   yields the well-known Student t distribution. 

 
 
3.3 Normal-Laplace (NL) 

The distribution function of a normal-Laplace random variable  
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normal),   1~, 21 ExpEE  (standard exponential),  21,, EEZ  independent, is 
given by (e.g. [38], [39]) 

 















 










 










 









 





















x
R

x
R

x

x
xFX

  (3.6) 

with     
     ,1, zz
z

z
zR 





 the Mill’s ratio. The mean, variance, 

skewness and kurtosis parameters are obtained as follows: 
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This family includes the skew Laplace if  0  (e.g. [31]) and 
normal-exponential distributions as     or   . We note that the 
normal-Laplace is the convolution of a normal and skew Laplace random variable. 
Since the normal and Laplace distributions constitute Laplace’s first and second 
law of errors, it is worthy to consider a convolution of the two error distributions 
for modeling the residual AR(1) error. Note that, in contrast to [30], we model the 
non-Gaussian AR(1) noise and not the marginal distributions. 

 
 
3.4 Hermite-Gauss (HG) 

The motivation behind this reshaped Gaussian curve is the desire to preserve 
the bell-shaped property of the Gaussian curve and simultaneously accounts for 
variable skewness and kurtosis. The main Theorem 4.1 in [47] states that the 
Hermite-Gauss function 
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with   x   the standard normal density and   xH k   the Hermite polynomial 
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of degree  k   yields a unimodal probability density function of a random 

variable with given mean  X , variance  2
X , skewness  X , and (excess) 

kurtosis  X,2 , provided   4.2,2 X  and  X   is bounded above by a positive 

constant depending on  X,2 . Integration of (3.8) yields 
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
   .  (3.9) 

This simple distribution does not always capture the high kurtosis observed on 
financial markets, which can easily exceed a value of 6. Fortunately, the inflation 
data in the practical illustration of Section 6 fulfills the parameter restriction, 
hence the HG distribution is a genuine candidate. 

 
 

4  Predictive Distributions of AR(1) Processes 
In the present Section we derive distributional properties of the specified 

AR(1) processes and their stationary solutions. For completeness let us begin with 
a known result. 
 

Proposition 4.1 Let  ),0(~ 2NZk   be the stationary noise distribution of the 

inflation model (2.1) and suppose that  1,0 . Then, the predictive distribution 
of the force of inflation at time  0,  NNt   given the force of inflation at time  

0t   is normally distributed such that 
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The stationary solution of the AR(1) process exists and is described by the 
marginal distribution 

 )1/(,0~ 22   NX       (4.2) 
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distribution (4.2).                                                   ◊ 

 
     Next, consider some non-Gaussian cases. Since [25] it is known that a 
distribution function is the stationary marginal distribution of an AR(1) process 
with stationary noise if and only if it belongs to the class of self-decomposable 
distributions. In particular, this means that the characteristic functions  
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)(),( ss Z   of  kZZX ~,   satisfy the identity )()()( sss Z   . 

Expressions for the predictive and stationary distributions of the AR(1) process 
with non-Gaussian NIG and NL distributed noise follow. 
 
Proposition 4.2 Given is an AR(1) process with NIG noise    ,,,0~ NIGZ k   
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The stationary solution of the AR(1) process is described by the NIG marginal 
distribution 
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Proposition 4.3 Given is an AR(1) process with NL noise  
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with the coefficients defined by 
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The stationary solution of the AR(1) process is described by the convolution 
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Proof.  Starting point is again the identity   
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where the second term is a sum of independent skew Laplace random variables. Its 
distribution is derived using the result by [5] on the distribution of a linear 
combination of independent exponential random variables (see [41], Proposition 
1).                                                               ◊ 

 
Remarks 4.1 First, the finite sum  NsL   converges absolutely with probability 

one and in mean square to the infinite sum sL  in (4.8) ([14], Prop. 3.1.1). In 
calculations, the infinite sum can be truncated after a few terms because the 
coefficients  jc   decay at a geometric rate ([14], Chap. 3). Second, as follows 

from our numerical illustration in Section 6, the AR(1) with NL noise has the best 
goodness-of-fit among the considered non-Gaussian AR(1) candidates. For this 
reason and while the predictive distributions for ST and GH noises are more 
complex, they are not considered further. 

