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Abstract 
 

This research paper employs input-output pricing model based on ecological-

economic approach to investigate the impacts of internal factors as well as external 

forces on agriculture commodities. To empirically test our model, we select two 

different methodologies such as the optimal scaling regression with nonlinear 

transformations and feedforward artificial neural networks. Our sample includes 

data related to price of agriculture and energy commodities (cocoa, coffee and crude 

oil), production of crops and livestock, emissions of greenhouse gases (GHG) from 

agriculture from 1961 to 2019. Results find a bidirectional relationship between 

cocoa price and coffee price explaining by the fact that commodity-dependent 

countries often use kindred production landscapes and similar supply chain 

management when dealing with coffee and cocoa. Therefore, effect of supply side 

shocks may be transmitted from one market to another. We also present evidence 

that greenhouse gas emissions have strong effect on commodity price, thus we 

encourage an integrated approach including both concrete technological and 

proactive managerial measures in order to mitigate global warming impacts on the 

food system. We believe that these findings will be of interest to commodity 

producers, asset managers and academics who look a better understanding of the 

dynamics of commodity markets. 
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1. Introduction  

Comprehending price movement in commodity markets and selecting the 

appropriate forecasting models have long been the interest of academics and 

investors. Global trade in agricultural commodities and food has more than doubled 

between 1995 and 2018, rising from USD 680 billion in 1995 to USD 1.5 trillion in 

2018, averaging 7.5 percent share of the total merchandise trade over this period 

(FAO, 2020). The global cocoa market ranking in the top 10 of global agricultural 

commodities is expected to grow at an average price of $2.31 per kilogram and at a 

compound annual growth rate of 7.3 per cent from 2019 to 2025 to reach USD 16.32 

billion (Voora, Bermúdez, & Larrea, 2019). However, this growing trend of the 

food and commodity industry may not last long as those markets remain vulnerable 

to uncertainty shocks such as the 2008 financial crisis, global climate change and 

COVID-19 pandemic (Erten & Ocampo, 2021; Huang, Li, Zhang, & Chen, 2020). 

Understanding potential forces and factors that may impact those fluctuations across 

the above-mentioned markets has several important implications not only for 

commodity producing firms, but also for asset managers and policy-makers. 

A large number of existing studies in the broader literature using several prediction 

methodologies have examined price volatility of agricultural commodities (Weng 

et al., 2019; Xiong, Li, & Bao, 2018). Their results suggest that artificial networks 

as well as hybrid methods such as mind evolutionary algorithm and support vector 

machine (MEA-SVM) models generate higher prediction accuracy and faster 

calculation speed, and therefore may be considered as the most appropriate methods 

for forecasting agricultural commodity price. In addition, multiple attempts to 

modelling the effect of oil price on agriculture commodity price have been reported 

by previous research. They demonstrate how aggregate demand oil price shocks 

lead to higher non-energy commodity index prices, indicating that the responses of 

agricultural commodity prices to oil price changes depend greatly on oil-specific 

shocks (Ahmadi, Behmiri, & Manera, 2016; Chaudhuri, 2001; Melichar & Atems, 

2019; Wang, Wu, & Yang, 2014). Moreover, previous studies using numerous 

methodologies with various strengths have also emphasized on the effects of global 

warming and climate change on agriculture commodity markets (Akrofi-Atitianti, 

Ifejika Speranza, Bockel, & Asare, 2018; Haile, Wossen, Tesfaye, & von Braun, 

2017). They find evidence for significant bidirectional effects in climate change-

agriculture commodity relationships, meaning that agriculture products such as 

cocoa beans are not only exposed to climate change impacts but are also among the 

main factors responsible for greenhouse gas emissions. Therefore, the authors 

suggest employing climate smart agriculture as a way to relieve environmental 

challenges. 

The preceding discussion seems to have one common belief that agriculture 

commodity prices are volatile and may be heavily affected by financial shocks and 

market uncertainties. Previous studies, however, fails to present a comprehensive 

analysis on connectedness among driving forces such as social factors, global 

warming and economic factors that may shape agriculture commodity markets. 
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Prior studies do not throw much light on the role of social institution and business 

cycle on such relationship either. Our contribution to the literature is threefold. First, 

we systemically identify (Akhtar, Wibe, Simonovic, & MacGee, 2013; Banerjee, 

Cicowiez, Horridge, & Vargas, 2016) factors and constraints that exert influence on 

human socio-economic activities such production and trade of commodities. Second, 

we establish the connectedness and spillover effect among commodity markets by 

integrating ecological-economic approaches into traditional pricing models. Third, 

we select an input–output framework in order to quantitatively explore the effects 

of socio-economic and ecological indicators on commodity prices. For that purpose, 

we have recourse to artificial neural networks and optimal scaling regression and 

use data related to price and supply of certain commodities and greenhouse gas 

emissions. Compared to conventional regression models, the use of optimal 

regression is most appropriate given the fact that the goal of our analysis is to 

forecast a dependent variable from a set of predictors like the ecological economics 

approach suggests it (Zhang, Nie, & Li, 2018). 

The remainder of this article is structured as follows. In section 2 we present 

previous literature relevant to various models used to price and forecast agriculture 

commodities. The theoretical framework and methodology are presented in section 

3 and 4, respectively. Section 5 presents the dataset while the obtained empirical 

results are discussed in section 6. The final section 7 concludes the analysis. 
 

