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Abstract 
 

Robust Optimization (RO) arises in two stages of optimization, first level for maximizing over the 

uncertain data and second level for minimizing over the feasible set. It is the most suitable 

mathematical optimization procedure to solve real-life problem models. In the present work, we 

characterize robust solutions for both homogeneous and non-homogeneous quadratically 

constrained quadratic optimization problem where constraint function and cost function are 

uncertain. Moreover, we discuss about optimistic dual and strong robust duality of the considered 

uncertain quadratic optimization problem. Finally, we complete this work with an example to 

illustrate our solution method. 
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1. Introduction  

The present paper is devoted to the characterization of the solutions of optimization problems 

which are affected by data uncertainty. This means that all the data of the problem are neither 

known nor available when its optimal solution has to be computed. Such an optimization model 

assumes the usual one but it is clearly different. In fact, it allows to handle model error, to take 

into account imperfections, additive noises or external uncertainties. For examples: (a) An 

entrepreneur must estimate the time required to finish a job. Uncertainties due to the labor market, 

the supply of materials, bad weather conditions, etc. constitute unknown parameters to consider; 

(b) In robot design, even if the movement model is carefully planned to provide a stable locomotion, 

a humanoid robot is very likely to fall due to the uncertainties induced by the irregularities in the 

ground; (c) When designing a nuclear power plant, engineers have to consider the uncertainties 

about earthquakes, the strength of beams, etc. Moreover, one cannot always ignore uncertainties 

during modeling process (i.e. always considering a determinist model) because that could lead to 

security issues in real-world applications (e.g., designing nuclear power installations, autonomous 

car control system, aeronautical structures optimization). Then, it is certain that optimization 

model subject to data uncertainty is most adequate methodology for solving real-word problems: 

it is Robust Optimization (RO). In a nutshell, RO provides a solution which is immunized against 

the effect of parameters uncertainty: that solution is called robust solution [1,2,5]. Nevertheless, 

there is a similarity between RO and Stochastic Optimization (SO). The latter optimization model 

can be considered like a particular case of RO where the uncertainty set distribution is assumed to 

follow a probability law. Note that stochastic optimization is wholly a very important field of 

research and profound to be developed here. However, for more details, we recommend the works 

of Peter Kall and Stein W. Wallace [32], John R. Birge and François Louveaux [9], Alexander 

Shapiro, Andrzej Ruszczyński et al. [46,47], Kurt Marti [37], George B. Dantzig and Gerd Infanger 

[15,27]. 

Concerning the concept of robustness and uncertainty in mathematical programming models, it 

was shyly started with the pioneer works of S. K. Gupta, J. Rosenhead [22,44], G. B. Dantzig [15], 

F. J. Gould, and A. L. Soyster who first called it Inexact Linear Programming" [21,49]. Afterwards, 

the topic of RO was quickly expanded through mainly the contributions of J. M. Mulvey et al. [38], 

P. Kouvelis, and Gang Yu [34], L. El Ghaoui et al. [17,18], A. Ben-Tal and A. Nemirovski [2,3,4,5], 

D. Bertsimas and M. Sim [6,7,8,48], V. Jeyakumar et al. [30,31,35]. In these last years, RO has 

been a focus within many research communities starting with the field of control, convex 

optimization, mathematical programming, or even economics, and many fields of engineering 

science [2,26,33]. Basically, whenever an optimization problem is formulated, the question arises 

whether really all parameters and inputs are exactly known and what changes if they are not. In 

this sense, it is not surprising that many researchers were and are attracted by the challenges of 

robust optimization. 

Finally in this work, our purpose is to analyze Quadratically Constrained Quadratic Optimization 

Problems (QCQOPs) subjected to uncertain data both in the constraint function and cost function. 

And we next investigate the characterization of their solutions. In fact, QCQOPs are very important 

in their own right but not enough studies with uncertainties. This choice is also motivated by the 

fact that QCPOPs are in some ways the general forms of almost all mathematical programming 

models. In addition, the literature about analysis of quadratic forms [13,16,19, 42], quadratic 

programming and QCQOP solution methods (basically indeterminist form) is well-supplied with 

well-known and sophisticated techniques. 

For instance, they occur as subproblems in methods for numerical/algorithmic optimization 
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problems such as Newton-Lagrange methods (Sequential Quadratic Programming (SQP), Interior-

Point Method (IMP), BFGS (Broyden, Fletcher,Goldfarb, and Shanno) method) in one hand. In 

other hand, any smooth optimization problem can be approximated with a quadratic model 

(thought of doing second order Taylor series approximation). Even if the considered problem is 

not enough smooth, it could be approximated quadratically. For this technique, we refer to the 

topic of Derivative Free Optimization (DFO) methods, see for example the introductory book of 

Andrew R. Conn, Katya Scheinberg and Luis N. Vicente [14]. We also recall that under some 

basic assumptions (at least symmetry and semi-dene positivity) on the data of a QCQOP, we can 

get convex or Second Order Conic Optimization Problem (SOCP), see Section 2. It is well-known 

that in the field of optimization an ideal and wanted framework is the convexity one 

[5,10,11,20,23,24,25,28,29,31,36,39,40,43,45] since that can make easiest to solve exactly 

optimization problems (i.e., the characterization of their global solution). 

With the uncertainties, this advantage is in the most of time difficult to have in RO without well-

thought-out assumptions. 

The rest of the paper is organized as follows. Section 2 recall some preliminaries and describes the 

Quadratically Constrained Quadratic Optimization Problem Model which will be study throughout 

this paper. In Section 3, we give some fundamental results basically joint-range convexity 

conditions and S-Lemma.  

The Section 4 is dedicated to the characterization of robust optimal solutions for an uncertain 

quadratic optimization problem with respect to homogeneous case and non-homogeneous one. In 

Section 5, we compare optimistic dual and robust strong dual of the uncertain optimization 

problem. We deal with an example in the homogeneous case in the Section 6 for an illustration. 

Section 7 concludes our work. 

 

2. Quadratically Constrained Quadratic Optimization Problem Model 

In this section, we start by recalling some basic definitions and fixing some notations. In what 

follow, ℝ denotes the set of real numbers, ℝ𝑛 denotes the linear space of n-dimension vector 

and 𝕊𝑛(ℝ) denotes the space of n×n symmetric matrices with real entries. For all, A, B ∈ 𝕊𝑛(ℝ), 

A ≽ 0 (respectively A ≻ 0) means that the matrix A is positive semi-definite (respectively A is 

positive definite). By analogy, A ≽ B (respectively A≻B) is equivalent to A−B≽0 (respectively 

A−B≻ 0). For any twice differentiable function q: ℝ𝑛 ⟶  ℝ, ∇𝑞 denotes the gradient (first 

derivative) of q and ∇2q denotes the Hessian matrix (second derivative) of q. Given a set E, intE 

denotes the interior of E. If 𝐸1 and 𝐸2 are subsets of a set E, then the set  

𝐸1+𝐸2 =  {𝑒 = 𝑒1 + 𝑒2 ∈ 𝐸|(𝑒1, 𝑒2) ∈  𝐸1 × 𝐸2}. The segment [𝜈1, 𝜈2] is defined  

by [𝜐1, 𝜐2] = {𝜐 | 𝜐 ≔ 𝑡𝜐2 + (1 − 𝑡)𝜐1, 𝑡 ∈ [0,1]} .  A set C is convex if the line segment 

between any two points in C lies in C i.e., if for any 𝑐1, 𝑐2  ∈ 𝐶 and any 𝜆 ∈ [0,1], we have 𝜆𝑐1 +
(1 − 𝜆)𝑐2 ∈ 𝐶.  A function f: ℝ𝑛 ⟶  ℝ is convex if and only if its epigraph is a convex set. 

A general formulation of a quadratic optimization problem under uncertainty can be formulated as 

follows:  

                                    min
𝑥 ∈ ℝ𝑛

1

2
𝑥𝑇𝐴𝑢x+𝑎𝜔

𝑇 x      (QCQP)   

                                    

                s.t. 
1

2
𝑥𝑇𝐵𝑣x+𝑏𝜍

𝑇x+𝛽 ≤ 0  

 

where: 𝛽 ∈  ℝ, 𝑎𝜔,𝑏𝜍 ∈ ℝ𝑛, 𝐴𝑢, 𝐵𝑣  ∈  𝕊𝑛(ℝ), and (u,v,𝜔, 𝜍) belongs to the uncertainty set 𝒰. 

In addition, we use an affine interpolation to define uncertainty data. Then, we set : 
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𝐴𝑢 = 𝐴0 + 𝑢𝐴1, 𝐵𝑣 = 𝐵0 + 𝑣𝐵1, 𝑎𝜔 = 𝑎0 + 𝜔𝑎1, 𝑏𝜍 = 𝑏0 + 𝜍𝑏1,  

with  

𝐴0, 𝐴1, 𝐵0, 𝐵1  ∈  𝕊𝑛(ℝ) and 𝑎0, 𝑎1, 𝑏0, 𝑏1  ∈  ℝ𝑛 , 𝒰 is an Euclidian product of sets and given 

by 𝒰 = [𝑢1, 𝑢2] × [𝑣1, 𝑣2] × [𝜔1, 𝜔2] × [𝜍1, 𝜍2].  

We also put ; 

𝒰1 = [𝑢1, 𝑢2], 𝒰2 =  [𝑣1, 𝑣2], 𝒰3 =  [𝜔1, 𝜔2] 𝑎𝑛𝑑 𝒰4 =  [𝜍1, 𝜍2]. 
 