 
 

5  Residual Error Estimation and Goodness-of-Fit 
Given a data set of sample size  n , the goodness-of-fit of the residual error 

distribution is based on a statistics, which measures the difference between the 
empirical distribution function  )(xFn   and the fitted distribution function  

)(xF . We use the Cramér-von Mises family of statistics defined by (e.g. [19], [17] 
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and [15]) 

  )()()()( 2 xFdxwxFxFnT n




 ,    (5.1) 

where  )(xw   is a suitable weighting function. If  1)( xw   one obtains the  
2W Cramér-von Mises statistic ([18], p.145-47, [35], p.316-35). If  

 )()(/1)( xFxFxw    one gets the  2A   Anderson-Darling statistic (see [6]). 

Consider the order statistics of the error data such that  nxxx  ...21   and let 

  ,,...,1,ˆ nixF i  be the fitted values of the distribution function. Then one has the 

formulas 
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One knows that  2A   yields one of the most powerful statistical test if the fitted 
distribution departs from the true distribution in the tails (e.g. [19]). In this 
situation, it is the recommended goodness-of-fit statistics. Now, the observed 
sample residual errors of our inflation data in Section 6 tend to be much more 
skewed and have a much higher kurtosis than is allowed by a normal distribution, 
which indicates that the fit in the tails matters. For this reason, we propose to 
estimate our non-Gaussian noise distributions by calculating the parameters, 
which minimize the Cramér-von Mises and Anderson-Darling goodness-of-fit 
statistics, simply called minW and minA estimators. This procedure automatically 
ensures optimal goodness-of-fit with respect to the corresponding fitting criteria. 
     We also apply a standard minimum chi-square estimation method to obtain 
minχ2 estimators, by minimizing the following goodness-of-fit statistic 
(introduced by [37]): 

    
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nxFxF
 .    (5.3) 

Maximum likelihood estimation, which is asymptotically equivalent to the 
minimum chi-square method, as first proved by [24], is not considered here. It can 
be argued that minimum chi-square and not maximum likelihood is the basic 
principle of statistical inference (e.g. [11], [27]). 
     The method of moment estimators, abbreviated MM estimators (introduced 
by [36]) is also used. Though [24] argued in favor of minχ2 rather than MM 
estimators, we use them for comparative purposes. It is assumed that the 
distribution parameters can be written as functions of the moments. The method of 
moment replaces these moments by their unbiased empirical cumulant 
counterparts defined as follows (assume  3n ): 
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The empirical skewness and (excess) kurtosis are  3
3 ˆ/ˆˆ XX     and 

4
4,2 ˆ/ˆˆ XX   . To test normality one uses the Bera-Jarque statistic 

 24/ˆ6/ˆ ,2 XXnJB   , which is asymptotically  2
2   distributed, and has a 

critical value of  5.99  for a 95% confidence level. 

 
 
5.1 NIG MM estimators 

Since the MM estimators are directly obtained from (3.2) their formulas are 
not stated. 

 
 
5.2 ST MM estimators 

Following [1] the parameters    ,,   are obtained as functions of the 
remaining parameter     through the formulas 
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  (5.5) 

where the unknown     solves the skewness equation 

            42614222646  X  (5.6) 

 
 
5.3 NL MM estimators 

The moment equations cannot always be solved for all feasible combinations 
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of mean, variance, skewness and kurtosis. The following alternative estimation 
procedure applies. Given a NL distributed random variable (3.6), solve the 
skewness equation to get 

  3/13
2
13)(

  XX     (5.7) 

and insert into the kurtosis equation to solve for the parameter   : 

  066 4
,2

3/43
2
134  

XXXX  .   (5.8) 

Case 1:   0222    X  
The moment estimators exist and one has 

11222 ,    XX . 

 
Case 2:   0222    X  
The moment estimators do not exist. This means that the kurtosis is higher than 
the one that can be obtained from a Normal Laplace. In this situation the mean, 
variance and skewness can be calibrated by considering the special case  0   
of a skew Laplace.  
Let   ,,~ skLX  be a skew Laplace distributed random variable. Assuming 

that 1 X , solve the variance equation to get    2/122)(
  X , and 

insert into the skewness equation to solve for    : 

  022 32/3223  
XXX  .    (5.9) 

 
Case 3:   1 X  

The remaining parameter is  11    X . 
 