2. Literature review  

The research acknowledges previous studies highlighting the suitability of various 

methodologies when studying agriculture commodity prices. For instance, Bohl, 

Siklos, Stefan, and Wellenreuther (2020) use a cost-of-carry model and a linear 

regression analysis to investigate the relationship among various agricultural 

commodities. Their dataset includes daily spot and futures prices and futures trading 

volume relate to two agricultural commodity products (corn and soybeans) and two 

livestock contracts (live cattle and feeder cattle) for the period starting from January 

4, 1993 to June 29, 2018.  Findings suggest that speculative activity reduces the 

level of noise in the futures markets, implying that efforts by regulators to restrain 

futures speculation could negatively affect the price discovery process in 

commodity markets. Moreover, Alam and Gilbert (2017) use a structural vector 

autoregression (VAR) framework to study fluctuations in commodity prices. Their 

model consider monthly spot prices obtained from United States Department of 

Agriculture (USDA), the International Monetary Fund Primary Commodity 

Database, and IndexMundi from 1991 to 2014 and relates to agricultural 

commodities including banana, barley, beef, cocoa beans, coconut oil and coffee. 

Their findings show that global economic conditions play an important role in the 

dynamics of agricultural commodity prices. Moreover, the factor analysis show how 

that commodities are moving together during a certain period of time. Similarly, 

adopt a quantile autoregression (QAR) model to investigate the dynamics of 

agricultural price volatility. The approach is applied to U.S. wheat and corn markets 
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over the period of 1980–2017. Additionally, Traoré and Badolo (2016) using 

autoregressive distributed lag (ARDL) and lag-augmented vector autoregression 

(LA-VAR) models to study the movement between cocoa and coffee prices found 

that the long-run elasticity of coffee price with respect to the cocoa one is near to 

unity, suggesting that the relationship between the two commodities is significant 

both in the short and long run. 

Other methodologies such as artificial neural networks (ANN) and other deep 

learning models ANN models have proven their precedence over other methods in 

the work of Weng et al. (2019) comparing back propagation (BP) network method 

and recurrent neural network (RNN) method to autoregressive integrated moving 

average (ARIMA) model when forecasting the price of agricultural products. In 

order to promote better results when forecasting commodity prices, several authors 

use hybrid methodologies including Xiong et al. (2018) utilizing seasonal-trend 

decomposition procedures based on loess and extreme learning machines claiming 

their momentousness for vegetable price forecasting with high seasonality. 

Similarly, Y. Zhang and Na (2018) combining the fuzzy information granulation, 

mind evolutionary algorithm (MEA), and support vector machine (SVM) in order 

to predict the price of 6 agricultural commodities conclude that the MEA-SVM 

model was effective and had higher prediction accuracy and faster calculation speed 

in the forecasting of agricultural commodity price.  

Previous research uses umpteen methods to scrutinize the effect of oil price on 

agriculture commodity price. For instance, Melichar and Atems (2019) use vector 

autoregressive (VAR) model to delve into the relationship between shocks to the 

global crude oil market and commodity prices, and whether US renewable energy 

policy can reshape this relationship. Their dataset consisting of monthly 

observations is obtained from Energy Information Administration (EIA) for the 

period starting from January 1980 to December 2015 and includes three energy-

related commodities (coal, crude oil, natural gas) and twenty non-energy 

commodities such as aluminum, copper, tea and coffee. The real price of oil is 

deflated by the US Consumer Price Index (CPI). They find evidence that aggregate 

demand oil price shocks lead to higher energy and non‐energy commodity index 

prices, but a very weak relationship with respect to oil supply and oil-specific 

demand shocks. They also find evidence of heterogeneity after changes in US 

energy policy in 2006, with a stronger relationship between oil and other commodity 

prices. Specifically, oil‐specific demand shocks lead to responses of greater 

magnitude and statistical significance for non‐energy commodity indexes. Similarly, 

structural vector autoregression (SVAR) analysis has been employed to study the 

impacts of oil price shocks on agricultural commodity markets (Ahmadi et al., 2016; 

Wang et al., 2014). Their findings indicate that the responses of agricultural 

commodity prices to oil price changes depend greatly on oil-specific shocks. They 

also found that oil shocks can explain a minor friction of agricultural commodity 

price variations before the food crisis in 2006–2008, whereas in post-crisis period 

their explanatory abilities become much higher. In addition, Chaudhuri (2001) using 

stationarity and cointegration tests to study the long-run prices of primary 
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commodities and oil prices found that real primary commodity prices and real oil 

prices are cointegrated. They also found that the error in the cointegrating relation 

stimulates real commodity price adjustment, not real oil price adjustment. Those 

results tie with the work of Serletis and Xu (2019) applying a four-variable vector 

error correction (VEC)–GARCH–in–Mean model with a BEKK representation to 

investigate mean and volatility spillovers between the crude oil market and the main 

biofuel feedstock markets (corn, soybean, and sugar). The sample uses weekly data 

related to the above-mentioned four commodities over the period from March 6, 

1986 to March 10, 2016. They find that the oil market and the biofuel feedstock 

markets are tightly interconnected and that the ethanol mandate has strengthened 

their linkages in terms of volatility spillovers.  

Their results also show a strengthening of the relationship between the crude oil 

market and the biofuel feedstock markets after the introduction of the biofuel policy. 

On the other hand, Natanelov, Alam, McKenzie, and Van Huylenbroeck (2011), 

make a combination of different methods including vector error correction model 

(VECM), Johansen cointegration and two-regime threshold cointegration in order 

to explore price movements among crude oil futures, agricultural commodities and 

gold futures. Data are related to monthly futures prices of crude oil, cocoa, coffee, 

corn, soybeans, soybean oil, wheat, rice, sugar and gold starting July 1989 until 

February 2010. Their results point out that mature and well established commodity 

futures markets exhibit co-movement with crude oil in the long run while biofuel 

policy mitigates the co-movement of crude oil and corn futures until the crude oil 

prices surpass a certain threshold. In addition, different methods such as augmented 

autoregressive distributed lag (ARDL) bounds have been used by Zafeiriou, 

Arabatzis, Karanikola, Tampakis, and Tsiantikoudis (2018) when gauging the 

relationship between the crude oil and two agricultural commodities (corn, and 

soybeans). Those authors employed monthly futures prices of the above-mentioned 

commodities provided by Bloomberg for the period starting from July 1987 until 

February 2015. Results confirm that crude oil prices affect the prices of agricultural 

products as well as of ethanol, validating the interaction of energy and agricultural 

commodity markets. In addition, authors point out that this impact and its 

implications for the substitution of crude oil with other renewable or non–renewable 

resources seems to affect the level of carbon emissions and vice versa. 

