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A Class of Generalized Cayley Digraphs

Induced by Quasigroups
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Abstract

We generalize the results in [13] to produce new classes of generalized

cayley graphs induced by quasigroups.
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1 Introduction

A binary relation on a set V is a subset E of V × V . A digraph is a pair

(V,E) where V is a non-empty set (called vertex set) and E is a binary relation

on V . The elements of E are the edges of the digraph. A digraph (V,E) is

called vertex-transitive if, given any two vertices a and b of V , there is some

graph automorphism f : V −→ V such that f(a) = b [4]. In other words, a

graph is vertex-transitive if its automorphism group acts transitively upon its
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vertices [4]. Whenever the word graph is used in this paper it will be referring

to a digraph unless otherwise stated.

A non empty set G, together with a mapping ∗ : G× G −→ G is called a

groupoid. The mapping ∗ is called a binary operation on the set G. If a, b ∈ G,

we use the symbol ab to denote ∗(a, b). A groupoid (G, ∗) is called a quasigroup,

if for every a, b ∈ G, the equations, ax = b and ya = b are uniquely solvable

in G [10]. This implies both left and right cancelation laws. Observe that a

quasigroup is a weaker algebraic structure than a group.

Let G be a group and S be a subset of G. The cayley digraph of G with

respect to S is defined as the digraph X = (G,E), where E is a binary relation

on G, such that

(x, y) ∈ E if and only if there is some s ∈ S, such that y = xs [8].

Informally, the vertices of the cayley digraphs are group elements, and two

vertices are connected with an edge if and only if the second vertex is the

product of an element from S and the first vertex. The Cayley digraph of G

with respect to S is denoted by Cay(G,S). The set S is called the connection

set of Cay(G,S).

In [13], K. V. Anil extended the definition of cayley graph and introduced

a class of generalized cayley graphs induced by groups and obtained interesting

relationship between properties of graphs and those of groups. In this paper,

we introduce a class of digraphs induced by quasigroups. These digraphs can

be considered as a generalization of those obtained in [13]. Moreover, we study

various graph properties in terms of algebraic properties. Here, we need the

following:

Definition 1.1. Let G be a quasigroup, and let A be a subset of G. Then A

said to be a R associative subset of G, if for every x, y ∈ G, (xy)A = x(yA).

This means, if x, y ∈ G and a ∈ A, then (xy)a = x(ya′) for some a′ ∈ A [12].

Similarly, we can define L associative subset of G.

Lemma 1.2. Let A and B be R associative subsets of a quasigroup G. Then

AB is also R associative [12].

Lemma 1.3. Let A and B be L associative subsets of a quasigroup G. Then

AB is also L associative.
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2 Generalized cayley digraphs

In this section we generalize the results in [13] and introduce a bigger

class of generalized cayley digraphs induced by quasigroups. These graphs

can be considered as generalization of cayley digraphs induced by groups. Let

a1, a2, . . . , an ∈ G, then we may define the product a1a2 . . . an as follows:

a1a2a3 . . . an−1an = (. . . ((a1a2)a3) . . . an−1)an

We begin with the following definition:

Definition 2.1. Let G be a quasigroup and let A and B be subquasigroups

of G such that A is L associative and B is R associative. Let D and D∗ be

subsets of G such that D is L associative and D∗ is R associative. Let a and

b be fixed elements in A and B respectively. Let

RD,D∗ = {(x, y) : (ay)b = (z1x)z2 for some z1 ∈ ADA, z2 ∈ BD∗B} .

Then the digraph (G,RD,D∗) is called the generalized Cayley graph induced by

the quasigroup G. The sets ADA and BD∗B are called the connection sets for

(G,RD,D∗).

In case G is a group, A = B = D = {1} and a = b = 1, the generalized

cayley graph (G,RD,D∗) is the cayley graph Cay(G,D∗).

