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Abstract 
 

In this paper, we propose a variation model which takes advantage of the wavelet 

tight frame and nonconvex shrinkage penalties for compressed sensing recovery. 

We address the proposed optimization problem by introducing a adjustable 

parameter and a firm thresholding operations. Numerical experiment results show 

that the proposed method outperforms some existing methods in terms of the 

convergence speed and reconstruction errors. 
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1. Introduction  

The magnetic resonance imaging (MRI) is widely used in medical diagnoses 

because of its high resolution and noninvasiveness, and an imaging speed is 

important in many MRI applications. In recent years, Compressed Sensing (CS) has 

shown great abilities to accelerate MRI if an image can be sparsely represented. 

CS seeks to represent a signal from a small number of linear measurements. We let 

the vector 𝑥 ∈ ℝ𝑛 represents the MR image rearranged to a column vector. The 

linear measurements are the result of the short and fat measurement matrix 𝐴 ∈
ℝ𝑚×𝑛, with 𝑚 ≪ 𝑛. In general, A  can be represented as the product of a discrete 

Fourier transform 𝐹 ∈ ℝ𝑛×𝑛and a undersampling matrix 𝑈 ∈ ℝ𝑚×𝑛, i.e., A UF= . 

One is given the measurements 

 

y UFx e= +                               (1) 

 

and wants to recover and x . Where 𝑒 ∈ ℝ𝑚 represents the additive noise, and the 

noise e  is random and only its statistical properties may be known. 𝑚 ≪ 𝑛 

implies that (1) is an underdetermined linear system in x . It is well known that the 

problem of estimating x  from y is ill-posed, so additional assumptions must be 

made about x , thus this inverse problem can be solved by adopting some sort of 

regularization. Images usually have sparse representations (or sparse 

approximations) in some transformed domains. We assume that the image x is 

sparse under the representation of some tight frame. In many cases, the sparse 

solution can be approximated by solving an 1l  norm regularized minimization 

problem. Since the tight frame representation is not unique, it is common to divide 

these 1l  regularized minimization problems into two subcategories for MR image 

reconstruction (1), namely the analysis model [1-3] and synthesis model [1,4,5]: 

 

            
2

1 2

1
: min ;

2x
Analysis x y UFx  + −                      (2) 

2

1 2

1
: min ,

2
Synthesis y UF


  + −                    (3) 

 

where is an analysis operator to sparsify the image,   is a synthesis dictionary, 

 is the corresponding coefficient, and is the regularization parameter to balance 

the fidelity term and the regularization term. 

 

Elad et al. studied these two models and offered a geometric explanation of the 

relation between them [6]. Although the synthesis model has attracted more 

attention than the analysis model in the past, recent studies show that the latter has 

its own advantage over the former both theoretically [7,8] and empirically [9]. 
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Y.S. Liu et al. in [10] proposed a fast algorithm, called projected iterative soft-

thresholding algorithm (pISTA) which includes two stages, to solved the analysis 

model (2). In the first stage, the analysis model (2) is rewritten into an equivalent 

synthesis-like one. In the second stage, the non-smooth terms in the objective 

function is calculated by the proximal map. By incorporating the acceleration 

strategy in [11], the authors get the acceleration algorithm pFISTA. 

Convex functions are attractive because they can be more reliably minimized than 

non-convex functions. However, non-convex penalty functions can lead to 

enhanced sparsity of sparse signals. Nikolova in [12-14] discussed the mathematical 

properties of the solutions to non-convex regularized signal restoration problems. 

In [15], Yin et al. proposed a wavelet-TV denoising approach, which used non-

convex penalty function to strongly induce wavelet sparsity. In [16], nonconvex 

penalty functions have been shown both theoretically and empirically to give better 

results for compressed sensing than the 1l  norm, and the authors specifically 

examined two shrinkages and associated nonconvex penalties - p -shrinkage and 

firm thresholding. 

In this paper, in order to induce wavelet-domain sparsity, we propose a nonconvex 

regularization method for compressed sensing recovery, where we apply a 

nonconvex penalty due to its strong sparsity-inducing properties. 