Numerous methodologies with various strengths have also been proposed for 

modeling the impacts of greenhouse gases emissions on agriculture commodity 

markets. For example, multivariate linear regression has been used in order to 

estimate future meat consumption and discusses whether the integration of 

concentrated animal feeding operation (CAFO) will have environmental impact of 

this production. Results reveal that total potential greenhouse gas emissions, if all 

meat were produced in the same method as the US CAFO system and there was no 

deforestation, would have been 1.3 billion tonnes of CO2 equivalent in 2000. 

Additionally, author claims that if future CO2 production is to stay at the current 

amount, meat production accounts for 5.0% of total production in 2010, 5.7% in 

2020 and 6.3% in 2030 while meat production in the future will still be a large 
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producer of greenhouse gases under an expanded CAFO system (Fiala, 2008). 

Similarly, Haile et al. (2017) also employ a multivariate linear regression to analyze 

the effect of global climate change on commodity crops (maize, wheat, rice, and 

soybeans). Their dataset comprising information on country-level commodity 

production and ending stock is retrieved from Food and Agriculture Organization 

(FAO) and US Department of Agriculture (USDA) for the period 1961–2013 while 

data on international market output prices and fertilizer index are obtained from the 

World Bank’s commodity price database. All prices are converted to real 2010 

dollar prices by deflating each price with the US Consumer Price Index (CPI). 

Moreover, the authors construct climate change indicators from variables such as 

precipitation and temperature obtained from Climatic Research Unit at University 

of East Anglia. Results found that climate change leads to 1–3% higher annual 

fluctuations of global crop production over the next four decades. In addition, they 

find strong, positive and statistically significant supply response to changing prices 

for all four crops. However, output price volatility, which signals risk to producers, 

reduces the supply of these key global agricultural staple crops—especially for 

wheat and maize. Furthermore, their findings reveal that climate change has 

significant adverse effects on production of the world’s key staple crops, suggesting 

that combating climate change should employ both mitigation and adaptation 

technologies. However, studies such as such as Akrofi-Atitianti et al. (2018) and 

Reay (2019) claim that producing cocoa-related goods is not only exposed to 

climate change impacts but is also responsible for around 90,000 tonnes of 

greenhouse gas emissions. Therefore, they advocate a climate smart agriculture way 

to reduce the sector’s GHG emissions and to alleviate the adverse impacts of climate 

change. 

Frank et al. (2017) and Baker et al. (2018) utilize the global biosphere management 

model (GLOBIOM) to assess the effects of global warming target on agricultural 

activities. Results show that greenhouse gases have meaningful impacts on crop 

productivity, total production, and prices. Furthermore, authors find that freer trade 

can play an important role in helping to buffer regional productivity shocks. 

Moreover, their findings indicate that efficiency of GHG mitigation will also 

depend on the level of participation globally. Camanzi, Alikadic, Compagnoni, and 

Merloni (2017) employ an environmentally extended input-output analysis (EE-

IOA) and structural path analysis (SPA) to evaluate the impacts greenhouse gas 

(GHG) emissions throughout the European Union food supply chain. Their dataset 

retrieving from E3IOT database includes 24 emissions (carbon dioxide, 

dichloromethane, dinitrogen oxide, etc.) and 11 categories of products (meat; milk, 

cheese and eggs; fruit; vegetables, etc.) under the classification of individual 

consumption according to purpose (COICOP). They found that the consumption of 

meat-related products accounts for more than 35% of the overall food-related GHG 

impact while fruits and vegetables are responsible for less than 15% of total GHGs. 

Overall, those results suggest an integrated approach in order to achieve effective 

and efficient GHG mitigation in the food system. 

The advantage of our research in comparison with the above studies is the optimal 
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scaling model embedded in our ecological pricing model used to predict agriculture 

commodity trends, while prior studies mostly have recourse to conventional 

regression models when analyzing commodity markets. 

 

3. Theoretical framework  

The conceptual framework for this study is based on ecological economics. The 

core idea of ecological economics is that human economic activity as an open and 

integrated system is constrained by larger systems of society and the biosphere 

(Akhtar et al., 2013; Banerjee et al., 2016). Those constraints can be established by 

social factors (values, institutions) and biosphere’s carrying capacity (Danilov-

Danil’yan & Reyf, 2018), i.e. its ability to sustain the so called “social metabolism”, 

which is the set of flows of material throughput and energy that occur between 

natural ecosystems and societies (de Molina & Toledo, 2014). Environmental 

factors include biodiversity and ecosystems suggesting that we have an ethical 

responsibility to promote the richness of human relationships with nature (Spash & 

Aslaksen, 2015) while economic factors referring to production capacity and 

business cycle are important for the understanding of business cycle (Greenwood, 

Hercowitz, & Huffman, 1988). Therefore, ecological economics adopting systemic 

perspective calls upon various fields of study at different levels to acknowledge the 

intrinsic value of nature when analyzing socio-economic problems as well as 

environmental challenges faced by modern societies (Bruel, Kronenberg, Troussier, 

& Guillaume, 2019; Costanza et al., 2014; Kaufmann & Cleveland, 1995; Munda, 

1997). A particular case refers to the idea of examining the pricing in financial 

markets in ecological terms. The attempts of Busch, Bauer, and Orlitzky (2016) to 

explore how financial markets can foster and facilitate more sustainable business 

practices have stirred up useful discussions (Louche, Busch, Crifo, & Marcus, 2019; 