2.1 Examples of generalized cayley graphs

In this section we give some examples of generalized cayley graphs. We

prove that the complete bipartite graph K6,6, the disjoint union of two copies

of K̄6(complete graph of order 6), disjoint union of two copies of K3,3 and

disjoint union of 4 copies of K̄3 are generalized cayley graphs. In general, we

prove that the graphs Kn,n and Kn,n,··· ,n are generalized cayley graphs.

Example 1. Let G = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Define a binary oper-

ation in G as follows:
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* 0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 0 4 5 3 7 6 8 10 11 9

1 2 0 1 5 3 4 6 8 7 11 9 10

2 0 1 2 3 4 5 8 7 6 9 10 11

3 5 4 3 0 1 2 9 10 11 7 8 6

4 3 5 4 1 2 0 10 11 9 8 6 7

5 4 3 5 2 0 1 11 9 10 6 7 8

6 6 7 8 9 10 11 1 2 0 4 3 5

7 7 8 6 10 11 9 0 1 2 5 4 3

8 8 6 7 11 9 10 2 0 1 3 5 4

9 10 11 9 7 6 8 3 4 5 2 1 0

10 9 10 11 6 8 7 4 5 3 1 0 2

11 11 9 10 8 7 6 5 3 4 0 2 1

Under this operation G is a quasigroup.

(i) Let A = {0, 1, 2}, B = {0, 1, 2, 3, 4, 5}, D = {6, 7, 8, 9, 10, 11}, and

D∗ = {3, 4, 5}. We find that A and B are respectively L associative and R

associative subquasigroups of G. Furthermore, D and D∗ are respectively L

associative and R associative subsets of G. Take a = 0 in A and b = 3 in B.

On examination we find that

ADA = {6, 7, 8, 9, 10, 11}, BD∗B = {0, 1, 2, 3, 4, 5}, and

RD,D∗ = {(0, 6), (6, 0), (0, 7), (7, 0), (0, 8), (8, 0), (0, 9), (9, 0), (0, 10), (10, 0),

(0, 11), (11, 0), (1, 6), (6, 1), (1, 7), (7, 1), (1, 8), (8, 1), (1, 9), (9, 1),

(1, 10), (10, 1), (1, 11), (11, 1), (2, 6), (6, 2), (2, 7), (7, 2), (2, 8), (8, 2),

(2, 9), (9, 2), (2, 10), (10, 2), (2, 11), (11, 2), (3, 6), (6, 3), (3, 7), (7, 3),

(3, 8), (8, 3), (3, 9), (9, 3), (3, 10), (10, 3), (3, 11), (11, 3), (4, 6), (6, 4),

(4, 7), (7, 4), (4, 8), (8, 4), (4, 9), (9, 4), (4, 10), (10, 4), (4, 11), (11, 4),

(5, 6), (6, 5), (5, 7), (7, 5), (5, 8), (8, 5), (5, 9), (9, 5), (5, 10), (10, 5),

(5, 11), (11, 5)}.

Observe that (G,RD,D∗) is an undirected bipartite graph. A graphical repre-

sentation of (G,RD,D∗) is shown in Figure 1.

(ii) Let A = {0, 1, 2}, B = {0, 1, 2, 3, 4, 5}, D = {6, 7, 8} and D∗ =

{9, 10, 11}. Then A is a L associative subquasigroup of G, B is a R asso-

ciative subquasigroup of G, D is a L associative subset of G and D∗ is a R
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Figure 1: The graph representing (G,RD,D∗) with connection sets ADA =

{6, 7, 8, 9, 10, 11}, BD∗B = {0, 1, 2, 3, 4, 5}.
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Figure 2: The graph representing (G,RD,D∗) with connection sets ADA =

{6, 7, 8} and BD∗B = {6, 7, 8, 9, 10, 11}

associative subset of G. Let a = 0 and b = 3. One can easily verify that

ADA = {6, 7, 8}, BD∗B = {6, 7, 8, 9, 10, 11}, and

RD,D∗ = {0, 1, 2, 3, 4, 5}×{0, 1, 2, 3, 4, 5}∪{6, 7, 8, 9, 10, 11}×{6, 7, 8, 9, 10, 11}

Observe that (G,RD,D∗) is the disjoint union of two complete graphs. A graph-

ical representation of (G,RD,D∗) is shown in Figure 2.