This paper is outlined as follows. In the next section, in order to combine the 

advantages of the wavelet tight frame based method and the nonconvex penalty 

function, we propose a nonconvex regularization model for the problem (1). In this 

paper, we use firm thresholding, a continuous piecewise-linear approximation of 

hard thresholding, to compute the minimization involving the non-convex penalty. 

In section 3, we generalize the idea of the algorithm pISTA in [10] to solve the 

proposed model. Some numerical experiments are given in section 4 to illustrate the 

performance of the proposed algorithm. 

 

2. The proposed model 

Before introducing the new model, we give some necessary notations and 

definitions. 𝑊 = [𝑊0
𝑇 ,𝑊1,1

𝑇 ,⋯ ,𝑊1,𝐽
𝑇 , ⋯ ,𝑊𝑄,1

𝑇 , ⋯ ,𝑊𝑄,𝐽
𝑇 ]𝑇 ∈ ℝ(𝐽𝑄+1)𝑛2×𝑛2  be a 

multi-level wavelet tight frame transform operator (i.e TW W I= ) that converts an 

image to its wavelet coefficients, in which Q  indicates the level of wavelet 

decomposition and J is the number of high-pass filters that the wavelet system 

used. So Wf is a multi-level wavelet tight frame transform of f . 

In this paper, the estimated solution for the problem (1) is obtained by minimizing 

the objective function 

                 
2

2

1
( ) ( ) ,

2
x Wx y UFx =  + −                  (4) 

where 
2( 1)

1
( ) (( ) )

JQ n

ii
Wx Wx

+

=
 =  with 
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2

, ,
2

( )

, ,
2

t
t if t

x

if t










− 


= 
 


                  (5) 

and the term ( )Wx  promotes the sparsity. In the function , 0   is a firm 

thresholding parameter. 

Compressed sensing methods rely on the notion of sparsity, which is primarily 

approximated via the 1l  norm [17,18]. The nature and limitations of this relaxation 

have been well-studied in [19-22]. Recent work has shown that nonconvex penalty 

functions have both theoretically and empirically to give better results for 

compressed sensing than the 1l  norm [23-25]. In Figure 1, we can see the firm 

thresholding inducing penalty function can promote sparsity better. 

 

 

                 Figure 1: Non-convex penalty 

 

In the model (4), we use the non-convex penalty function   to promote sparsity, 

but we seek to ensure the strict convexity of the objective function  . 

To find a condition on   ensuring   is strictly convex, we rewrite   as 

follows: 
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2 2

1 2 1 2

1
( ) ( ) ,

2 2 2
x Wx Wx I e y UFx

 



 =  −  + − + −            (6) 

 

where 21( , , )
n

diag =   is a diagonal matrix with 

1, ( ) ,

0, ( ) ,

i

i

i

if Wx

if Wx





 
 = 


 

and (1, ,1)Te =  is a vector. 

We further denote that 

 

2 2

1 2 2

1
( ) ,

2 2
x y UFx Wx




 = − −  

2

2 1 2 1
( ) ( ) ( ) .

2 2
x Wx I Wx I e

 



 =  + − + −  

 

Then 

1 2( ) ( ) ( ).x x x = +  

 

Note that if both 1( )x  and 2 ( )x  are strictly convex, then ( )x  is strictly 

convex. We can see if ( ) ( )TUF UF I



−  is positive definite, the function 1( )x is 

strictly convex. In the following, we discuss the convexity of the function 2 ( )x . 

Define the function ( )t  as the following form 

 

2

2

, ,

( ) ( )
2 , .

2 2

t if t
t

t x t
if t



  
 



 


= + = 
+ 



 

 

By the definition of  , we have that it is twice differentiable on ℝ/{−𝜇, 0, 𝜇}. 

And we have ( ) ( ), (0) (0)     − + − +
   − = −  and ( ) ( )   − +

 =  by some 

simple calculating. By Theorem 6.4 of [26],  is strictly convex if it has a strictly 

increasing right-derivative. 