3. Convex Analysis of Quadratic forms and S-procedures 

The convex analysis and the study of quadratic forms are the essential ingredients to concoct a 

good recipe in the field of optimization. Indeed, in a convex world or in the presence of quadratic 

forms, the characterization of the solutions for an optimization problem can be carried out without 

major difficulty. This is why, R. T. Rockafellar stated that the great watershed in optimization is 

not between linearity and nonlinearity, but convexity and non-convexity (Rockafellar 1993, [11]). 

In this work, we use mainly joint-range convexity results for quadratic forms which were initially 

proposed by L. L. Dines [16] and improved later by other authors such that B.T. Polyak [42]. In 

addition, these convexity properties of quadratic are helpful to prove some results like Lemma 1, 

Theorem 2 and Corolary 1: we talk about S-procedure for generality. The S-Lemma is a useful 

tool especially in Control Theory and RO. 

 

Theorem 1 (L. L. Dines (1941) [16]) 

Given, A, B ∈ 𝕊𝑛(ℝ). Then the set {(𝑥𝑇𝐴𝑥, 𝑥𝑇𝐵𝑥) |𝑥 ∈  ℝ𝑛} is convex. 

 

The generalization of convexity results for more than two homogeneous quadratic forms was 

established by B.T. Polyak [42] and given as follows: 

 

Proposition 1 ([42]) 

Let 𝐴1, … , 𝐴𝑚  ∈  𝕊𝑛(ℝ).  If the matrices 𝐴1, … , 𝐴𝑚 commute, then the set 

           {(𝑥𝑇𝐴1𝑥, … , 𝑥𝑇𝐴𝑚𝑥) |𝑥 ∈  ℝ𝑛} 

is closed convex cone. 

 

The following lemma is the homogeneous version of the famous S-lemma. 

 

Lemma 1 (S-lemma [29,41]) 

Let 𝐴1, 𝐴2  ∈  𝕊𝑛(ℝ) . Assume that there exists 𝑥0  ∈  ℝ𝑛  such that  𝑥0
𝑇𝐴1𝑥 < 0 . Then, the 

following statements are equivalent: 

(𝑖)   ∀𝑥 ∈ ℝ𝑛, 𝑥0
𝑇𝐴2𝑥 < 0 ⟹ 𝑥0

𝑇𝐴1𝑥 < 0 

(ii) ∃.𝜆 ≥ 0 | 𝐴1+𝜆𝐴2 ≽ 0. 
 

Theorem 2 Let 𝐴0, 𝐴1, 𝐵0, 𝐵1  ∈  𝕊𝑛(ℝ) ; 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ ℝ such that 𝑢1 ≤ 𝑢2 and 𝑣1 ≤ 𝑣2. 

Let  𝒰1 = [𝑢1, 𝑢2], 𝒰2 =  [𝑣1, 𝑣2], and assume that  

 

 Ω={(𝑥𝑇𝐴𝑢1
𝑥, 𝑥𝑇𝐴𝑢2

𝑥, 𝑥𝑇𝐵𝑣1
𝑥, 𝑥𝑇𝐵𝑣2

𝑥) |𝑥 ∈  ℝ𝑛} is convex.                         (1) 
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Then, for some 𝛼, 𝛽 ∈ ℝ, exactly one the following two statements holds:  

 (𝑖) ∃ 𝑥 ∈ ℝ𝑛| 
1

2
𝑥𝑇𝐴𝑢x < 𝛼 ⟹  

1

2
𝑥𝑇𝐵𝑣x < 0,   ∀(𝑢, 𝑣) ∈ 𝒰1  × 𝒰2. 

 (ii) ∃(𝜆1, 𝜆2)  ∈  ℝ+
2 ∖ {(0,0)}, ∃ (�̅�, �̅�) ∈ 𝒰1  × 𝒰2 such that : 

 

𝜆1 (
1

2
𝑥𝑇𝐴𝑢x − α) + 𝜆2 (

1

2
𝑥𝑇𝐵�̅�x + β) ≥ 0 , ∀ 𝑥 ∈ ℝ𝑛. 

 
Proof [(𝑖𝑖) ⟹ ¬(𝑖)]. Assume that (ii) holds. If (i) is satisfied, then  

 

∃ 𝑥 ∈ ℝ𝑛| 
1

2
𝑥𝑇𝐴𝑢x < 𝛼  𝑎𝑛𝑑 

1

2
𝑥𝑇𝐵𝑣x + β < 0, ∀(𝑢, 𝑣) ∈ 𝒰1 × 𝒰2. 

 

This implies that for all (𝜆1, 𝜆2)  ∈  ℝ+
2 ∖ {(0,0)}, we have :  

∃ 𝑥 ∈ ℝ𝑛| 𝜆1 (
1

2
𝑥𝑇𝐴𝑢x − 𝛼) + (

1

2
𝑥𝑇𝐵𝑣x + β) < 0, ∀(𝑢, 𝑣) ∈ 𝒰1 × 𝒰2. 

 

Which contradicts (ii). 

Let us show that [¬(𝑖) ⟹ (𝑖𝑖)]. 
 

Firstly, let us show that the set  

 𝜞 = {(𝐦𝐚𝐱
𝒖∈𝒰1

𝑥𝑇𝐴𝑢x , 𝐦𝐚𝐱
𝒗∈𝒰2

𝑥𝑇𝐵𝑣x) | 𝑥 ∈  ℝ𝑛}+ intℝ+
2                                 (2)  

is convex. 

Let (𝑞1, 𝑟1), (𝑞2, 𝑟2) ∈  Γ and δ ∈ [0,1].  𝑆𝑜, 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡  
𝑥1, 𝑥2  ∈ ℝ𝑛 such that:  

 

                   𝐦𝐚𝐱 
𝒖∈𝒰1

𝑥1
𝑇𝐴𝑢𝑥1

𝑇 < 𝑞1 

                   𝐦𝐚𝐱
𝒖∈𝒰1

 𝑥1
𝑇𝐵𝑣𝑥1

𝑇 < 𝑟1                                         (3) 

                   𝐦𝐚𝐱
𝒖∈𝒰1

 𝑥2
𝑇𝐴𝑢𝑥2

𝑇 < 𝑞2 

                   𝐦𝐚𝐱
𝒖∈𝒰1

 𝑥2
𝑇𝐵𝑣𝑥2

𝑇 < 𝑟2 

 

For all 𝑥 ∈  ℝ𝑛, 𝑢 ⟼
1

2
𝑥𝑇𝐴𝑢x is an affine mapping with respect to (w.r.t) u. Consequently, it 

attains its maximum value on the compact set 𝒰1 more precisely, have: 

          
        𝐦𝐚𝐱

𝒖∈𝒰1

𝑥𝑇𝐴𝑢x = 𝒎𝒂𝒙{𝑥𝑇𝐴𝑢1
𝑥, 𝑥𝑇𝐴𝑢2

𝑥}.   

 

Reasoning in same manner that previously, one has:  

  

        𝐦𝐚𝐱
𝒖∈𝒰2

𝑥𝑇𝐵𝑣x = 𝒎𝒂𝒙{𝑥𝑇𝐵𝑣1
𝑥, 𝑥𝑇𝐵𝑣2

𝑥 }.  
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By reporting the maximum value equalities in inequality system (3), one finds: 

            
            𝑥𝑇𝐴𝑢1

𝑥 <  𝑞1, 

              𝑥𝑇𝐴𝑢2
𝑥 <  𝑞1, 

                𝑥𝑇𝐵𝑣1
𝑥 <  𝑟1, 

              𝑥𝑇𝐵𝑣2
𝑥 <  𝑟1,                                                   (4) 

              𝑦𝑇𝐴𝑢1
𝑦 <  𝑞2, 

              𝑦𝑇𝐴𝑢2
𝑦 <  𝑞2, 

              𝑦𝑇𝐵𝑣1
𝑦 <  𝑟2, 

              𝑦𝑇𝐵𝑣2
𝑦 <  𝑟2, 

 
It follows from the system (4) above that:  

  (𝑞1, 𝑞1, 𝑟1, 𝑟1) ∈ {(𝑥𝑇𝐴𝑢1
𝑥, 𝑥𝑇𝐴𝑢2

𝑥, 𝑥𝑇𝐵𝑣1
𝑥, 𝑥𝑇𝐵𝑣2

𝑥) } +  𝐢𝐧𝐭ℝ+
4 , 

  (𝑞2, 𝑞2, 𝑟2, 𝑟2) ∈ {(𝑦𝑇𝐴𝑢1
𝑦, 𝑦𝑇𝐴𝑢2

𝑦, 𝑦𝑇𝐵𝑣1
𝑦, 𝑦𝑇𝐵𝑣2

𝑦) } +  𝐢𝐧𝐭ℝ+
4 , 

 
which is equivalent to  

 

         (𝑞1, 𝑞1, 𝑟1, 𝑟1) ∈ Ω + 𝐢𝐧𝐭ℝ+
4 , 

           (𝑞2, 𝑞2, 𝑟2, 𝑟2) ∈ Ω + 𝐢𝐧𝐭ℝ+
4 . 

 
Since Ω 𝑖𝑠 𝑐𝑜nvex, the set Ω + 𝐢𝐧𝐭ℝ+

4  𝑖𝑠  𝑎𝑙𝑠𝑜 𝑐𝑜nvex. Then  

( 𝛿𝑞1 + (1 − 𝛿)𝑞2,  𝛿𝑞1 + (1 − 𝛿)𝑞2,  𝛿𝑟1 + (1 − 𝛿)𝑟2, 𝛿𝑟1 + (1 − 𝛿)𝑟2) ∈ Ω + 𝐢𝐧𝐭ℝ+
4 . 