(iii) Take A = B = {0, 1, 2}, D = {3, 4, 5}, D∗ = {6, 7, 8}. Then the

subquasigroup A is both L and R associative. Furthermore, D and D∗ are

respectively, L associative andR associative subsets of G. If we take a = b = 0,
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Figure 3: The graph representing (G,RD,D∗) with connection sets ADA =

{3, 4, 5} and BD∗B = {6, 7, 8}

it is not difficult to verify that

ADA = {3, 4, 5}, BD∗B = {6, 7, 8} and

RD,D∗ = {(0, 9), (9, 0), (0, 10), (10, 0), (0, 11), (11, 0), (1, 9), (9, 1), (1, 10), (10, 1),

(1, 11), (11, 1), (2, 9), (9, 2), (2, 10), (10, 2), (2, 11), (11, 2), (3, 6), (6, 3),

(3, 7), (7, 3), (3, 8), (8, 3), (4, 6), (6, 4), (4, 7), (7, 4), (4, 8), (8, 4), (5, 6),

(6, 5), (5, 7), (7, 5)}

Observe that (G,RD,D∗) is the disjoint union of two complete bipartite graphs.

The graphical representation this graph is shown in Figure 3.

(iv) Let A = B = D = D∗ = {0, 1, 2}, a = b = 0. Then A,B,D and D∗

are L as well as R subquasigroups of G. It can be easily verify that

ADA = BD∗B = {0, 1, 2}

= {(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 0), (0, 2), (1, 1), (2, 2), (3, 3), (3, 4),

(4, 3), (4, 5), (5, 4), (3, 5), (5, 3), (4, 4), (5, 5), (6, 6), (6, 7), (7, 6), (7, 8),

(8, 7), (8, 6), (6, 8), (7, 7), (8, 8), (9, 9), (9, 10), (10, 9), (9, 11), (11, 9),

(10, 11), (11, 10), (10, 10), (11, 11)}

Observe that (G,RD,D∗) is the disjoint union of 4 complete graphs. A graphical

representation of (G,RD,D∗) is shown in Figure 4.

Example 2. Let G = {1, 2, 3, . . . , 2n}. Let N1 = {1, 2, 3, . . . , n} and N2 =

{n+ 1, n+ 2, . . . , 2n} be a partition of G. Define the product in G as follows

with the condition that the equations ax = b and ya = b have unique solutions

in G:
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Figure 4: The graph representing (G,RD,D∗) with connection sets ADA =

BD∗B = {0, 1, 2}
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Take A = B = N1, D
∗ = N2, a = b = 1. Then we find that ADA = N1

and BD∗B = N2 and

RD,D∗ = (N1 ×N2) ∪ (N2 ×N1).

Hence (G,RD,D∗) is the complete bipartite graph Kn,n. Thus every complete

bipartite graph is a generalized cayley graph.

Example 3. Let G = {0, 1, 2, . . . ,mn− 1}. For i = 0, 1, 2, . . . , n− 1, define

Ni = {im, im + 1, . . . , im + m − 1}. Observe that {N0, N1, . . . , Nn−1} is a

partition of G. Define a multiplication in G as follows with the condition that

the equations ax = b and ya = b have unique solutions in G.

NiNj = N(i+j)mod(n) for all i = j = 0, 1, 2, . . . , n− 1.