The function 2 ( )x  can be rewritten as a sum of the form 

 
2( 1)

1

( ) (( ) ),
JQ n

i

i

x Wx 
+

=

 =   
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With 

2

( ) , ( ) ,

(( ) ) ( )
, ( ) .

2 2

i i

i i
i

Wx if Wx

Wx Wx
if Wx



 




 


= 
+ 



 

 

Since the linear transformation can keep the convexity of the function ( )  , we get 

that the function 2 ( )x  is convex. For the convexity of the function ( )x , we 

have 

Theorem 2.1 If ( ) ( )TUF UF I



−  is positive definite, then the function ( )x  in 

(4) is strictly convex. 

 

3. Numerical algorithm 

In this paper, we extend the algorithm pISTA in [10] to solve the proposed model 

(4). By introducing new auxiliary variables u Wx= , and note that TW W I= , the 

model (4) can be reformulated as the following constrained optimization problem 

 

             
2

2

1
min (u) , . . .

2

T

u
y UFW u s t Wx u + − =              (7) 

(7) is equivalent to the following constrained optimization form: 

 

           
2

2( )

1
min (u) .

2

T

u Range W
y UFW u


 + −                      (8) 

 

The details about the proof of the equivalence can be seen in [10]. 

As in [10], we introduce an indicator function with 

 

0, ( ),
( )

, ( ),

if u Range W
d u

if u Range W


= 

 
 

 

then the synthesis-like analysis model (8) can be rewritten as the following 

unconstrained form 

 
2

2

1
min ( ) ( ).

2

T

u
u y UFW u d u + − +                    (9) 

 

 

 

 

In (9), we denote that 
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( ) ( ) ( ),g u u d u=  +  

2

2

1
( ) ,

2

Tf u y UFW u= −  

where ( )g u  is a non-smooth non-convex function, and ( )f u  is a smooth 

function with a fL -Lipschitz continuous gradient ( )( ).T T Tf WF U UFW u y = −  

We use the ISTA (the iterative soft-thresholding algorithm) in [27] to solve the 

problem (9) 

1 prox ( ( ))k g k ku u f u + = −   

2

2

1
arg min ( ) ( ( )) ( )

2
u k ku u u f u d u =  + − −  +  

2

( ) 2

1
arg min ( ) ( ( )) ,

2
u Range W k ku u u f u =  + − −      (10) 

where 
2

2

1
prox ( ) argmin ( )

2
f zx f z z x= + −  is a proximal map, and   is the step 

size. 

Observing that without the constraint ( )u Range W , (10) can be written as 

2

1 2

1
arg min ( ) ( ( ))

2
k u k ku u u u f u + =  + − −   

 

2( 1)
2

2
1

1
( ) ( ( ))

2

JQ n

i k k

i

u u u f u 
+

=

= + − −  ,             (11) 

where   is the function defined in (5). 

 

Note that the minimization in (11) is separable. With respect to each component, it 

is easy to show that the solution of (11) is 

 

1 (( ( )), , ),k firm k ku S u f u  + = −   

where 

0,

( , , ) ( sign( )), .

,

firm

if x

S x x x if x

if x
x




    
 







= −  

− 


 

Then the solution (10) can be represented as 

                   
1

1 ( ) 1

( ( ), , ),

( ),

k firm k k

k Range W k

u S u f u

u P u

  +

+ +

= − 

=
                 (12) 

where ( )Range WP  is the orthogonal projection operator onto ( )u Range W . With 

( )( )T T Tf WF U UFW u y = − , (12) can be written as 
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1

1 1

( ( ), , ),

( ),

T T T

k firm k k

T

k k

u S u WF U y UFW u

u WW u

  +

+ +

= + −

=
            (13) 

 

Substituting the second equation of (13) in the first one, we obtain 

 

1 ( ( ), , )T T T

k firm k ku S u WF U y UFW u  + = + −  

( ( ), , )T T T T T

firm k kS WW u WF U y UFW WW u  = + −  

( ( ), , )T T T T

firm k kS WW u WF U y UFW u  = + −  

( ( ( )), , ).T T T T

firm k kS W W u F U y UFW u  = + −  

 

By substituting the coefficients ku  and 1ku +  with images k kx u=   

and 1 1k kx u+ +=  , we get that 

1 ( ( ( )), , ).T T T

k firm k kx W S W x F U y UFx  + = + −  

 

In summary, the computation procedure for problem (7) is presented in the 

following algorithm. 