Maltais & Nykvist, 2020; Schoenmaker & Schramade, 2018). Sustainable practices 

imply the existence and operation of infrastructures (transportation and 

communication), services (health, education, and culture), and institutions (law and 

policy) that will encourage and support efficient and equitable use of the biosphere 

resource (Brown, Hanson, Liverman, & Merideth, 1987). Hence, the necessity to 

integrate ecological-economic approaches into traditional pricing models is the 

main focus of this research.
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Figure 1: Baseline input-output pricing model embedded in an ecological-economic approach and adapted from 

Cafuta (2015) 
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Since ecological economics is explicitly interdisciplinary in its general approach, it 

draws upon a large and diverse set of methods, approaches and values, though the 

extent of admissible or sensible pluralism is debated. For the sake of this paper, we 

restrict our analysis to the input-output modelling (Leontief, 1987) as it is shown in 

figure 1. The input–output framework is chosen based on its simplicity, quantitative 

analysis and data-rich exploratory process. The net input (valued added) of our 

model contains production of individual commodities, prices of complementary or 

substitute goods as well as input activities related to socioeconomic metabolism and 

environmental challenges. On the output side price-related outcomes of the specific 

commodities are aggregated into one output activity (Hannon, 2001). 

 

4. Methodology  

We resort to two different methods, namely a computing system (artificial neural 

networks) and linear regression (optimal scaling regression) to empirically assess 

variable relationships hypothesized in our input-output model specification. 

 

4.1 Artificial neural networks 

The idea of an artificial neural network (ANN) dates back to 1940s in the work of 

McCulloch and Pitts (1943) asserting that neural events and the relations among 

them can handled by means of propositional logic. Since then, ANNs taking their 

inspiration from biological neural networks have been employed for several fields 

of research (Basheer & Hajmeer, 2000; Chen & Diaz, 2020; Pi, Liao, Liu, & Liu, 

2011; Sietsma & Dow, 1991). The main advantage of this method is its ability to 

portray the non-linear relationship among sets of input-output pairs. This study 

considers two most popular feedforward artificial neural networks which are Multi-

Layer Perceptron (MLP) and Radial Basis Function (RBF) networks.     

 

4.1.1 Multi-Layer Perceptron (MLP) 

Among various types of ANNs, multi-layer perceptron (MLP) is a reliable tool 

which is designed for the case of this study to predict commodity price following 

our theoretical framework. It consists an input and an output layer with one hidden 

layer of nonlinearly-activating nodes (or perceptrons). The response of the hidden 

layer is the input of the output layer. We use sigmoid function (Hu, Hu, & Lin, 2012; 

Narayan, 1997) to activate the frequency of action potentials of perceptron. 

 

𝑦 = (1 + 𝑒−𝜙∑𝑥𝑖)
−1

 (1) 

where y represents the dependent variable while xi refer to the predictors; ϕ ∈ R.  

 

Since MLPs are fully connected, we apply the gradient descent method to optimize 

the weight vector connecting neurons together using back propagation optimization 

algorithm. The change in each weight can be written following Parlos, Fernandez, 

Atiya, Muthusami, and Tsai (1994). 
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Δ𝑤𝑗𝑖(𝑛) = −𝜂
𝜕𝜀(𝑛)

𝜕𝑣𝑗(𝑛)
𝑦𝑖(𝑛) (2) 

where Δwji is the weight change and η, the learning rate which is selected to ensure 

that the weights quickly converge to a response, without oscillations; ∂ε(n) refers to 

the node weights while ∂vj(n) is the induced local field; yi(n) is the output of the 

previous neuron. Then we minimize the sum-of-squares error between which the 

actual and the desired network outputs throughout the training period using one 

consecutive step with no decrease in error as stopping rule (Bishop, 1992). The 

mean value of the dependent variable is used as the predicted value for each case.   

 

4.1.2 Radial Basis Function (RBF) 

The Radial Basis Function (RBF) is another popular architecture used in ANN. The 

RBF, which is also multilayer and feed-forward, is often used for strict interpolation 

in multi-dimensional space. Like MLP network, the RBF network includes three 

layers, i.e. input, hidden and output. The input layer is composed of input data while 

the output layer comprises the outcome. The hidden layer transforms the data from 

the input space to the hidden space using a non-linear function. We use a normalized 

radial basis function by computing the Euclidean distance between the input vector 

and the center of that unit. In the structure of RBF network, the input data, x, is a p-

dimensional vector, which is transmitted to each hidden unit. The activation 

function of hidden units is symmetric in the input space, and the output of each 

hidden unit depends only on the radial distance between the input vector, x, and the 

center for the hidden unit (Bugmann, 1998). Each node in the hidden layer is a p-

multivariate Gaussian function following Memarian and Balasundram (2012). 

 

𝐺(𝑥′, 𝑥𝑖) = 𝑒
[
−1

2𝜎𝑖
2∑ (𝑥𝑘−𝑥𝑖𝑘)

2𝑝
𝑘=1 ]

 
(3) 

where: xi is the mean (center) and σi is the variance (width). These functions are 

referred to as radial basis functions. Finally, a linear weight is applied to the output 

of the hidden nodes to obtain: 

 

𝐹(𝑥) =∑𝑤𝑖(𝐺(𝑥
′, 𝑥𝑖))

𝑁

𝑖=1

 (4) 

 

4.2 Optimal scaling regression (OSR) 

In addition to ANN methods, we employ the optimal scaling referring to a models 

that is linear in the parameters, but include nonlinear transformations of the 

variables. This nonlinear transformation process is known by different names. The 

term "optimal scaling" was originally coined by Psychometricians in 1960s, but 

Nishisato (2014) called it dual scaling. The older term optimal scaling is 

reintroduced to name a method designed to quantify categorical data by assigning 

numerical values to the categories using optimal scaling method and resulting in an 
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optimal linear regression equation for the transformed variables (Fazeli, Hassani, 

Mondelli, & Vardy, 2020; Willems, Fiocco, & Meulman, 2017; R. Zhang et al., 

2018). Using nonlinear transformations allow variables to be analyzed at a variety 

of levels to find the best-fitting model. It is convenient to write the optimization task 

in the form of a least squares loss function following Meulman, van der Kooij, and 

Duisters (2019) 

𝐿(𝛽, 𝜑, 𝜗) = ‖𝜗(𝑦) −∑𝛽𝑘𝜑𝑘𝑥𝑘

𝑝

𝑘=1

‖

2

 (5) 

Where ║║2 denotes the squared Euclidean norm. ϑ(y) refers to transformation of y 

while φkxk stands for the set of nonlinear transformations of the predictors. βk is the 

vector of coefficients. Loss function has to be minimized. 