Take A = B = D = N0, D
∗ = G\N0 and a = b = 0. Then one can easily verify

that A,B,D and N0 are L as well as R associative subquasigroups. Moreover,

G \N0 is a R associative subset of G. We find that

RD,D∗ =
⋃

i 6=j

(Ni ×Nj)

Observe that (G,RD,D∗) is a complete n partite graph Km,m,...,m. As a conse-

quence Km,m,...,m is a generalized cayley graph.
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2.2 Basic Results

Next, we prove some interesting relationship between the properties of

quasigroups and those of (G,RD,D∗). In this sequel, need the following lemma:

Lemma 2.2. If z ∈ ADA, t ∈ BD∗B, and x ∈ G then we have

(i) z = z1a for some z1 ∈ ADA, and za ∈ ADA, az ∈ ADA for all a ∈ A.

(ii) t = bz2 for some z2 ∈ BD∗B, and tb ∈ BD∗B, bt ∈ BD∗B for all b ∈ B

(iii) (zx)t = (z∗((ax)b))t∗ for some z∗ ∈ ADA and t∗ ∈ BD∗B.

(iv) (z(ab))t = z∗t∗ for some z∗ ∈ ADA, t∗ ∈ BD∗B and zt = (u(ab))v for

some u ∈ ADA, v ∈ BD∗B.

Proof. Proof is trivial.

LetM and N be subsets of a quasigroup G and let a and b be fixed elements

in G. We will use the following notations:

(1) [M |N ]ba = {x ∈ G : (ax)b = (z1x)z2 for some z1 ∈ M, z2 ∈ N}.

(2) MaNb = {x ∈ G : (a(ab))b = (z1x)z2 for some z1 ∈ M, z2 ∈ N}.

(3) [Ma|Nb] = {x ∈ G : (ax)b = z1z2 for some z1 ∈ M, z2 ∈ N}.

(4) [[M |N ][ba= {x ∈ G : (ax)b = (z1(z2 . . . (zn−1(zntn)tn−1)tn−1 . . .)t1, for

some zi ∈ M, ti ∈ N}.

(5) [[MaNb]] = {x ∈ G : (a(ab))b = (z1(z2 . . . (zn−1(znxtn))tn−1 . . .)t1, for

some zi ∈ M, ti ∈ N}.

(6) [M |N ] = {z1(z2 · · · ((zn−1(zntn))tn−1) · · · t2)t1 : zi ∈ M, ti ∈ N, n =

1, 2, 3, . . .}.

Proposition 2.3. The graph (G,RD,D∗) is an empty(i. e., RD,D∗ = ∅) if

and only if D = ∅ or D∗ = ∅.

Proof. By definition, (G,RD,D∗) is trivial if and only if RD,D∗ = ∅. Since

A and B are nonempty subquasigroups of G, D = ∅ or D∗ = ∅.
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Proposition 2.4. The graph (G, ,RD,D∗) is a reflexive if and only if G =

[ADA|BD∗B]ba.

Proof. First assume that (G,RD,D∗) is reflexive and let x ∈ G. Then,

(x, x) ∈ RD,D∗ . Hence by definition,

(ax)b = (z1x)z2 for some z1 ∈ ADA and z2 ∈ BD∗B.

This implies that x ∈ [ADA|BD∗B]ba. Since x is an arbitrary element in G,

we have G = [ADA|BD∗B]ba. The proof of the converse is trivial.

Proposition 2.5. If (G,RD,D∗) is a symmetric graph (i.e., RD,D∗ = R−1
D,D∗),

then [ADAa|BD∗Bb] = (ADA)a(BD∗B)b.

Proof. Suppose (G,RD,D∗) is symmetric. Observe that

x ∈ [ADAa|BD∗Bb] ⇔ (ax)b = z1z2, for some z1 ∈ ADA, z2 ∈ BD∗B

⇔ (ax)b = (z∗1(ab))z
∗
2 for some z∗1 ∈ ADA, z∗2 ∈ BD∗B

⇔ (ab, x) ∈ RD,D∗(by the definition of RD,D∗)

⇔ (x, ab) ∈ RD,D∗( since RD,D∗ is symmetric)

⇔ (a(ab))b = (t1x)t2 for some t1 ∈ ADA, t2 ∈ BD∗B

⇔ x ∈ (ADA)a(BD∗B)b.