 

Algorithm 1 

Parameters: ,   and   

Initialization: 0x  

While not converge, do 

1 ( ( ( ), , )T T T

k firm k kx W S W x F U y UFx  + = + −  

Output: x  

 

Furthermore, the same accelerating strategy as FISTA [28] is introduced resulting 

in the following algorithm. 

 

Algorithm 2 

Parameters: ,   and   

Initialization: 0 0 01, ,t x x=  

While not converge, do 

1 ( ( ( ), , )T T T

k firm k kx W S W x F U y UFx  + = + −  

2

1

1 1 4

2

k

k

t
t +

+ +
=  

1 1 1

1

1
( )k

k k k k

k

t
x x x x

t
+ + +

+

−
= + −  

Output: x  



An efficient nonconvex regularization method for wavelet frame based Compressed… 9  

4. Numerical experiments 

In this section, we conduct several numerical experiments to illustrate the 

performance of the proposed nonconvex model (4). We test five images shown in 

Figure 2, where Figure 2(c)-(b) are three T2-weighted brain images with slices 7,10 

and 27 respectively, see in [10]. 

 

 
(a)                 (b) 

 
(c)                   (d)                   (e) 

Figure 2: Standard images used in the experiments. 

 

To test the performance of the proposed method with different sampling patterns, 

we use the Cartesian mask, pseudo-radial mask [10], and 30% sampled 2D Gaussian 

mask [10] shown in Figure 3(a)-(c) respectively, to undersample the k-space data 

of the images in Figure 3. 

 

 

Figure 3: Standard images used in the experiments 
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We use two tight frames: the Contourlet [30] and the shift-invariant discrete wavelet 

transform (SIDWT) [29], and the Daubechies wavelet with 4 decomposition levels 

is utilized for SIDWT in all experiments. 

We compare our method with two methods SFISTA [32] and pFISTA [10], 

which are two algorithms to solve the convex model (2). We implement all methods 

by using MATLAB 7.7 (R2008b), and run on an Intel Pentium Dual CPU at 2.60 

GHz and 4GB of memory. The quality of the reconstructed images is measured by 

Peak-signal-to-noise ratio (PSNR), and the relative 2l  norm error (RLNE). They 

are defined as follows: 

10
*

2

255
PSNR=20log ,

1
u f

mn
−

 

*

2

*

2

RLNE= .
u f

f

−
 

Where *f  is the fully sampled image, and u  is the reconstructed image. The 

stopping criterion of all the three methods is that the relative difference between the 

successive iterate of the reconstructed image satisfies the following inequality: 

( 1) ( )

52

( 1)

2

10 .

i i

i

u u

u

+

−

+

−
  

The parameters for all the methods are set as follows. For SFISTA, the step size

1/ (1 1/ )s = +  [11,31], and   is adjusted as in [31]. For pFISTA, the step size 

1p =  is set for both promising reconstruction performance and fast speed as in 

[10]. For our method, the step size   is also set to be 1. For fair comparison, the 

regularization parameters, s  of SFISTA, p  of pFISTA and   of our method 

are set such that the optimal PSNR values are achieved. 

 

4.1 Numerical experiments without additive noise 

In the first numerical experiment, we undersample k-space data of the images by 

three masks shown in Figure 3 (a)-(c) (the Cartesian mask, the Pseudo-radial mask 

and 30% sampled 2D Gaussian mask respectively), and SIDWT and the Contourlet 

are utilized to reconstruct MR images. 

In Tables 1-3, we list the PSNR values and the RLNE values for SFISTA, pFISTA 

and our method for five images to show the effectiveness of the proposed method. 