Thus, there exists 𝑧 ∈  ℝ𝑛 such that  

 

         𝑧𝑇𝐴𝑢1
𝑧 <  𝛿𝑞1 + (1 − 𝛿)𝑞2, 

           𝑧𝑇𝐴𝑢2
𝑧 <  𝛿𝑞1 + (1 − 𝛿)𝑞2, 

           𝑧𝑇𝐵𝑣1
𝑧 <  𝛿𝑟1 + (1 − 𝛿)𝑟2, 

                         𝑧𝑇𝐵𝑣2
𝑧 <  𝛿𝑟1 + (1 − 𝛿)𝑟2.  

Hence,  

            𝐦𝐚𝐱
𝒖∈𝒰1

𝑧𝑇𝐴𝑢z <  𝛿𝑞1 + (1 − 𝛿)𝑞2, 

              𝐦𝐚𝐱
𝒖∈𝒰1

𝑧𝑇𝐵𝑣z <  𝛿𝑟1 + (1 − 𝛿)𝑟2. 

 
So, 𝛿(𝑞1, 𝑟1)+ (1 − 𝛿)(𝑞2, 𝑟2)  ∈  𝜞 and consequently 𝜞  is convex. 

Secondly since (i) fails, we can separate 𝜞  and the set {(2𝛼, −2𝛼)} . Then, by hyperplane 

separation theorem (also known as the geometric form of Hahn-Banach Theorem, see H. Brezis 

(1983) [12]), there exists (𝜆1, 𝜆2) ∈ ℝ2\{(0,0)} such that 

 

         𝜆1 (𝐦𝐚𝐱
𝒖∈𝒰1

1

2
𝑥𝑇𝐴𝑢x + 𝜂) + 𝜆2 (𝐦𝐚𝐱

𝒗∈𝒰2

1

2
𝑥𝑇𝐵𝑣x + ε) ≥  

 

            𝛼𝜆1 − 𝛽𝜆2, ∀ 𝑥 ∈ ℝ𝑛, ∀ 𝜂, 𝜀 ∈ intℝ+.                                 (5)    

-Suppose that 𝜆1 < 0. 
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When (𝜂, 𝜀) tends to (+∞, 0) in inequality (5), we get at the limit: −∞ ≥ 𝛼𝜆1 − 𝛽𝜆2. Thus, 

𝜆1 ≥ 0. 
-In the same way, we show that 𝜆1 ≥ 0. 

-And afterwards, one has (𝜆1, 𝜆2) ∈ ℝ+
2 \{(0,0)}. 

We have just shown that there exists (𝜆1, 𝜆2) ∈ ℝ+
2 \{(0,0)} such that: 

 

𝜆1 𝒎𝒂𝒙 {
𝟏

𝟐
𝑥𝑇𝐴𝑢1

𝑥,
𝟏

𝟐
𝑥𝑇𝐴𝑢2

𝑥} + 𝜆2 𝒎𝒂𝒙 {
𝟏

𝟐
𝑥𝑇𝐵𝑣1

𝑥,
𝟏

𝟐
𝑥𝑇𝐵𝑣2

𝑥 } ≥ 𝛼𝜆1 − 𝛽𝜆2, ∀ 𝑥 ∈ ℝ𝑛. 

 

This implies that the following inequalities system (6) below has no solution, 

 

     
1

2
𝑥𝑇(𝜆1𝐴𝑢1

+ 𝜆2𝐵𝑣1
)x < 𝛼𝜆1 − 𝛽𝜆2, 

        
1

2
𝑥𝑇(𝜆1𝐴𝑢1

+ 𝜆2𝐵𝑣2
)x < 𝛼𝜆1 − 𝛽𝜆2,                                      (6)   

        
1

2
𝑥𝑇(𝜆1𝐴𝑢2

+ 𝜆2𝐵𝑣1
)x < 𝛼𝜆1 − 𝛽𝜆2, 

        
1

2
𝑥𝑇(𝜆1𝐴𝑢2

+ 𝜆2𝐵𝑣2
)x < 𝛼𝜆1 − 𝛽𝜆2. 

Let 

Λ = {(

1

2
𝑥𝑇(𝜆1𝐴𝑢1

+ 𝜆2𝐵𝑣1
)𝑥,

1

2
𝑥𝑇(𝜆1𝐴𝑢1

+ 𝜆2𝐵𝑣2
)𝑥,

1

2
𝑥𝑇(𝜆1𝐴𝑢2

+ 𝜆2𝐵𝑣1
)x,

1

2
𝑥𝑇(𝜆1𝐴𝑢2

+ 𝜆2𝐵𝑣2
)𝑥 | 𝑥 ∈  ℝ𝑛

)}. 

 
Let us consider the following mapping: 

Φ : ℝ4 ⟶  ℝ4, (𝑡1, 𝑡2, 𝑡3, 𝑡4) ⟼ (𝜆1𝑡1 + 𝜆2𝑡3, 𝜆1𝑡1 + 𝜆2𝑡4, 𝜆1𝑡2 + 𝜆2𝑡3, 𝜆1𝑡2 + 𝜆2𝑡4). 

Φ is a linear transformation and Ω is a convex set (assumption), it follows that Λ = Φ(Ω) is a 

convex set, see Equation (1) in Theorem 2. 

 

By remarking that  

((𝛼𝜆1 − 𝛽𝜆2),(𝛼𝜆1 − 𝛽𝜆2), (𝛼𝜆1 − 𝛽𝜆2), (𝛼𝜆1 − 𝛽𝜆2))∉ Λ+ 𝐢𝐧𝐭ℝ+
4 , 

the hyperplane separation theorem shows that there are (𝛾𝑖)1≤𝑖≤4 ∈ ℝ+
4 \{0ℝ4} such that for all 

𝑥 ∈  ℝ𝑛, one has:  

 

𝛾1[ 
1

2
𝑥𝑇(𝜆1𝐴𝑢1

+ 𝜆2𝐵𝑣1
)𝑥 –(𝛼𝜆1 − 𝛽𝜆2)] + 

𝛾2[ 
1

2
𝑥𝑇(𝜆1𝐴𝑢1

+ 𝜆2𝐵𝑣2
)𝑥 –(𝛼𝜆1 − 𝛽𝜆2)] + 

𝛾3[ 
1

2
𝑥𝑇(𝜆1𝐴𝑢2

+ 𝜆2𝐵𝑣1
)𝑥 –(𝛼𝜆1 − 𝛽𝜆2)] + 

𝛾4[ 
1

2
𝑥𝑇(𝜆1𝐴𝑢2

+ 𝜆2𝐵𝑣2
)𝑥 –(𝛼𝜆1 − 𝛽𝜆2)]≥0.                                  (7) 
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Put 𝛾=𝛾1 + 𝛾2 + 𝛾3 + 𝛾4. Then, we have the following equivalences:  

 

(7) ⟺ 𝜆1[ 
1

2
𝑥𝑇(𝛾1𝐴𝑢1

+ 𝛾2𝐴𝑢1
+ 𝛾3𝐴𝑢2

+ 𝛾4𝐴𝑢2
)𝑥-𝛼𝛾] 

    +  𝜆2[ 
1

2
𝑥𝑇(𝛾1𝐵𝑣1

+ 𝛾2𝐵𝑣2
+ 𝛾3𝐵𝑣1

+ 𝛾4𝐵𝑣2
)𝑥+𝛽𝛾] ≥0 

     

    ⟺ 𝜆1[ 
1

2
𝑥𝑇((𝛾1 + 𝛾2) 𝐴𝑢1

+(𝛾3 + 𝛾4)𝐴𝑢2
)x− 𝛼𝛾] 

    +  𝜆2[ 
1

2
𝑥𝑇((𝛾1 + 𝛾3) 𝐵𝑣1

+(𝛾2 + 𝛾4)𝐵𝑣2
)x+𝛽𝛾] ≥0, 

    ⟺ 𝜆1[ 
1

2
𝑥𝑇((𝛾1 + 𝛾2)(𝐴1+𝑢1𝐴2)+ 

      (𝛾 − 𝛾1 − 𝛾2)( (𝐴1+𝑢2𝐴2))x− 𝛼𝛾] 

    +  𝜆2[ 
1

2
𝑥𝑇((𝛾1 + 𝛾3) (𝐵1+𝑣1𝐵2)+ 

      ( 𝛾 − 𝛾1 − 𝛾3) (𝐵1+𝑣2𝐵2))x+𝛽𝛾] ≥0, 

    ⟺ 𝜆1[ 
1

2
𝑥𝑇((𝛾1 + 𝛾2)𝑢1𝐴2+𝛾( 𝐴1+𝑢2𝐴2) 

     -(𝛾1 + 𝛾2)𝑢2𝐴2)x− 𝛼𝛾] 

    +  𝜆2[ 
1

2
𝑥𝑇((𝛾1 + 𝛾3) 𝑣1𝐵2+𝛾(𝐵1+𝑣2𝐵2) 

      −(𝛾1 + 𝛾3) 𝑣2𝐵2)x+𝛽𝛾] ≥0, 

      ⟺ 𝜆1[
1

2
𝑥𝑇(𝐴1+𝑢2𝐴2+

(𝛾1+𝛾2)(𝑢1−𝑢2) 𝐴2

𝛾
)x-𝛼] 

    + 𝜆2[
1

2
𝑥𝑇(𝐵1+𝑣2𝐵2+

(𝛾1+𝛾3)(𝑣1−𝑣2) 𝐵2

𝛾
)x+𝛽] ≥0, 

    ⟺ 𝜆1[
1

2
𝑥𝑇(𝐴1+

𝛾𝑢2+(𝛾1+𝛾2)(𝑢1−𝑢2) 

𝛾
𝐴2)x-𝛼] 

    + 𝜆2[
1

2
𝑥𝑇(𝐵1+

𝛾𝑣2+(𝛾1+𝛾3)(𝑣1−𝑣2) 

𝛾
𝐵2)x+𝛽] ≥0, 

    ⟺ 𝜆1[
1

2
𝑥𝑇(𝐴1+

(𝛾1+𝛾2)𝑢1+(𝛾3+𝛾4) 𝑢2

𝛾
𝐴2)x-𝛼] 

    +𝜆1[
1

2
𝑥𝑇(𝐵1+

(𝛾1+𝛾3)𝑣1+(𝛾3+𝛾4) 𝑣2

𝛾
𝐵2)x+𝛽] ≥0. 