This implies that [(ADA)a(BD∗B)b] = (ADA)a(BD∗B)b.

Proposition 2.6. (G,RD,D∗) is a transitive graph (i.e., RD,D∗ ◦ RD,D∗ ⊆

RD,D∗), then (ADA)2(BD∗B)2 ⊆ (ADA)(BD∗B).

Proof. Assume (G,RD,D∗) is transitive graph. Let z1, z2 ∈ ADA, z3 and

z4 ∈ BD∗B. Note that

(a(z1z3))b = ((a1z1))z3)b for some a1 ∈ A (∵ A is L associative)

= (z5z3)b for some z5 ∈ B (is by Lemma 2.2)

= z5(z3b1) for some b1 ∈ B (∵ B is R associative)

= z5z6 for some z6 ∈ B (by Lemma 2.2)

= (z7(ab))z8 for some z7 ∈ ADA, z8 ∈ BD∗B (by Lemma 2.2).



136 A Class of Generalized Cayley Digraphs Induced by Quasigroups

This implies that ((ab), z1z3) ∈ RD,D∗ . Let t1 = z1z3. Then

(a((z2t1)z4))b = ((a2(z2t1))z4)b for some a2 ∈ A (∵ A is L associative)

= (((a3z2)t1)z4)b for some a3 ∈ A (∵ A is L associative)

= ((z9t1)z4)b for some z9 ∈ B (by Lemma 2.2)

= (z9t1)(z4b2) for some b2 ∈ B (∵ B is R associative)

= (z9t1)z10 for some z10 ∈ BD∗B (by Lemma 2.2).

This implies that (t1, ((z2t1)z4)) ∈ RD,D∗ . Since (G,RD,D∗) is transitive, we

have (ab, ((z2t1)z4)) ∈ RD,D∗ . This means that

(a(z2t1)z4)b = (t3(ab))t4 for some t3 ∈ ADA, t4 ∈ BD∗B.

That is,

(z11t1)z12 = (t3(ab))t4 for some z11 ∈ ADA, z12 ∈ BD∗B.

Equivalently,

(ADA)2(BD∗B)2 ⊆ (ADA)(BD∗B).

Proposition 2.7. Assume that (ADA)2 ⊆ ADA and (BD∗B)2 ⊆ BD∗B.

Then (G,RD,D∗) is a transitive graph.

Proof. Let x, y and z ∈ G such that (x, y) ∈ RD,D∗ and (y, z) ∈ RD,D∗ .

Then by the definition of RD,D∗ , we have

(ay)b = (z1x)z2 for some z1 ∈ ADA, z2 ∈ BD∗B, (1)

(az)b = (z3y)z4 for some z3 ∈ ADA, z4 ∈ BD∗B. (2)

Using lemma 2.2, equation (2) can be written as:

(az)b = ((z5a)y)(bz6) for some z5 ∈ ADA, z6 ∈ BD∗B

= ((z6(ay))b)z7 for some z7 ∈ BD∗B (∵ BD∗B is R associative)

= (z8((ay)b))z7 for some z8 ∈ ADA (∵ ADA is L associative). (3)
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Inserting the value of (ay)b in equation (3), we get

(az)b = (z8((z1x)z2))z7

= ((z9(z1x))z2)z7 for some z9 ∈ ADA (∵ ADA is L associative)

= (((z10z1)x)z2)z7 for some z10 ∈ ADA (∵ ADA is L associative)

= ((t1x)z2)z7 where t1 = z10z1 ∈ (ADA)(ADA)

= (t1x)(z2z11) for some z12 ∈ BD∗B (∵ BD∗B is R associative)

= (t1x)t2 where t2 = z2z11 ∈ (BD∗B)(BD∗B). (4)

From the fact that (ADA)(ADA) = ADAADA ⊆ ADA and (BD∗B)(BD∗B)

= BD∗BD∗B ⊆ BD∗B, equation (8) implies that (x, z) ∈ RD,D∗ . Hence

(G,RD,D∗) is a transitive graph.