We see that our method is the best in terms of PSNR values and RLNE values. Take 
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the case of the images in Figure 2 (b) and (e) (undersampled by the masks in Figure 

3 (a) and (b)), the reconstructed images by all the methods are shown in Figures 4-

5 (c)-(e), and the difference images of the restored images in Figures 4-5 (f)-(h). 

 

Table 1: PSNR(dB) values and RLNE for various methods for the test images 

undersampled by the Cartesian mask      

Image frame PSNR RLNE 

SFISTA pFISTA Proposed SFISTA pFISTA Proposed 

Figure 2(a) SIDWT 35.98 35.95 38.87 0.0983 0.0982 0.0577 

Contourlet 34.54 34.59 36.18 0.1158 0.1146 0.0891 

Figure 2(b) SIDWT 36.69 37.54 38.88 0.1055 0.1069 0.0787 

Contourlet 35.46 35.57 37.97 0.1241 0.1226 0.0891 

Figure 2(c) SIDWT 34.32 34.42 35.75 0.1379 0.1354 0.0858 

Contourlet 33.75 33.77 34.04 0.1488 0.1485 0.1157 

Figure 2(d)SIDWT 37.37 37.28 38.25 0.1333 0.1345 0.0769 

Contourlet 36.44 36.44 39.74 0.1475 0.1460 0.1056 

Figure 2(e) SIDWT 35.82 35.82 38.75 0.1225 0.1226 0.0781 

Contourlet 37.00 37.04 38.78 0.1347 0.1348 0.1047 

 

 

Table 2: PSNR(dB) values and RLNE for various methods for the test images 

undersampled by the pseudo-radial mask         

Image frame PSNR RLNE 

SFISTA pFISTA Proposed SFISTA pFISTA Proposed 

Figure 2(a) SIDWT 39.32 39.47 39.84 0.0433 0.0426 0.0408 

Contourlet 36.48 36.45 36.70 0.0601 0.0603 0.0586 

Figure 2(b) SIDWT 39.32 39.49 39.91 0.0433 0.0425 0.0405 

Contourlet 38.16 38.16 38.26 0.0579 0.0579 0.0573 

Figure 2(c) SIDWT 34.58 34.57 36.29 0.0965 0.0966 0.0833 

Contourlet 33.64 33.63 34.27 0.1168 0.1170 0.1097 

Figure 2(d)SIDWT 37.91 37.94 38.60 0.0904 0.0902 0.0708 

Contourlet 35.99 35.99 36.71 0.1112 0.1114 0.1036 

Figure 2(e) SIDWT 35.80 35.78 36.19 0.0959 0.0961 0.0835 

Contourlet 35.24 35.23 35.82 0.1121 0.1126 0.1059 
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Table 3: PSNR(dB) values and RLNE for various methods for the test images 

undersampled by 30% sampled 2D Gaussian mask 

Image frame PSNR RLNE 

SFISTA pFISTA Proposed SFISTA pFISTA Proposed 

Figure 2(a) SIDWT 40.21 40.35 42.97 0.0497 0.0494 0.0333 

Contourlet 33.67 33.77 36.03 0.0940 0.0931 0.0690 

Figure 2(b) SIDWT 43.02 43.51 43.65 0.0416 0.0397 0.0347 

Contourlet 35.30 38.16 37.62 0.0911 0.0897 0.0672 

Figure 2(c) SIDWT 33.07 32.94 37.71 0.1103 0.1122 0.0725 

Contourlet 31.90 32.04 32.43 0.1460 0.1443 0.1138 

Figure 2(d)SIDWT 40.12 40.11 42.06 0.0915 0.0922 0.0750 

Contourlet 34.59 34.79 36.66 0.1436 0.1411 0.1139 

Figure 2(e) SIDWT 38.52 38.87 40.91 0.0993 0.0958 0.0785 

Contourlet 34.11 34.29 36.36 0.1396 0.1374 0.1093 

 

The regularization parameters ( , , )s p   are set to be (0.001, 0.001, 0.006), (0.004, 

0.004, 0.004), (0.005, 0.005, 0.006), (0.001, 0.001, 0.006), (0.001, 0.001, 0.004) for 

SFISTA, PFISTA and our method respectively, and the parameter in Algorithm 2 

is 0.12, 0.2, 0.18, 0.12, 0.08, when the images in Figure 2 (a)-(e) are undersampled 

by the Cartesian mask and reconstructed by SIDWT.  