 
Consequently, we obtain the existence of (�̅�, �̅�) ∈ 𝒰1 × 𝒰2 et  
(𝜆1, 𝜆2) ∈ ℝ+

2 ∖ {(0,0)} such that:  

𝜆1 (
1

2
𝑥𝑇𝐴𝑢x − α) + 𝜆2 (

1

2
𝑥𝑇𝐵�̅�x + β) ≥ 0 , ∀ 𝑥 ∈ ℝ𝑛        

 

Where: 

 �̅� =  
(𝛾1+𝛾2)

𝛾
𝑢1 +

(𝛾3+𝛾4)

𝛾
𝑢2  𝑎𝑛𝑑  �̅� =

  (𝛾1+𝛾3)

𝛾
𝑣1 +

(𝛾2+𝛾4)

𝛾
𝑣2.           

 
Remark 1 Some particular cases of Theorem 2 are given as, if : 

− 𝒰1 or 𝒰2 is a singleton, then Theorem 2 is reduced to Theorem 3.1 of [31]. 

−Both 𝒰1  and 𝒰2  are singletons, then Theorem 2 consists merely of Dines Theorem (see 

Theorem 1 or [16]). 
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Note that the following result is an uncertain version of the classical S-lemma given in Lemma 1. 

 

Corollary 1 (Robust S-lemma)  

Let 𝐴0, 𝐴1, 𝐵0, 𝐵1  ∈  𝕊𝑛(ℝ); 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ ℝ such that 𝑢1 ≤ 𝑢2 and 𝑣1 ≤ 𝑣2. Assume that: 

Ω={(𝑥𝑇𝐴𝑢1
𝑥, 𝑥𝑇𝐴𝑢2

𝑥, 𝑥𝑇𝐵𝑣1
𝑥, 𝑥𝑇𝐵𝑣2

𝑥) |𝑥 ∈  ℝ𝑛} is convex.  

There exists 𝑥0  ∈  ℝ𝑛 such that 𝑥0
𝑇𝐵𝑣𝑥0 < 0 for all v ∈ 𝒰2. 

Then, the following statements are equivalent:  

 

 (𝑖) 𝑥𝑇𝐵𝑣x ≤ 0, ∀ 𝑣  ∈ 𝒰2 ⟹  𝑥𝑇𝐴𝑢x ≥ 0, ∀ 𝑢  ∈ 𝒰1. 

 (ii) ∃𝜆 ≥ 0, ∃ (�̅�, �̅�) ∈ 𝒰1  × 𝒰2 | 𝐴𝑢+ 𝜆𝐵�̅� ≽0. 

 

Proof [(𝑖𝑖) ⟹ (𝑖)]. This implication is always satisfied. 

[(i) ⟹ (ii)]. Suppose that (i) holds. Hence, the inequalities system 

 

          𝑥𝑇𝐴𝑢x < 0, ∀ 𝑢  ∈ 𝒰1, 
            𝑥𝑇𝐵𝑣x < 0, ∀ 𝑣  ∈ 𝒰2, 

 

has no solution. From Theorem 2, there exist (𝜆1, 𝜆2) ∈ ℝ+
2 ∖ {(0,0)}, 

(�̅�, �̅�) ∈ 𝒰1  × 𝒰2 such that: 

 

          𝜆1𝑥𝑇𝐴𝑢x + 𝜆2𝑥𝑇𝐵�̅�x ≥ 0, ∀ 𝑥 ∈  ℝ𝑛. 

 

If 𝜆1= 0 then 𝜆1 > 0 and 𝑥𝑇𝐵�̅�x ≥ 0 for all  ∈  ℝ𝑛. Which is a contradiction since 𝑥0
𝑇𝐵𝑣𝑥0 <

0  Hence 𝜆1> 0. It follows that 𝐴𝑢+ 𝜆𝐵�̅� ≽0, with: 𝜆 =
𝜆2

𝜆1
.                               

 

4. Characterization of Robust Solution of QCQOP under Data 

Uncertainty 

4.1 Homogeneous Case 

In this subsection, we give a characterization of robust optimal solution for homogeneous quadratic 

programming problem under data uncertainty. 

For this purpose, we consider the following problem 

                                  min
𝑥 ∈ ℝ𝑛

1

2
𝑥𝑇𝐴𝑢x,                (H-QCQP)                                      

                    s.t. 
1

2
𝑥𝑇𝐵𝑣x+𝛽 ≤ 0.   

The robust counterpart (worst case) of (H-QCQP) is given by 

                        min
𝑥 ∈ ℝ𝑛

 𝐦𝐚𝐱
𝒖∈𝒰1

1

2
𝑥𝑇𝐴𝑢x,         (RH-QCQP)                                             

                    s.t. 𝐦𝐚𝐱
𝒗∈𝒰2

1

2
𝑥𝑇𝐵𝑣x+𝛽 ≤ 0.   

 

Theorem 3 (Characterization of robust solution) 

Let 𝐴0, 𝐴1, 𝐵0, 𝐵1  ∈  𝕊𝑛(ℝ); 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ ℝ such that 𝑢1 ≤ 𝑢2 and 𝑣1 ≤ 𝑣2.  

Assume that:  

(𝐻1) There exists 𝑥0  ∈  ℝ𝑛 such that 𝑥0
𝑇𝐵𝑣𝑥0 + 𝛽 < 0 for all v ∈ 𝒰2. 

(𝐻2) The set Ω={(𝑥𝑇𝐴𝑢1
𝑥, 𝑥𝑇𝐴𝑢2

𝑥, 𝑥𝑇𝐵𝑣1
𝑥, 𝑥𝑇𝐵𝑣2

𝑥) |𝑥 ∈  ℝ𝑛} is convex.  
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Then, the following statements are equivalent: 

(i) �̅� is a robust optimal solution of (H-QCQP); 

(ii) there exist 𝜆 ≥ 0 and (�̅�, �̅�) ∈ 𝒰1  × 𝒰2 such that: 

        (𝐴𝑢+ 𝜆𝐵�̅�)�̅�  =0,     (First-order Condition). 

         (1

2
�̅�𝑇𝐵�̅��̅�+ 𝛽) =0,      (Complementary Slackness)                       (9) 

        𝐴𝑢+ 𝜆𝐵�̅� ≽0,           (Second-order Condition). 

Proof [(𝑖𝑖) ⟹ (𝑖)]. Assume that �̅� is a robust optimal solution of (H-QCQP).  

 

Then, for all 𝑥 ∈  ℝ𝑛 ∶ 
1

2
𝑥𝑇𝐵𝑣x + 𝛽 ≤ 0, ∀v ∈ 𝒰2 ⟹ 𝐦𝐚𝐱

𝒖∈𝒰1

1

2
𝑥𝑇𝐴𝑢x ≥ 𝛼:= 𝐦𝐚𝐱

𝒖∈𝒰1

1

2
�̅�𝑇𝐴𝑢�̅�.                     (10)   

This implies that  

       𝐦𝐚𝐱
𝒖∈𝒰1

1

2
𝑥𝑇𝐴𝑢x < 𝛼, 

       
1

2
𝑥𝑇𝐵𝑣x + 𝛽 ≤ 0, ∀v ∈ 𝒰2 

has no solution. This means that the following inequalities system 

 

              
1

2
𝑥𝑇𝐴𝑢x < 𝛼, ∀u ∈ 𝒰1, 

            
1

2
𝑥𝑇𝐵𝑣x + 𝛽 ≤ 0, ∀v ∈ 𝒰2, 

 
has no solution. Thanks to hypothesis (H2) by applying Theorem 2, there exist 

 (𝜆1, 𝜆2)  ∈  ℝ+
2 ∖ {(0,0)} 𝑎𝑛𝑑 (�̅�, �̅�) ∈ 𝒰1  × 𝒰2 such that: 

 

𝜆1 (
1

2
𝑥𝑇𝐴𝑢x − α) + 𝜆2 (

1

2
𝑥𝑇𝐵�̅�x + β) ≥ 0 , ∀ 𝑥 ∈ ℝ𝑛. 

 

If 𝜆1 =0, then: 𝜆2 (
1

2
𝑥𝑇𝐵�̅�x + β) ≥ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ𝑛. 

For x=𝑥0, with (𝐻1), we see that 𝜆1 ≤0 and 𝜆2 =0, which contradicts the fact that (𝜆1, 𝜆2)  ∈
 ℝ+

2 ∖ {(0,0)}. Hence, 𝜆1 <0. This means that  

 

   (
1

2
𝑥𝑇𝐴𝑢x − α) + 𝜆 (

1

2
𝑥𝑇𝐵�̅�x + β) ≥ 0 , ∀ 𝑥 ∈ ℝ𝑛                        (11) 

Where 𝜆 =
𝜆2

𝜆1
. Inequality (11) implies that                           

   (𝐦𝐚𝐱
𝒖∈𝒰1

1

2
𝑥𝑇𝐴𝑢x − α) + 𝜆 (

1

2
𝑥𝑇𝐵�̅�x + β) ≥ 0 , ∀ 𝑥 ∈ ℝ𝑛  

It is clear that for 𝑥 = �̅� , one has ∶     

   (1

2
�̅�𝑇𝐵�̅��̅�+ 𝛽) =0 (by using the definition of in Inequality (10)). 