Proposition 2.8. If (G,RD,D∗) is a complete graph, then

G = [(ADA)a|(BD∗B)b].

Proof. Suppose (G,RD,D∗) is a complete graph and let x ∈ G. Then

(ab, x) ∈ RD,D∗ . This implies that (ax)b = (z1(ab))z2, for some z1 ∈ ADA

and z2 ∈ BD∗B. That is, (ax)b = z∗1z
∗
2 , for some z∗1 ∈ ADA and z∗2 ∈ BD∗B.

Equivalently, x ∈ [(ADA)a|(BD∗B)b]. Since x is an arbitrary element of G,

G = [(ADA)a|(BD∗B)b]

This completes the proof.

Proposition 2.9. If (G,RD,D∗) is connected, then G = [[ADA|BD∗B]]ba.

Proof. Suppose that (G,RD,D∗) is connected and let x ∈ G. Then there

is a path from ab to x, say:

(ab, x1, x2, · · · , xn, x)
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Then we have the following:

(ax1)b = (z1(ab))t1 for some z1 ∈ ADA and t1 ∈ BD∗B

= z∗1t
∗
1 for some z∗1 ∈ ADA and t∗1 ∈ BD∗B (by Lemma 2.2), (5)

(ax2)b = (z2x1)t2 for some z2 ∈ ADA and t2 ∈ BD∗B

= (((z3a)x1)(bt3)) for some z3 ∈ ADA and t3 ∈ BD∗B

= (z4((ax1)b))t4 for some z4 ∈ ADA and t4 ∈ BD∗B

= (z4(z
∗
1t

∗
1))t4 (by equation (5) ), (6)

...

(ax)b = (zn+1xn)tn+1

= (z∗n+1((axn)b))t
∗
n+1for some z∗n+1 ∈ ADA, t∗n+1 ∈ BD∗B)

= (z∗n+1((znxn−1)tn))t
∗
n+1 = · · · = (z∗n+1(· · · (z

∗
2(z

∗
1t

∗
1))t

∗
2 · · · ))t

∗
n+1. (7)

From equation (7), it follows that

G = [[ADA|BD∗B]]ba.

This completes the proof.

Proposition 2.10. If (G,RD,D∗) is locally connected, then

[AADA|BD∗B] = [[(ADA)a(BD∗B)b]]

.

Proof. Assume that (G,RD,D∗) is locally connected. Let x ∈ [ADA|BD∗B].

Then

x = (z1(z2 . . . (zn−1(zntn))tn−1 . . . t2)t1

for some zi ∈ ADA and ti ∈ BD∗B. Let

x1 = zntn, x2 = (zn−1x1)tn−1, . . . , xn = (z1xn−1)t1

Using Lemma 2.2, the above equation can be re-written as:

(ax1)b = (z∗n(ab))t
∗
n, (ax2)b = (z∗n−1(ab)x

∗
1)t

∗
n−1, . . . , (ax

∗
n)b = (z∗1(ab)x

∗
n−1)t

∗
1.
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for some z∗i ∈ AADA and t∗i ∈ BD∗B. Then (ab, x1, . . . , xn, xn) is a path from

ab to x. Since (G,RD,D∗) is locally connected, there exits a path from x to ab,

say:

(x, y1, . . . , ym, ab)

This implies that x ∈ [[(ADA)a(D
∗B)b]]. Hence

[ADA|D∗B] ⊆ [[(ADA)a(BD∗B)b]]

. Similarly, [[(ADA)a(D
∗B)b]] ⊆ [ADA|D∗B].