 

We take into account two different kinds of nonlinear transformations which are 

numerical transformation and quantification nominal. The implication of numerical 

transformation is that the distances between the category points have to be equal, 

and the category quantifications will be proportional to the original category 

numbers. On the other hand, we merely maintain the class membership information 

in the quantified variable in the nominal transformation (Meulman, Van der Kooij, 

& Heiser, 2004). The solution of our categorical regression model ultimately 

maximizes the squared correlation between the transformed response and the 

weighted combination of transformed predictors. For that reason, linear and non-

parametric correlations have been introduced in the analysis. As a linear correlation 

statistic, the Pearson correlation coefficient of two variables X and Y is formally 

defined as the covariance of the two variables divided by the product of their 

standard deviations (which acts as a normalization factor) and it can be equivalently 

defined by Zhou, Deng, Xia, and Fu (2016): 

 

𝑟𝑥𝑦 =
∑(𝑥𝑖 − �̅�)∑(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2√∑(𝑦𝑖 − �̅�)2
 (6) 

Where x ̅ denotes the mean of x.  y ̅ denotes the mean of y. 

 

Kendall-tau-b (τB) which is a non-parametric correlation coefficient is used to assess 

and test correlations between non-interval scaled ordinal variables. It is a measure 

of rank correlation: the similarity of the orderings of the data when ranked by each 

of the quantities. The Kendall tau-b for measuring order association between 

variables X and Y is adapted from Somers (1962): 

 

𝜏Β =
𝐶 − 𝐷

√(𝐶 + 𝐷 + 𝑋0)(𝐶 + 𝐷 + 𝑌0)
 (7) 

where C is the number of concordant pairs, D is the number of discordant 

pairs, X0 is the number of pairs tied for X variable, Y0 is the number of pairs tied 

for Y variable. 
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4.3 Evaluation of the forecasts 

To statistically compare the forecast efficiency from different models, we employ 

three accuracy criterion namely R squared (R2), mean absolute error (MAE) and 

root mean square error (RMSE). These statistical criteria are widely employed in 

commodity market modeling (Black, Klinkowska, McMillan, & McMillan, 2014; 

Mahdavi & Zhou, 1997; Paschke & Prokopczuk, 2010). Lower RMSE and MAE 

values indicate the best forecasting methods while the higher value of R squared 

reflects the best fitting models. Those measures are calculated as follows: 

 

𝑅2 = 1 −
∑ (𝑌𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑌𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
𝑁
𝑖=1

∑ (𝑌𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − �̅�𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
2𝑁

𝑖=1

 (8) 

𝑴𝑨𝑬 =
𝟏

𝑵
∑|𝒀𝒊𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 − 𝒀𝒊𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅|

𝑵

𝒊=𝟏

 

(9) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑌𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
𝑁

𝑖=1

 (10) 

where Yiobserved, and Yipredicted denote the actual and predicted values of the 

commodity price, respectively. The term N represents the number of observations 

in the sample, and Yobserved stands for the average of the actual values of commodity 

price. 

 

5. Data  

Our study considers data coming from publicly available databases World Bank's 

Pink Sheet and Food and Agriculture Organization (FAO) of the United Nations 

from 1961 to 2019. We focus on international level of analysis, i-e level price of 

cocoa bean (cocoa_price), coffee (coffee_price) and crude oil (oil_price), supply of 

crops and livestock as well as greenhouse gases (GHG) emissions from agriculture 

(agriemission) involve information related to the whole world. Data on cocoa bean 

and coffee prices are US dollar-denominated nominal per kilogram while crude oil 

prices are referenced as dollar per barrel. Crop statistics are computed for over 150 

products, covering three categories which are grains (almonds, barley, carobs, 

cashew nuts, coffee, etc.), fruits (apples, apricots, blueberries, cherries, etc.) and 

vegetables (artichokes, asparagus, cabbages, turnips, etc.). Livestock data are 

recorded for three categories of products including meat, eggs and milk. We take an 

average price for each category before summing up them. Crops and Livestock use 

billion kilograms as units while GHG emissions from agriculture referring to 

different agricultural activities such as enteric fermentation, synthetic fertilizers and 

crop residues are in million gigagrams and. We compute total agriemission as sum 

of emission from methane (CH4), nitrous oxide (N2O) and carbon dioxide 

equivalent (CO2eq). IBM SPSS software is used to analyze our data. 
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Table 1 describes the sample size and summary statistics of our variables. The 

average price varies from $1.715 per kilogram (cocoa bean) to $30.564 per barrel 

(crude oil) while the average supply of crops (5401.290×109 kg) is higher than that 

of livestock (784.501×109 kg). The greenhouse gases emissions coming from 

agricultural activities averaged 4.320×106 gigagrams during the considered sample 

period. The lowest value of cocoa bean ($0.365) has been reported in 1965 while 

its largest score ($3.790) has been recorded in 1977. The price of coffee has fallen 

to its lowest level ($0.806) in 1963 while its highest price ($5.976) has been reported 

in 2011. Crude oil shows its lowest price ($1.210) in 1970 and its highest value 

($105.010) has been computed in 2012. The lowest supply level of crops and 

livestock has been reported in 1961. Since then, the production of crops and 

livestock continues to increase annually, reporting their highest values in 2019. 