Then, the complementary slackness conditions hold. Let us consider the function defined by: 

𝜑 : ℝ𝑛 ⟶ ℝ , x⟼  𝜑 (x)=(
1

2
𝑥𝑇𝐴𝑢x − α) + 𝜆 (

1

2
𝑥𝑇𝐵�̅�x + β) .The Inequality (11) implies that 

𝜑(x) ≥0 and 𝜑(�̅�) ≥0. �̅� minimize 𝜑 on ℝ𝑛 and 𝜑 is twice differentiable. Then, �̅� solve the 

Euler equation ∇𝜑(x) = 0 and inequalities system ∇2𝜑(x) ≽0. Thus, the first and second order 

necessary conditions of optimality in the point �̅� lead to: 
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          (𝐴𝑢+ 𝜆𝐵�̅�)�̅�  =0,        (First-order Condition). 

           𝐴𝑢+ 𝜆𝐵�̅� ≽0,         (Second-order Condition). 
     
[(ii) =) (i)]. Now, suppose that there exist 𝜆 ≥ 0 and (�̅�, �̅�) ∈ 𝒰1  × 𝒰2 such that : 

         
       (𝐴𝑢+ 𝜆𝐵�̅�)�̅� =0,      (First-order Condition). 

       𝜆(
1

2
�̅�𝑇𝐵�̅��̅�+ 𝛽) =0,   (Complementary Slackness).      

       𝐴𝑢+ 𝜆𝐵�̅� ≽0,       (Second-order Condition). 

 
Let x be a robust feasible solution of (H-QCQP). By using complementary slackness condition, 

one has: 

           
1

2
𝑥𝑇𝐵�̅�𝑥+ 𝛽 ≤ 𝜆(1

2
�̅�𝑇𝐵�̅��̅�+ 𝛽). 

Let us consider ℝ𝑛 ⟶ ℝ, x⟼ 𝜑(x): = 
1

2
𝑥𝑇𝐴𝑢x + 𝜆 (

1

2
𝑥𝑇𝐵�̅�x + β). 

 

The first-order condition and second-order condition (necessary condition of optimality) mean that 

∇𝜑(�̅�) = 0 and 𝜑 is convex function over ℝ𝑛. Thus, 

𝜑(x) ≥  𝜑(�̅�) ⟹   
1

2
𝑥𝑇𝐴𝑢x ≥

1

2
�̅�𝑇𝐴𝑢�̅� +   𝜆 (

1

2
�̅�𝑇𝐵�̅��̅� +  𝛽) −

                                      𝜆 (
1

2
𝑥𝑇𝐵�̅�x + β) 

           ⟹   
1

2
𝑥𝑇𝐴𝑢x ≥

1

2
�̅�𝑇𝐴𝑢�̅� − 𝜆 (

1

2
𝑥𝑇𝐵�̅�x + β) 

           ⟹   
1

2
𝑥𝑇𝐴𝑢x ≥

1

2
�̅�𝑇𝐴𝑢�̅�. 

Hence, �̅� is robust optimal solution of (H-QCQP).                          

 

Remark 2 Note that the robust optimal solution characterization of the uncertain homogeneous 

quadratic optimization problem given in Theorem 3 was established in [31] by assuming that 𝒰1 is 

a singleton and where the corresponding additive scalar is assumed to be negative (regarding to 

our problem formulation). 

 

4.2 Non-homogeneous Case 

In this subsection, at first we will derive necessary and sufficient conditions of robust optimal 

solution for quadratic programming under bounded interval uncertainty. Secondly, we will give a 

characterization of optimal solutions of the optimistic dual. 

Let us consider the following uncertain quadratic problem 

 

                                    min
𝑥 ∈ ℝ𝑛

1

2
𝑥𝑇𝐴𝑢x+𝑎𝜔

𝑇 x              (NH-QCQP)                                      

                 s.t. 
1

2
𝑥𝑇𝐵𝑣x+𝑏𝜍

𝑇x+𝛽   

 

where 𝐴𝑢, 𝐵𝑣  ∈  𝕊𝑛(ℝ), 𝑎𝜔,𝑏𝜍 ∈ ℝ𝑛, 𝛽 ∈  ℝ and (u,v,𝜔, 𝜍) belongs to the uncertainty set  

𝒰=∏ 𝒰𝑖
4
𝑖=1 =[𝑢1, 𝑢2] × [𝑣1, 𝑣2] × [𝜔1, 𝜔2] × [𝜍1, 𝜍2].  
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The robust counterpart (worst case) of (NH-QCQP) is given by 

     min
𝑥 ∈ ℝ𝑛

 𝐦𝐚𝐱
𝒖∈𝒰1

1

2
𝑥𝑇𝐴𝑢x+𝐦𝐚𝐱

𝝎∈𝒰3

 𝑎𝜔
𝑇 x,              (RHN-QCQP)     

                                                                  

      𝑠. 𝑡.  𝐦𝐚𝐱
𝒗∈𝒰2

1

2
𝑥𝑇𝐵𝑣x+𝐦𝐚𝐱 

𝝇∈𝒰4

𝑏𝜍
𝑇x +𝛽 ≤ 0.   

 

Given a �̅� in ℝ𝑛, we set 𝛼= - max
(𝑢,𝜔)∈𝒰1×𝒰3

{
1

2
�̅�𝑇𝐴𝑢�̅� + 𝑎𝜔

𝑇 �̅�} and  

 

Ξ�̅� ={(
𝑥
𝑡

)
𝑇

𝐻1 (
𝑥
𝑡

) , (
𝑥
𝑡

)
𝑇

𝐻2 (
𝑥
𝑡

) , (
𝑥
𝑡

)
𝑇

𝐻3 (
𝑥
𝑡

) , (
𝑥
𝑡

)
𝑇

𝐻4 (
𝑥
𝑡

) |(𝑥, 𝑡) ∈  ℝ𝑛 × ℝ}, 

 

Where:  

 

𝐻1 = (
𝐴𝑢1

𝑎𝜔1

𝑎𝜔1
𝑇 2𝛼

), 𝐻2 = (
𝐴𝑢2

𝑎𝜔2

𝑎𝜔2
𝑇 2𝛼

), 𝐻3 = (
𝐵𝑣1

𝑏𝜍1

𝑏𝜍1
𝑇 2𝛽

) and  𝐻4 = (
𝐵𝑣2

𝑏𝜍2

𝑏𝜍2
𝑇 2𝛽

). 

 

We give the following definition with regards to convexity of QCQOPs at a given point in ℝ𝑛. 

This definition is inspired by the works of Dines (1941), Polyak (1998) and Jeyakumar (2012) 

about analysis of convexity properties of quadratic forms, and named after them. 

 

Definition 1 (Convexity in the sense of Dines-Polyak-Jeyakumar) The problem (NH-QCQP) is 

said to be DPJ-convex (or regular) w.r.t.  �̅� if the set Ξ�̅�  is convex. 

 

Theorem 3 (Characterization of robust solution) 

Let �̅� be a robust feasible solution of (NH-QCQP) such that;  

(𝐻1)  (NH-QCQP) is DPJ-convex at �̅� ; 

(𝐻2)  there exists 𝑥0  ∈  ℝ𝑛 such that 𝑥0
𝑇𝐵𝑣𝑥0 + 𝑏𝜍

𝑇𝑥0 + 𝛽 < 0 for all (v,𝜍) ∈ 𝒰2 × 𝒰4.  

Then, the following statements are equivalent: 

(i) �̅� is a robust optimal solution of (NH-QCQP); 

(ii) there exist 𝜆 ≥ 0 and (�̅�, �̅�, 𝜔,̅̅̅ 𝜍)̅  ∈ 𝒰 such that: 

 
    (𝐴𝑢+ 𝜆𝐵�̅�)�̅� + 𝑎�̅� + 𝜆𝑏�̅� =0,  (First-order Condition).    

    𝜆(
1

2
�̅�𝑇𝐵�̅��̅�+𝑏�̅� + 𝛽) =0,      (Complementary Slackness).                      (12) 

    𝐴𝑢+ 𝜆𝐵�̅� ≽0.             (Second-order Condition). 
 
Proof [(𝑖𝑖) ⟹ (𝑖)]. Let �̅� be a robust optimal solution of  

(NH-QCQP) and 𝛼= - max
(𝑢,𝜔)∈𝒰1×𝒰3

{
1

2
�̅�𝑇𝐴𝑢�̅� + 𝑎𝜔

𝑇 �̅�}. 

 

Then for all x ∈  ℝ𝑛, one has: 

max
(𝑣,𝜍)∈𝒰2×𝒰4

{
1

2
𝑥𝑇𝐵𝑣x + 𝑏𝜍

𝑇x} +  𝛽 ≤ 0 

                        ⟹ max
(𝑢,𝜔)∈𝒰1×𝒰3

{
1

2
𝑥𝐴𝑢𝑥 + 𝑎𝜔

𝑇 𝑥}.≥ −𝛼. 
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Consequently, the system 

            max
(𝑢,𝜔)∈𝒰1×𝒰3

{
1

2
𝑥𝐴𝑢𝑥 + 𝑎𝜔

𝑇 𝑥}.< −𝛼, 

             max
(𝑣,𝜍)∈𝒰2×𝒰4

{
1

2
𝑥𝑇𝐵𝑣x + 𝑏𝜍

𝑇x} +  𝛽 < 0, 

 

has no solution. Thus, the system 

                            
1

2
𝑥𝑇𝐴𝑢x+𝑎𝜔

𝑇 x+ 𝛼 < 0, ∀(u,𝜔) ∈ 𝒰1 × 𝒰3,     (𝑆1)                                                

             
1

2
𝑥𝑇𝐵𝑣x+𝑏𝜍

𝑇x+𝛽 <0, ∀(v,𝜍) ∈ 𝒰2 × 𝒰4, 

has no solution. 