Case 4:   1 X  
Consider the further special case of a symmetric Laplace 

    ,,~ 2
X

XskLX . 

 
 
5.4 HG MM estimators 

The MM estimators of  XXXX ,2
2 ,,,    coincide with their unbiased 

empirical counterparts. 
     Finally, the calculation of the minW, minA and minχ2 estimators uses 
expressions of the distribution functions that can be computed within a reasonable 



Werner Hürlimann 105 

computing time. Since not all software packages ensure this requirement for the 
NIG and ST distributions, a special software design must be implemented for 
them. Consider the integral representations (3.2) and (3.5), which are of the type 

)1()(,)()( 12
1

00

 


 tfttgdttgdxxfI .   (5.10) 

We apply the standard trapezoidal rule and Simpson’s rule, as well as the recent 
modified Simpson’s rule by [43], which yields a better error bound than 
Simpson’s rule (see [42]). These numerical quadrature formulas can be used under 
the valid assumption  0)1(')0(',0)1()0(  gggg   to yield for an 
approximation of  N -th order: 
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where the coefficients  rule
kC   depend on the chosen rule as follows: 

Trapezoidal rule  :  1T
kC  

Simpson’s rule  :  




S
kC
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oddk
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Modified Simpson’s rule :  
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

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,

15
14

15
16

 

We use the modified Simpson’s rule with  500N   for the NIG and  
000'2N   for the ST. 

 
 

6  Numerical Illustration 
We discuss briefly the fitting capabilities of the specified distributions using 

the consumer price index (CPI) of Switzerland. It is downloadable from the 
website of the Federal Office of Statistics at 

www.bfs.admin.ch/bfs/portal/de/index/themen/05/02/blank/key/basis_aktuell.html 
We have chosen the time span between 1925 and 2009 on the June 1914 index 
base of 100 containing 85 yearly indices. The estimated AR(1) parameters (2.3) 
are 02165130.0ˆ   and 66197187.0ˆ  . Since the Bera-Jarque statistic 
JB=18.41 is far away from its critical value 5.99, normality is rejected at the 95% 
confidence level. Table 6 shows that the AR(1) with NL noise has the best 
goodness-of-fit in the following dual sense. The MM estimators of the NL residual 

error distribution yield the smallest  222 ,, WA   statistics, and the minimum of 
these three statistics is also reached by the NL distribution. 



106                               On Non-Gaussian AR(1) Inflation Modeling 
 

 

Table 6:  Fitting the AR(1) residual error distributions for the Swiss CPI 

estimators noise

MM NIG 0.42653 0.08214 2.89125 0 0.02524 0.82549 2.0215
ST 1.64622 0.28631 3.17875 0 0.02524 0.82549 2.0215
NL 0.40591 0.07709 2.87054 0 0.02524 0.82549 2.0215
HG 0.72216 0.12159 3.06631 0 0.02524 0.82549 2.0215
Normal 1.05092 0.18188 3.03751 0 0.02524 0 0

minA NIG 0.21197 0.02748 3.04653 0.00608 0.03225 2.02184 12.1267
ST 0.2216 0.03099 2.99821 0.00086 0.01691 - -
NL 0.20909 0.02551 3.05475 -0.00071 0.02599 0.29996 3.00734
HG 0.27466 0.03171 3.11513 -0.00051 0.02098 0.44541 2.48129

minW NIG 0.24348 0.02371 3.16403 0.00632 0.03683 2.70594 21.7211
ST 0.22594 0.02616 3.09535 0.04024 0.01612 - -
NL 0.23445 0.02256 3.03664 -0.00145 0.02595 0.0302 3.00061
HG 0.31254 0.02611 3.3838 -0.0011 0.02003 0.19609 3.26934

minχ2 NIG 0.54573 0.09245 2.83694 0.00803 0.02598 0.68075 1.37474
ST 0.65867 0.11111 2.89345 -0.00277 0.01866 - -
NL 0.54489 0.09177 2.82304 -0.00196 0.02317 0.46443 1.04687
HG 0.50345 0.08174 2.86258 -0.00145 0.02275 0.36564 0.57171

goodness‐of‐fit statisstics moments of fitted noise distribution
2A 2W 2 XXXX ,2
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