Standard deviations range from 0.872 (cocoa_price) to 1995.379 (crops), meaning 

that crops distributions have values which are generally farther from their mean 

compared to other variables in the sample. Skewness describing the asymmetry of 

the normal distribution shows that all instruments except agriemission are positively 

skewed. Kurtosis coefficient measuring the peakedness of the distribution imply 

that variables have leptokurtic distribution (positive excess kurtosis). From the 

Jarque-Bera test (p-value > 0.05), the residual normality shows that variables except 

agriemission and oil_price are normally distributed. 

 
Table 1: Sample Size and summary statistics 

 cocoa 

price 

coffee 

price 
cropsa livestocka agriemissionb oil price 

Mean $1.715 $2.507 5401.290 784.501 4.320 $30.564 

Minimum $0.365 $0.806 2528.776 430.648 2.844 $1.210 

Maximum $3.790 $5.976 9348.690 1308.731 5.501 $105.010 

STD $0.872 $1.226 1995.379 252.186 0.965 $29.503 

Skewness 0.363 0.387 0.458 0.487 -1.472 1.194 

Kurtosis 2.302 2.634 2.115 2.192 7.388 3.508 

Jarque-Bera 2.491 1.800 3.986 3.936 68.643 14.655 

Probability .288 .407 .136 .140 .000 .001 

Observations 59 59 59 59 59 59 
a: Mean, minimum and maximum are expressed in billion kilograms 
b: Mean, minimum and maximum are in million gigagrams 

STD: Standard deviation 

Source: Authors' own computations 

 

6. Results and discussions  

Table 2 summarizes the linear and non-parametric correlations among variables. 

Results show that there exist strong parametric and non-parametric relations 

(r=0.858; tau-b=0.695) between cocoa_price and coffee_price. This result ties well 

with Traoré and Badolo (2016) wherein the prices of the commodities were found 
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to be cointegrated. The bidirectional link between the price of the two commodities 

may be the impacts of supply side shocks from one market being transmitted to the 

other one. We also acknowledge linear and non-parametric correlation between 

agriemission and cocoa_price (r=0.390; tau-b=0.397). These basic findings are 

consistent with Reay (2019) and Akrofi-Atitianti et al. (2018) showing that cocoa 

farming is largely associated with greenhouse gases emissions. The positive 

bidirectional relationship means that high temperatures and drought can impact 

cocoa yields and prices. Likewise, growing cocoa and cocoa by-products may lead 

to soil degradation, poor yields an increase in agricultural emissions. In addition, 

cocoa bean price has moderate linear relation with crops (r=0.574) and livestock 

(r=0.570) but gets a weak rank correlation with crops (tau-b=0.435) and livestock 

(tau-b=0.439), indicating a rather straight-line relationship between those variables. 

On the other hand, the link between cocoa_price and oil_price is both linear 

(r=0.633) and non-parametric (tau-b=0.521). A similar pattern of results was 

obtained in Chaudhuri (2001) who found some important linkages between real 

commodity prices and oil prices in the sense that the magnitude of oil price shocks 

could affect cocoa beans. Additionally, we find that a moderate linear correlation 

exists between coffee price and crops (r=0.553), livestock (r=0.545) and oil price 

(r=0.614) while the Kendall correlation between coffee price and crops (tau-

b=0.399), livestock (tau-b=0.405), agriemission (tau-b=0.393) and oil_price (tau-

b=0.459) translating a dissimilar rank between variables. In addition, high 

correlation scores (r=0.998; tau-b=0.987) between crops and livestock mean that 

the observations of the two variables have identical rank. Similar observations can 

be reported between crops and oil-price (r=0.837; tau-b=0.662). Oil-price have both 

strong ranking relation and high linear relation with agriemission. Therefore, the 

use of optimal scaling regression would be beneficial to further investigate these 

behavioral patterns fully. 
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 Table 2: Correlations among pairs of variables 

Note: results are all significant at 1% level 

N=59 observations 

Source: Authors' own computations 

 

Table 3: Artificial neural network information and model summary 

Methods MLP RBF 

Method for Covariates Normalized Normalized 

Method for Dependent var. Normalized Normalized 

Model 

Training   

Sum of Squares Error 0.310 0.188 

Relative Error 0.187 0.150 

Testing   

Sum of Squares Error 0.171 0.085 

Relative Error 0.196 0.137 
Dependent variable: cocoa_price 

Covariates: coffee_price; crops; livestock; agriemission; oil_price 

MLP: Multilayer Perceptron networks; RBF: Radial Basis Function networks 

Source: Authors' own computations 

 

Table 3 outputs information on Artificial neural networks (ANN). We randomly 

assigned the number of cases relative to the training, testing and holdout. To reduce 

the network complexity, we follow a single hidden layer architecture. In addition, 

we use normalization process and autoscaling approach so that outliers do not 

prevail over the rest of the sample data. This method returns a zero mean and unit 

variance of any variable (Madhiarasan & Deepa, 2017). For Multilayer Perceptron 

(MLP) networks, the sigmoid activation function was implemented in both hidden 

and output layers given the fact that the algorithm recommended a response function 

with a continuous and simple derivative form (Mercioni, Tiron, & Holban, 2019). 

 correlation 

coefficient 

cocoa 

price 

coffee 

price 
crops livestock 

agri 

emission 

oil 

price 

cocoa price Pearson 1.000      

Kendall’tau_b 1.000      

coffee price Pearson 0.858 1.000     

Kendall’tau_b 0.695 1.000     

crops Pearson 0.574 0.553 1.000    

Kendall’tau_b 0.435 0.399 1.000    

livestock Pearson 0.570 0.545 0.998 1.000   

Kendall’tau_b 0.439 0.405 0.987 1.000   

agriemission Pearson 0.390 0.441 0.601 0.589 1.000  

Kendall’tau_b 0.397 0.393 0.905 0.914 1.000  

oil price Pearson 0.633 0.614 0.837 0.833 0.540 1.000 

Kendall’tau_b 0.521 0.459 0.662 0.666 0.628 1.000 
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As a result, 63.5% of the sample were assigned to the training sample, 30.1% to the 

testing and 6.4% were excluded from the analysis due to the presence of outliers. 