Moreover, we can show that for all t ∈  ℝ, the following system 

                        
1

2
𝑥𝑇𝐴𝑢x+𝑡𝑎𝜔

𝑇 x+ 𝑡2𝛼 < 0, ∀(u,𝜔) ∈ 𝒰1 × 𝒰3,     (𝑆2)                                                

           
1

2
𝑥𝑇𝐵𝑣x+𝑡𝑏𝜍

𝑇x+𝑡2𝛽 <0, ∀(v,𝜍) ∈ 𝒰2 × 𝒰4, 

 
has no solution in ℝ𝑛 × ℝ. Indeed if (𝑥∗, 𝑡∗) ∈ ℝ𝑛 × ℝ is a solution of 

(𝑆2), then                                                 

                        
1

2
𝑥∗𝑇

𝐴𝑢𝑥∗+𝑡∗𝑎𝜔
𝑇 𝑥∗+ 𝑡∗2

𝛼 < 0, ∀(u,𝜔) ∈ 𝒰1 × 𝒰3,                                                     

           
1

2
𝑥∗𝑇

𝐵𝑣𝑥∗+ 𝑡∗𝑏𝜍
𝑇𝑥∗+𝑡∗2

𝛽 <0, ∀(v,𝜍) ∈ 𝒰2 × 𝒰4. 

 

So, for 𝑡∗ ≠ 0, one has:  

                    
1

2
 (

𝑥∗

𝑡∗)
𝑇

𝐴𝑢 (
𝑥∗

𝑡∗ )+𝑎𝜔
𝑇 (

𝑥∗

𝑡∗)+𝛼 < 0, ∀(u,𝜔) ∈ 𝒰1 × 𝒰3,                                                     

         
1

2
(

𝑥∗

𝑡∗)
𝑇

𝐵𝑣 (
𝑥∗

𝑡∗)+ 𝑏𝜍
𝑇 (

𝑥∗

𝑡∗ )+𝛽 <0, ∀(v,𝜍) ∈ 𝒰2 × 𝒰4. 

 

Which contradicts the fact that (𝑆1) has no solution. 

If 𝑡∗ = 0, it follows that 𝑥∗ is a solution of the system 

                 
1

2
𝑥𝑇𝐴𝑢x < 0, ∀u ∈ 𝒰1, 

            
1

2
𝑥𝑇𝐵𝑣x < 0, ∀v ∈ 𝒰2. 

 
In this case 𝑥∗= 0 and for a fairly large number n ∈ ℕ, 𝑥𝑛 = n𝑥∗ is a solution of the system (𝑆1). 

Which is a contradiction. We conclude that the system (𝑆2) has no solution. 

Let us show that there exist (�̅�, �̅�, 𝜔,̅̅̅ 𝜍)̅  ∈ 𝒰 and (𝜆1, 𝜆2)  ∈  ℝ+
2 ∖ {(0,0)} such that 

 

𝜆1(
1

2
𝑥𝑇 𝐴𝑢𝑥 + 𝑎�̅�

𝑇 𝑥 + α)  + 𝜆2(
1

2
𝑥𝑇𝐵�̅�𝑥+𝑏�̅�

𝑇𝑥 + 𝛽) ≥ 0, ∀ 𝑥 ∈ ℝ𝑛.                    (13) 

One proceeds by distinguishing four cases as follows. 
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First case : 𝑢1<𝑢2  and 𝑣1<𝑣2. 

Let 

𝑀1 = (
𝐴1 𝑎1 +

𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
𝑎2

𝑎1
𝑇 +

𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
𝑎2

𝑇 2𝛼
), 

 

𝑀2 = (
𝐴2

𝜔2−𝜔1

𝑢2−𝑢1
𝑎2

𝜔2−𝜔1

𝑢2−𝑢1
𝑎2

𝑇 0
), 

 

𝑀3 = (

𝐵1 𝑏1 +
𝜔1𝑢2 − 𝜔2𝑢1

𝑢2 − 𝑢1
𝑏1

𝑏1
𝑇 +

𝜍1𝑣2 − 𝜍2𝑣1

𝑣2 − 𝑣1
𝑏1

𝑇 2𝛽
) , 

 

and      𝑀4 = (
𝐵2

𝜍2−𝜍1

𝑣2−𝑣1
𝑏2

𝜍2−𝜍1

𝑣2−𝑣1
𝑏2

𝑇 0
). 

 

Then, we have the following linear matrix equalities : 

 

            𝑀1 + 𝑢1 𝑀2 = 𝐻1  ;    𝑀1 + 𝑢2 𝑀2 = 𝐻2 ; 
            𝑀3 + 𝑣1 𝑀4 = 𝐻3 𝑎𝑛𝑑 𝑀3 + 𝑣2 𝑀4 = 𝐻4. 
 

 

By applying the fact that (𝑆1) has no solution, we deduce that the system below 

 

                
1

2
(

𝑥
𝑡

)
𝑇

(𝑀1 + 𝑢𝑀2) (
𝑥
𝑡

) < 0, ∀u ∈ 𝒰1, 

                
1

2
(

𝑥
𝑡

)
𝑇

(𝑀1 + 𝑣𝑀2) (
𝑥
𝑡

) < 0, ∀v ∈ 𝒰2, 

 
also has no solution. 

 

Thanks to the convexity of the set Ξ�̅�  and from Theorem 2 there exist 

(𝜆1, 𝜆2)  ∈  ℝ+
2 ∖ {(0,0)} (�̅�, �̅�)  ∈ 𝒰1 × 𝒰2 such that 

 

𝜆1 [  
1

2
(

𝑥
𝑡

)
𝑇

(𝑀1 + �̅�𝑀2) (
𝑥
𝑡

)]+  

𝜆2 [  
1

2
(

𝑥
𝑡

)
𝑇

(𝑀3 + �̅�𝑀4) (
𝑥
𝑡

)] ≥ 0 

 

For all (𝑥, 𝑡)  ∈ ℝ𝑛 × ℝ. 
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By setting t=1, one has :  

 

𝜆1 [
1

2
𝑥𝑇  𝐴𝑢𝑥 +  (𝑎1 + (

𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
) + �̅�

𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
𝑎2) 𝑥 + 𝛼]+ 

𝜆2 [
1

2
𝑥𝑇𝐵�̅�𝑥 + ((𝑏1 +

𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
+ �̅�

𝜍2−𝜍1

𝑣2−𝑣1
) 𝑏2)  𝑥 + 𝛽] ≥ 0, 

                   ∀ 𝑥 ∈ ℝ𝑛. 

Therefore, there exist (�̅�, �̅�, 𝜔,̅̅̅ 𝜍)̅  ∈ 𝒰 and (𝜆1, 𝜆2)  ∈  ℝ+
2 ∖ {(0,0)} such that relation (13) holds 

with: 

�̅� =
𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
 +�̅�

𝜔2−𝜔1

𝑢2−𝑢1
 and 𝜍=̅

𝜍1𝑣2−𝜍2𝑣1

𝑣2−𝑣1
 + �̅�

𝜍2−𝜍1

𝑣2−𝑣1
 

 

Second case: 𝑢1<𝑢2  and 𝑣1=𝑣2 = �̅�. 

Let 

            𝑀1 = (
𝐴1 𝑎1 +

𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
𝑎2

𝑎1
𝑇 +

𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
𝑎2

𝑇 2𝛼
), 

 

       𝑀2 = (
𝐴2

𝜔2−𝜔1

𝑢2−𝑢1
𝑎2

𝜔2−𝜔1

𝑢2−𝑢1
𝑎2

𝑇 0
), 𝑀3 = (

𝐵�̅� 𝑏1

𝑏1
𝑇 2𝛽

) and    

      𝑀4 = (
0𝕊𝑛(ℝ) 𝑏2

𝑏2
𝑇 0

). 

 

Then, we have the following linear matrix equalities : 

 

            𝑀1 + 𝑢1 𝑀2 = 𝐻1  ;    𝑀1 + 𝑢2 𝑀2 = 𝐻2 ; 
            𝑀3 + 𝜍1 𝑀4 = 𝐻3 𝑎𝑛𝑑 𝑀3 + 𝜍2 𝑀4 = 𝐻4. 
 

From system (𝑆2), we obtain that the system  

 

                
1

2
(

𝑥
𝑡

)
𝑇

(𝑀1 + 𝑢𝑀2) (
𝑥
𝑡

) < 0, ∀u ∈ 𝒰1, 

                
1

2
(

𝑥
𝑡

)
𝑇

(𝑀1 + 𝜍𝑀2) (
𝑥
𝑡

) < 0, ∀ς ∈ 𝒰2, 

 

has no solution. 