Proposition 2.11. If (G,RD,D∗) is semi connected, then

G = [[ADA|D∗B]]ba ∪ [[(ADA)a(BD∗B)b]].

Proof. Assume that (G,RD,D∗) is semi connected and let x ∈ G. Then

there exits a path from ab to x, say

(ab, x1, . . . , xn, x)

or a path from x to ab, say

(x, y1, . . . , ym, ab)

This implies that

x ∈ [[ADA|D∗B][ba∪[[(ADA)a(BD∗B)b]].

Since x is arbitrary, it follows that

G = [[ADA|D∗B][ba∪[[(ADA)a(BD∗B)b]].

Proposition 2.12. (G,RD,D∗) is a hasse- diagram, if and only if

(ADA)n ∩ (ADA) = ∅ or (BD∗B)n ∩ (BD∗B) = ∅, n ≥ 2.

Proof. First, assume that (G,RD,D∗) is a hasse- diagram. Then for any

vertices x0, x1, . . . , xn ∈ G with (xi, xi+1) ∈ RD,D∗ for all i = 0, 1, 2, . . . , n − 1



140 A Class of Generalized Cayley Digraphs Induced by Quasigroups

implies that (x0, xn) /∈ RD,D∗ . Observe that (xi, xi+1) ∈ RD,D∗ for all i =

0, 1, 2, . . . , n− 1 implies that

(axi+1)b = (zix0)ti for some zi ∈ ADA and ti ∈ BD∗B (8)

for i = 0, 1, 2, . . . , n− 1. Putting n = 0, 1, 2, . . . (n− 1) successively in equation

(8), we get

(ax1)b = (z1x0)t1

(ax2)b = (z2x1)t2

(ax3)b = (z3x2)t3
...

(axn)b = (znxn−1)tn

Using Lemma 4.1, above equations can be re-written as:

(ax2)b = (u1((ax1)b))v1 for some u1 ∈ ADA and v1 ∈ BD∗B

= (u1((z1x0)t1))v1

= ((u2(z1x0))t1)v1 for some u2 ∈ ADA and v1 ∈ BD∗B

= ((u3z1)x0)t1)v1 for some z1inADA and v1 ∈ BD∗B

= ((u3z1)x0)(t1v2)

= (r1x0)s1 where r1 = u3z1 ∈ (AA)2 and s1 = t1v1 ∈ (BD∗B)2.

Similarly,

(ax3)b = (r2x0)s2 where r2 ∈ (ADA)3 and s2 ∈ (BD∗B)3

Proceeding like this, we get

(axn)b = rnx0sn for some rn ∈ (ADA)n and sn ∈ (BD∗B)n

Since (x0, xn) /∈ RD,D∗ , therefore

(ADA)n ∩ (ADA) = ∅ or (BD∗B)n ∩ (BD∗B) = ∅.

Conversely, assume that

(ADA)n ∩ (ADA) = ∅ or (BD∗B)n ∩ (BD∗B) = ∅, n ≥ 2.
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We will show that (G,RD,D∗) is a hasse-diagram. Let

x0, x1, . . . , xn

be any (n + 1) elements of G with n ≥ 2, and (xi, xi+ 1) ∈ RD,D∗ for all

i = 0, 1, 2, . . . , n− 1. Then we have

(axn)b = (zx0)t for some z ∈ (ADA)n and t ∈ (D∗B)n

Since (ADA)n∩(ADA) = ∅ or (D∗B)n∩(D∗B) = ∅, (x0, xn) /∈ RD,D∗ . Hence

(G,RD,D∗) is a hasse-diagram.

3 Open Problem

In this paper we have introduced a class of generalized cayley digraphs

induced by quasigroups. It is well known that all cayley graphs induced by

groups are vertex transitive graphs. One can naturally ask the question: are

the generalized cayley di-graphs induced by quasigroups vertex transitive? So

we conclude this section with the following problem:

Problem 3.1. Prove or disprove that (G,RD,D∗) is vertex transitive.
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