The average overall relative errors are quite constant across training (0.187) and 

testing (0.196) samples showing that the model is not overtrained. Figure 2 

schematically represents the MLP network structures with a total of four units 

including in the hidden layer. Results also show that input variables are mostly 

linked to hidden layers’ units through negative synaptic weight while the hidden 

layers are almost positively connected to the dependent variable. To measure 

predicted values based on the importance of each independent variable, we use a 

sensitivity analysis as shown in figure 3. This chart shows that the results are 

dominated by coffee_price (100%) and oil_price (68.5%), followed distantly by 

agriemission (40.1%), crops (21.0%) and livestock (16.6%). One socio-economic 

explanation is that coffee and cocoa which are both tropical commodities represent 

a major source of income for many African countries like Cote-d’Ivoire that have 

strong commodity-export dependence (Maurice & Davis, 2011). As a results, coffee 

price tends to affect the price movement of cocoa in the long run compared to other 

crops and livestock. In addition, the results of our proposed model can be compared 

with those of the traditional methods. For instance, our findings are line with 

previous studies such as Melichar and Atems (2019) and Natanelov et al. (2011) 

finding evidence that aggregate oil price shocks lead to higher non‐energy 

commodity index prices and confirming that crude oil prices affect the prices of 

agricultural products. 

 

 

Figure 2: Multilayer Perceptron network structure 
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Figure 3: MLP network predictor variable importance chart 

 

As regards radial basis function (RBF), softmax function was used in hidden layers 

while identity was employed as an activation function in output layers; accordingly, 

61.9% of the cases were distributed to the training sample, 31.7% to the testing and 

6.4% were rejected. We find that the relative errors are quite constant across in both 

training (0.150) and testing (0.137) samples suggesting that the overall error 

recorded by the network in future cases will be close to the one reported here. A 

schematic representation of the RBF network with a nine-units hidden layer model 

is given in Figure 4. This figure shows that variables and layers are all connected 

together via positive synaptic weight. Figure 5 returns the importance of each 

independent variable in explaining model predicted values and shows coffee_price 

(100%) as the most prominent variable following by agriemission (89.9%) and 

oil_price (85.2%). On the environmental plan, coffee and cacao can grow in the 

same climate and landscapes. Moreover, both crops are hand-harvested to preserve 

the next harvest because each plant flowers and fruits simultaneously, thus 

encourage contractors to develop effective supply chain for both products (Vaast, 

Harmand, Rapidel, Jagoret, & Deheuvels, 2016). In addition, other results regarding 

agriemission were broadly in line with previous research demonstrate that 

greenhouse gases have meaningful impacts on crop prices and suggest an integrated 

approach in order to palliate the impact of greenhouse gases on the food system 

(Camanzi et al., 2017; Frank et al., 2017; Haile et al., 2017). 
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Figure 4: Radial Basis Function network structure 

 

Figure 5: RBF network independent variable importance chart 
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Table 4 displays optimal scaling procedures. As in ANN analysis, 6% of the total 

observation were excluded due to presence of outliers. Numeral scaling method is 

used to level the dependent variable while a nominal transformation is employed in 

the specification of independent variables. Moreover, results return six valid groups 

for each variable after discretization showing categories starting from 2 to 7. The 

only exception is related to agriemission having categorization values starting from 

1. It has to be noted that scale values are assigned to each category such that these 

values are optimal with respect to the regression. Model summary as well as 

standardized coefficients are reported in Table 5. Beta statistics are all different 

starting from 0.240 (cofee_price) to 0.453 (livestock). Results highlight that the 

standard error of the regression coefficients which has been estimated by a bootstrap 

with 1000 samples and 5 degrees of freedom is fairly constant across the sample. F-

test shows that all predictor variables were statistically significant with p-values 

being 0.016 or less. Unlike standard linear regression predictors, the value of 

independent variable in the optimal scaling model are not the scores on the original 

variables but the quantification of these scores. So the categories of the predictor 

variables such as coffee_price and agriemission are positive and have almost similar 

quantified values, thus can be interpreted as having similar positive contribution to 

the prediction. Moreover, the multiple R which is the coefficient of multiple 

correlation between response and the fitted values equals 0.947 while the difference 

between the test set target and output expressed by the apparent prediction error is 

0.104. A similar conclusion was reached by Baker et al. (2018) employing different 

methodology to study agricultural activities in relation to global warming and 

suggesting that greenhouse gases have significant effects on cocoa production and 

price.
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Table 4: Optimal Scaling discretization and categorization 

cocoa_price1 coffee_price2 crops2 livestock2 agriemission2 Oil_price2 

Valid C F Valid C F Valid C F Valid C F Valid C F Valid C F 

$0.4-$0.9a 2 13 $0.81-$1.44a 2 18 2528.8-3640.9a 2 15 430.65-563.77a 2 15 .00 1 1 $1.21-$2.81 2 13 

$1.07-$1.46 3 12 $1.45-$1.97 3 6 3818.3-4820.1 3 13 575.88-699.95 3 10 2.84-3.36 2 10 $10.4-$20.4a 3 18 

$1.54-$1.95 4 11 $2.29-$2.72 4 7 5026.4-5933.0 4 10 715.33-835.83 4 13 3.43-3.98 3 11 $22.88-$37.73 4 13 

$1.99-$2.44 5 12 $2.87-$3.53a 5 18 6070.0-6932.6 5 8 855.54-997.58 5 8 4.01-4.30 4 8 $42.81-$53.39 5 4 

$2.58-$3.06 6 6 $3.59-$4.42 6 8 7243.1-8213.5 6 6 1022.9-1156.0 6 7 4.64-5.06a 5 17 $61.41-$71.12 6 5 