Since the set Ξ�̅�  𝑖𝑠 convex,  we can apply Theorem 2, thus we can find 

(𝜆1, 𝜆2)  𝑖𝑛  ℝ+
2 ∖ {(0,0)} and (�̅�, 𝜍)̅  ∈ 𝒰1 × 𝒰4 such that 

 

𝜆1 [  
1

2
(

𝑥
𝑡

)
𝑇

(𝑀1 + �̅�𝑀2) (
𝑥
𝑡

)]+ 

𝜆2 [  
1

2
(

𝑥
𝑡

)
𝑇

(𝑀3 + 𝜍�̅�4) (
𝑥
𝑡

)] ≥ 0,∀ (𝑥, 𝑡)  ∈ ℝ𝑛 × ℝ. 
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Letting t=1, one has:  

𝜆1 [
1

2
𝑥𝑇  𝐴𝑢𝑥 +  (𝑎1 + (

𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
) + �̅�

𝜔2−𝜔1

𝑢2−𝑢1
𝑎2) 𝑥 + 𝛼]+ 

𝜆2 [
1

2
𝑥𝑇𝐵�̅�𝑥 + 𝑏�̅�

𝑇𝑥 + 𝛽] ≥ 0, ∀ 𝑥 ∈ ℝ𝑛. 

 

Hence, there exist (�̅�, �̅�, 𝜔,̅̅̅ 𝜍)̅  ∈ 𝒰 and (𝜆1, 𝜆2)  ∈  ℝ+
2 ∖ {(0,0)} such that relation (13) holds 

with : 

             �̅� =
𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
 +�̅�

𝜔2−𝜔1

𝑢2−𝑢1
.  

 

Third case : 𝑢1=𝑢2 = �̅� and 𝑣1<𝑢2   

Let 

   𝑀1 = (
𝐴𝑢 𝑎1

𝑎1
𝑇 2𝛼

) ; 𝑀2 = (
0𝕊𝑛(ℝ) 𝑎2

𝑎2
𝑇 0

) ; 

  𝑀3 = (
𝐵1 𝑏1 +

𝜔1𝑢2−𝜔2𝑢1

𝑢2−𝑢1
𝑏1

𝑏1
𝑇 +

𝜍1𝑣2−𝜍2𝑣1

𝑣2−𝑣1
𝑏1

𝑇 2𝛽
)   and 

  𝑀4 = (
𝐵2

𝜍2−𝜍1

𝑣2−𝑣1
𝑏2

𝜍2−𝜍1

𝑣2−𝑣1
𝑏2

𝑇 0
). 

 

We proceed like in the second case by changing the role of u and v with 

               𝜍=̅
𝜍1𝑣2−𝜍2𝑣1

𝑣2−𝑣1
 + �̅�

𝜍2−𝜍1

𝑣2−𝑣1
. 

 

Fourth case: 𝑢1=𝑢2 = �̅�  and 𝑣1=𝑣2 = �̅�. 

Putting : 

 𝑀1 = (
𝐴𝑢 𝑎1

𝑎1
𝑇 2𝛼

) ; 𝑀2 = (
0𝕊𝑛(ℝ) 𝑎2

𝑎2
𝑇 0

) ;  𝑀3 = (
𝐵�̅� 𝑏1

𝑏1
𝑇 2𝛽

) and   𝑀4 = (
0𝕊𝑛(ℝ) 𝑏2

𝑏2
𝑇 0

). 

 

In this case, we remark that : 

            𝑀1 + 𝜔1 𝑀2 = 𝐻1  ;    𝑀1 + 𝜔2 𝑀2 = 𝐻2 ; 
            𝑀3 + 𝜍1 𝑀4 = 𝐻3 𝑎𝑛𝑑 𝑀3 + 𝜍2 𝑀4 = 𝐻4. 
 

The system  

                
1

2
(

𝑥
𝑡

)
𝑇

(𝑀1 + 𝜔𝑀2) (
𝑥
𝑡

) < 0, ∀ω ∈ 𝒰3, 

                
1

2
(

𝑥
𝑡

)
𝑇

(𝑀1 + 𝜍𝑀2) (
𝑥
𝑡

) < 0, ∀ς ∈ 𝒰2, 

 
has no solution because it is equivalent to another one like (𝑆2).  
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Again from the convexity of Ξ�̅�  and Theorem 2, there exist 

(𝜆1, 𝜆2)  ∈ ℝ+
2 ∖ {(0,0)} and (�̅�, 𝜍)̅  ∈ 𝒰3 × 𝒰4 such that 

 

𝜆1 [  
1

2
(

𝑥
𝑡

)
𝑇

(𝑀1 + �̅�𝑀2) (
𝑥
𝑡

)]+ 

𝜆2 [  
1

2
(

𝑥
𝑡

)
𝑇

(𝑀3 + 𝜍�̅�4) (
𝑥
𝑡

)] ≥ 0,∀ (𝑥, 𝑡)  ∈ ℝ𝑛 × ℝ. 

 

Letting t=1, one has:  

𝜆1 [
1

2
𝑥𝑇  𝐴𝑢𝑥 +  𝑎�̅�

𝑇 𝑥 + 𝛼]+ 

𝜆2 [
1

2
𝑥𝑇𝐵�̅�𝑥 + 𝑏�̅�

𝑇𝑥 + 𝛽] ≥ 0, ∀ 𝑥 ∈ ℝ𝑛. 

 

Finally, in all cases, there exist (�̅�, �̅�, 𝜔,̅̅̅ 𝜍)̅  ∈ 𝒰  and (𝜆1, 𝜆2)  ∈  ℝ+
2 ∖ {(0,0)} such that (13) 

holds. 

 

From Slater condition, one obtains that: 𝜆1 > 0 and            

(
1

2
𝑥𝑇 𝐴𝑢𝑥 +  𝑎�̅�

𝑇 𝑥 + 𝛼)+𝜆 (
1

2
𝑥𝑇 𝐵�̅�𝑥 +  𝑏�̅�

𝑇𝑥 + 𝛽) ≥ 0,∀ 𝑥 ∈ ℝ𝑛,(14) 

with: 𝜆 =
𝜆2

𝜆1
. 

 

From this inequality (14), we get:                        

𝐦𝐚𝐱
(𝒖,𝝎)∈𝒰1×𝒰3

(
1

2
𝑥𝑇𝐴𝑢x + 𝑎𝜔

𝑇 𝑥) + 𝛼 + 𝜆 (
1

2
𝑥𝑇𝐵�̅�x +  𝑏�̅�

𝑇𝑥 + β) ≥ 0, ∀ 𝑥 ∈ ℝ𝑛.  
 

For 𝑥 = �̅� , since �̅�   is a feasible solution of (NH-QCQP), we obtain: 

           (1

2
�̅�𝑇𝐵�̅��̅�+𝑏�̅�

𝑇�̅�  +  𝛽) =0.                                           (15) 

 

Let us consider: 

ℝ𝑛 ⟶ ℝ, x⟼ 𝜙(x): =
1

2
𝑥𝑇𝐴𝑢x + 𝑎�̅�

𝑇 𝑥 + 𝛼 + 𝜆 (
1

2
𝑥𝑇𝐵�̅�x + 𝑏�̅�

𝑇𝑥 + β). 

By using the definition of 𝛼, (14) and (15), we get:  

𝜙(x) ≥0 and 𝜙(�̅�) ≤0. It is follows that 𝜙(x) ≥ 𝜙(�̅�).  �̅� minimize 𝜙 on ℝ𝑛 and 𝜑 is twice 

differentiable. Then, ∇𝜙(�̅�) = 0 and ∇2𝜙(�̅�) ≽0.  

Therefore,  

             (𝐴𝑢+ 𝜆𝐵�̅�)�̅� + 𝑎�̅�
𝑇 + 𝑏�̅�

𝑇 =0 

                       𝐴𝑢+ 𝜆𝐵�̅� ≽0.           

     
[(ii) =) (i)]. Suppose there exist 𝜆 ≥ 0 and (�̅�, �̅�, 𝜔,̅̅̅ 𝜍)̅  ∈ 𝒰 

 

   (𝐴𝑢+ 𝜆𝐵�̅�)�̅� + 𝑎�̅� + 𝜆𝑏�̅� =0, (First-order Condition)    

    𝜆(
1

2
�̅�𝑇𝐵�̅��̅�+𝑏�̅�

𝑇�̅� + 𝛽) =0,  (Complementary Slackness)  

    𝐴𝑢+ 𝜆𝐵�̅� ≽0.            (Second-order Condition) 
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Let us consider the map, 

𝜓 ∶  ℝ𝑛 ⟶ ℝ, x⟼ 𝜓(x): = 
1

2
𝑥𝑇𝐴𝑢x + 𝑎�̅�

𝑇 𝑥 + 𝜆 (
1

2
𝑥𝑇𝐵�̅�x + 𝑏�̅�

𝑇𝑥 + β) 

and assume that x be a robust feasible solution of (NH-QCQP).  

 

First-order condition and second-order condition gives us that  

∇𝜓(�̅�) = 0 and 𝜓 is convex. Then, �̅�  is a global minimizer of 𝜓 

and one has 

𝜓(x) ≥  𝜓(�̅�)⟹  
1

2
𝑥𝑇𝐴𝑢x + 𝑎�̅�

𝑇 𝑥 ≥
1

2
�̅�𝑇𝐴𝑢�̅� + 𝑎�̅�

𝑇 �̅� 

              +𝜆 (
1

2
�̅�𝑇𝐵�̅��̅� + 𝑏�̅�

𝑇�̅� +  𝛽) − 𝜆 (
1

2
𝑥𝑇𝐵�̅�x + 𝑏�̅�

𝑇𝑥 + β) 

           ⟹   
1

2
𝑥𝑇𝐴𝑢x + 𝑎�̅�

𝑇 𝑥 ≥
1

2
�̅�𝑇𝐴𝑢�̅� + 𝑎𝜔

𝑇 �̅� 

−𝜆 (
1

2
𝑥𝑇𝐵�̅�x + 𝑏�̅�

𝑇x + β) 

           ⟹   
1

2
𝑥𝑇𝐴𝑢x + 𝑎�̅�

𝑇 𝑥 ≥
1

2
�̅�𝑇𝐴𝑢�̅� + 𝑎𝜔

𝑇 �̅�. 

Therefore, �̅� is robust optimal solution of (NH-QCQP).                      

 

5. Optimistic Dual and Strong Robust Duality of QCQOP 

In this section, we characterize the solutions of dual optimistic. We also show that the robust strong 

duality property holds. 

Let us consider 

 ℝ𝑛 × 𝒰 × ℝ+ ⟶ ℝ, (x,𝜉, 𝜆) ⟼ ℒ(x,𝜉, 𝜆) :=𝑞0(𝑥, 𝜉)+𝜆𝑞1(𝑥, 𝜉) 

where 𝜉 = (𝑢, 𝑣, 𝜔, 𝜍),  𝑞0(𝑥, 𝜉) ≔  
1

2
𝑥𝑇𝐴𝑢x + 𝑎𝜔

𝑇 𝑥 

and 𝑞1(𝑥, 𝜉) ≔
1

2
𝑥𝑇𝐵𝑣x + 𝑏𝜍

𝑇𝑥 + β. 

 

The problem 

             max inf
𝑥∈ℝ𝑛

ℒ(x, 𝜉, 𝜆)         (OD-QCQP) 

              s.t. (𝜉, 𝜆) ∈ 𝒰 × ℝ+ 

 

is called the optimistic dual of (NH-QCQP). 

 

Theorem 5 Assume that assumptions of Theorem 4 hold. If �̅�  is a robust solution of (NH-QCQP), 

then there exist (𝜉̅, �̅�)∈ 𝒰 × ℝ+ such that (𝜉̅, �̅�) is an optimal solution of (OD-QCQP). 

 

Proof.  From Theorem 4, there exists (�̅�, �̅�, 𝜔,̅̅̅ 𝜍,̅ �̅�) ∈ 𝒰 × ℝ+ such that 

 

     (𝐴𝑢+ 𝜆𝐵�̅�)�̅� + 𝑎�̅� + 𝜆𝑏�̅� =0, (First-order Condition).    

     𝜆(
1

2
�̅�𝑇𝐵�̅��̅�+𝑏�̅� + 𝛽) =0,      (Complementary Slackness)  

     𝐴𝑢+ 𝜆𝐵�̅� ≽0.            (Second-order Condition) 
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We set 𝜉̅ = (�̅�, �̅�, 𝜔,̅̅̅ 𝜍)̅. For all feasible solution  
(𝑢, 𝑣, 𝜔, 𝜍, 𝜆) ∈ 𝒰 × ℝ+ of (OD-QCQP), one has : 

           ℒ(�̅�, 𝜉̅, �̅�)= 𝑞0(�̅�, 𝜉̅)+�̅�𝑞1(�̅�, 𝜉̅) 

                 = 𝑞0(�̅�, 𝜉̅) 

                 = max
𝜉∈𝒰

𝑞0(�̅�, 𝜉) 

                 ≥ 𝑞0(�̅�, 𝜉), ∀ 𝜉 ∈ 𝒰 

                 ≥ 𝑞0(�̅�, 𝜉)+𝜆𝑞1(�̅�, 𝜉), ∀ (𝜉, 𝜆) ∈ 𝒰 × ℝ+ 

                 = ℒ(�̅�, 𝜉, 𝜆), ∀ (𝜉, 𝜆) ∈ 𝒰 × ℝ+. 
Hence, (𝜉̅, �̅�) is an optimal solution of (OD-QCQP).                         

 
Corollary 2 Suppose that assumptions of Theorem 5 hold.  

If (RNH-QCQP) has an optimal solution, then the strong duality property is fulfilled. 

 

Proof.  Let �̅� be an optimal solution of (RNH-QCQP). So, 

 

        min (RNH-QCQP) = 
1

2
 max
𝑢∈𝒰1

�̅�𝑇 𝐴𝑢�̅�+max
𝜔∈𝒰3

𝑎𝜔
𝑇 �̅� 

                       = 
1

2
�̅�𝑇𝐴𝑢�̅� + 𝑎𝜔

𝑇 �̅�. 

Moreover,  

             max (OD-QCQP) = max
(𝜉,𝜆) ∈𝒰×ℝ+

inf
𝑥∈ℝ𝑛

ℒ(x, 𝜉, 𝜆)  

                                                         = ℒ(�̅�, 𝜉̅, �̅�) 

                           = 𝑞0(�̅�, 𝜉̅)+�̅�𝑞1(�̅�, 𝜉̅) 

                           = 
1

2
�̅�𝑇𝐴𝑢�̅� + 𝑎𝜔

𝑇 �̅�. 

Thus, min (RNH-QCQP) = max (OD-QCQP).                 

 

6. Example 

We deal with the following 2-dimensions QCQOP 

                                    min
𝑥 ∈ ℝ𝑛

1

2
𝑥𝑇𝐴𝑢x,                          (𝒫)                                      

                 s.t. 
1

2
𝑥𝑇𝐵𝑣x+𝛽 ≤ 0,  

where: 

 

𝐴0 = (

1

2
−

3

2

−
3

2

1

2

), 𝐴1 = (
1 0
0 1

) , 𝐵0 = (
1

1

2
1

2
1

) ,  

 

𝐵1 = (
−5 −10

−10 −5
), 𝛽 = −1, |𝑢| ≤ 10−1 and |𝑣| ≤ 5. 10−1. 
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With the interval interpolation approach regarding to : 

 

 −matrices 𝐴0 and 𝐴1, 𝐴𝑢 = 𝐴0 + 𝑢𝐴1= (

2𝑢+1

2
−

3

2

−
3

2

2𝑢+11

2

), 

 

−matrices 𝐵0 and 𝐵1, 𝐵𝑣 = 𝐵0 + 𝑣𝐵1= (
1 − 5𝑣

1−20𝑣

2
1−20𝑣

2
1 − 5𝑣

). 

 

Let 𝑥0 = (
1

2
,

1

2
)

𝑇

.Then we verify that the strictly feasibility condition holds with this point 𝑥0. 

The matrices 𝐴𝑢1
, 𝐴𝑢2

, 𝐵𝑣1
 and 𝐵𝑣2

 commute. From Proposition 1, the set 

Ξ={(𝑥𝑇𝐴𝑢1
𝑥, 𝑥𝑇𝐴𝑢2

𝑥, 𝑥𝑇𝐵𝑣1
𝑥, 𝑥𝑇𝐵𝑣2

𝑥) | 𝑥 ∈ ℝ𝑛 } 

is convex. Where: 

 

𝐴𝑢1
= (

2

5
−

3

2

−
3

2

2

5

), 𝐴𝑢2
= (

3

5
−

3

2

−
3

2

3

5

) , 𝐵𝑣1
= (

5

4
1

1
5

4

)  and 𝐵𝑣2
= (

3

4
0

0
3

4

). 

 

The problem (𝒫) can be rewritten under the analytically form still denoted (𝒫) and given by:  

            min
𝑥 ∈ ℝ𝑛

1

4
(2𝑢 + 1)𝑥1

2 −
3

2
𝑥1𝑥2+

1

4
(2𝑢 + 1)𝑥2

2,             (𝒫)                                                      

      s.t. 
1

2
(1 − 5𝑣)𝑥1

2 +
1

2
(1 − 20𝑣)𝑥1𝑥2+

1

2
(1 − 5𝑣)𝑥2

2 ≤ 0.  

 

From Theorem 3, we deduce that the robust solution of (𝒫) satisfies 

 

       [  2𝑢 + 1 + 2𝜆(1 − 5𝑣)]𝑥1+ [−3 + 𝜆(1 − 20𝑣)]𝑥2                        = 0, 

       [−3 + 𝜆(1 − 20𝑣)]𝑥1 + [2𝑢 + 1 + 2𝜆(1 − 5𝑣)]𝑥2           = 0, 

   λ [1

2
(1 − 5𝑣)𝑥1

2 +
1

2
(1 − 20𝑣)𝑥1𝑥2+

1

2
(1 − 5𝑣)𝑥2

2 − 1]= 0, 

 

       (

2𝑢+1

2
+ 𝜆(1 − 5𝑣)

1

2
(−3 + 𝜆(1 − 20𝑣))

1

2
(−3 + 𝜆(1 − 20𝑣))

2𝑢+1

2
+ 𝜆(1 − 5𝑣)

)             ≽ 0. 

 

Letting �̅� = 3.10−2 ,  �̅� = 4.10−2  and �̅� =
97

90
. The resolution of this system gives us the 

following robust solutions:  

 

�̅� = ± (
√10

3
,
√10

3
)

𝑇

. 
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7. Conclusion 

We have dealt with a non-convex quadratic optimization problem subjected to data uncertainties 

both in constraint and in criterion. Such an optimization model is extremely difficult to solve 

thanks its two levels of optimization (in short "mini-max"). We propose a new definition of 

convexity for a RO problem and an adequate S-procedure in order to characterize the global robust 

optimal solution of these quadratic uncertain problem in homogeneous case in one hand. We have 

also dealt with the non-homogeneous case in other hand. The example given in Section 6 allows 

to validate this paradigm in the reality. In this work, we bring some necessary and sufficient 

conditions in Theorem 5 and Corollary 2 to make strong duality property holds. A next step could 

be to address some numerical optimization algorithms for solving a large scale of these kind of 

QCQOPs. 
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