$3.13-$3.79 7 5 $5.17-$5.98 7 2 8607.8-9348.7 7 7 1189.6-1308.7 7 6 5.14-5.50 6 12 $79.04-$105.0 7 6 

Total  59 Total  59   59 Total  59 Total  59 Total  59 

1: Optimal Scaling Level: Numerical; 2: Optimal Scaling Level: Nominal; 
a
: Mode; Valid: Valid grouping; C: Category after discretization; F: Frequency 

Source: Authors' own computations 

 

Table 5: Optimal scaling model summary 

Standardized Coefficients 

 coffee_price crops livestock agriemission oil_price 

Beta 0.240 0.379 0.453 0.258 0.447 

Estimate of Std. Error1 0.115 0.167 0.189 0.143 0.183 

df 5 5 5 5 5 

F-test 4.347 5.136 5.709 3.277 5.976 

Sig. .004 .001 .001 .016 .000 

Standardized Data 

 Multiple R Adjusted R Squared Apparent  

Prediction Error 

 0.947 0.817 0.104 
1: Bootstrap (1000); Dependent Variable: cocoa_price; df: degrees of freedom 

Source: Authors' own computations 
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Table 6 presents a comparison forecasting accuracy among models, namely 

Multilayer Perceptron networks (MLP), Radial Basis Function networks (RBF) and 

Optimal Scaling Regression (OSR) measure of how close the data are to the fitted 

regression line. R squared measuring data closeness to the fitted regression line 

indicates that OSR model explains 89.6% of the variability of the response data 

around its mean while the predictors in ANN models explain at most 85.6% of 

variance in the dependent variable. Mean absolute error (MAE) capturing the 

average magnitude of the errors in a set of predictions returns the lowest score 

(0.270) for RBF and the highest value (1.715) for OSR. A similar conclusion can 

be reached from the root mean square error (RMSE) measure which is the standard 

deviation of the residuals. Highest score has been assigned to OSR while results 

show that RBF has the lowest value. Those results suggest that OSR parameters are 

good predictors and its overall model is preferred in explaining the variability in the 

dependent variable. But, in terms of prediction accuracy, ANN are better forecasting 

methods. Overall these considerations are in accordance with findings reported by 

Weng et al. (2019) demonstrating the ascendancy of artificial neural networks over 

traditional methods given the fact they have higher prediction accuracy and faster 

calculation speed and therefore as well-established methodologies to forecast 

agricultural commodity price. 

 
Table 6: Forecasting accuracy comparison 

Measure 

Methodology 

MLP RBF OSR 

R Squared 0.812 0.856 0.896 

MAE 0.303 0.270 1.715 

RMSE 0.375 0.330 1.743 
MLP: Multilayer Perceptron networks; RBF: Radial Basis Function networks; OSR: Optimal 

Scaling Regression; MAE: Mean absolute error; RMSE: Root mean square error 

Source: Authors' own computations 

 

7. Conclusions 

This paper proposes to forecast the price of agriculture commodities by using input-

output pricing model based on ecological-economic approach. For that purpose, we 

comprehensively discern internal factors as well as external forces that have an 

influence on production and trade of commodities products. Those factors are 

interconnected and may include social factors (values, institutions), environmental 

factors (biodiversity, ecosystem) and economic factors (production capacity, 

business cycle).  

To empirically test our model, we select two different methodologies, namely 

optimal scaling regression with nonlinear transformations and artificial neural 

networks which are computing systems. In addition, our study paper reflects on 

worldwide data related to two agriculture commodities prices (cocoa and coffee), 

production of crops and livestock, emissions of greenhouse gases (GHG) from 
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agriculture as well as information related to the price crude oil. Results show that 

that there exist both linear and non-parametric relationship between price of cocoa 

and coffee suggesting a cointegration between the two commodities prices in the 

long run. This bidirectional relationship comes from the fact that commodity-

dependent countries often use kindred production landscapes and similar supply 

chain management when dealing with coffee and cocoa. As a results, effect of 

supply side shocks from one market may be transmitted to the other one. Similarly, 

our artificial neural networks models as well as optimal scaling regression 

demonstrate a strong effect of coffee price, oil price and greenhouse gas emissions 

on cocoa price suggesting an integrated approach including both concrete 

technological and proactive managerial measures at various levels as well as 

appropriate economic incentive-based mechanisms accounting for the social and 

environmental cost in order to palliate the impact of greenhouse gases on the food 

system. Collectively, our results appear consistent with (Akrofi-Atitianti et al., 2018; 

Chaudhuri, 2001; Natanelov et al., 2011)  

Other interesting finding is related to forecasting accuracy of our different methods. 

The main conclusion that can be drawn is that optimal scaling regression parameters 

overall model is better than artificial neural networks in explaining the variability 

in the dependent variable. But, in terms of prediction accuracy, results show that 

artificial neural networks perform better are better forecasting methods confirming 

their primacy as appropriate methodologies to forecast agricultural commodity 

price. 

Despite our research contributions, a number of limitations should be noted. First, 

we acknowledge the fallibility of input–output analysis which is a ‘conventional’ 

model shared with neoclassical environmental and resource economics. Future 

work can use mixed models as it is widely acknowledged that conventional 

methodologies (e.g. cost–benefit analysis, input-output approach) provide limited 

insight that can be complemented by analysis from other sources (e.g. multi-criteria 

analysis (MCA), deliberative monetary valuation). Moreover, further studies can 

investigate the relevance of cultural ecosystem services, such as aesthetics, 

recreation and similar ‘non-material’ uses of ecosystems. Second, our study relied 

on annual data, so we acknowledge a small size limitation of our sample. However, 

given the difficulties in collecting high-frequency data for variables related to 

climate change and social metabolism, we believe that we have made appropriate 

use of the available data to understand their impacts on agriculture commodity price 

modeling. These limitations can provide a good starting point for discussion and 

further research can step on the contributions of this paper by using more realistic 

settings to model agriculture commodity prices. 
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