The regularization parameters ( , , )s p   are set to be (0.0004, 0.0004, 0.0004), 

(0.0004, 0.0004, 0.0004), (0.0006, 0.0006, 0.0006), (0.0004, 0.0004, 0.0004), 

(0.0004, 0.0004, 0.0004) for SFISTA, PFISTA and our method respectively, and 

the parameter in Algorithm 2 is 0.2, 0.2, 0.18, 0.2, 0.2, when the images in Figure 

2 (a)-(e) are undersampled by the Cartesian mask and reconstructed by Contourlet. 

The regularization parameters ( , , )s p   are set to be (0.0004, 0.0004, 0.0006), 

(0.0002, 0.0002, 0.0002), (0.0004, 0.0004, 0.0006), (0.0003, 0.0003, 0.0006), 

(0.0004, 0.0004, 0.0006) for SFISTA, PFISTA and our method respectively, and 

the parameter   in Algorithm 2 is 0.12, 0.5, 0.3, 0.12, 0.3, when the images in 

Figure 2 (a)-(e) are undersampled by the pseudo-radial mask and reconstructed by 

SIDWT. 

The regularization parameters ( , , )s p    are set to be (0.0006, 0.0006, 0.0006), 

(0.0008, 0.0008, 0.004), (0.0006, 0.0006, 0.0006), (0.0006, 0.0006, 0.0006), 

(0.0004, 0.0004, 0.0004) for SFISTA, PFISTA and our method respectively, and 

the parameter in Algorithm 2 is 0.3, 0.36, 0.48, 0.3, 0.4, when the images in Figure 

2 (a)-(e) are undersampled by the pseudo-radial mask and reconstructed by 

Contourlet. 

The regularization parameters ( , , )s p    are set to be (0.001, 0.001, 0.003), 

(0.001, 0.001, 0.004), (0.003, 0.003, 0.003), (0.0004, 0.0004, 0.0008), (0.0006, 

0.0006, 0.0006) for SFISTA, PFISTA and our method respectively, and the 
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parameter in Algorithm 2 is 0.12, 0.16, 0.18, 0.72, 0.54, when the images in Figure 

2 (a)-(e) are undersampled by the 30% sampled 2D Gaussian mask and 

reconstructed by SIDWT. 

The regularization parameters ( , , )s p    are set to be (0.006, 0.006, 0.006), 

(0.006, 0.006, 0.006), (0.006, 0.006, 0.006), (0.006, 0.006, 0.006), (0.006, 0.006, 

0.006) for SFISTA, PFISTA and our method, and the parameter   in Algorithm 

2 is 0.18, 0.18, 0.18, 0.36, 0.18, when the images in Figure 2 (a)-(e) are 

undersampled by the 30% sampled 2D Gaussian mask and reconstructed by 

Contourlet. 

 

4.2 Numerical experiments with additive noise 

To demonstrate the ability of the proposed method in handling noise, Gaussian 

white noise with standard deviation 0.015 was added to both the real and the 

imaginary parts of the original k-space data. 

In Tables 4-6, we list the PSNR values and the RLNE values for SFISTA, pFISTA 

and our method for five images to show the effectiveness of the proposed method 

in handling noise. We see that our method is the best in terms of PSNR values and 

RLNE values. Take the case of SIDWT, we give the restored images of all the 

methods in Figures 6-7. 

 

Table 4: PSNR(dB) values and RLNE for various methods for the test images  

undersampled by the Cartesian mask and with Gaussian noise 

 

Image frame PSNR RLNE 

SFISTA pFISTA Proposed SFISTA pFISTA Proposed 

Figure 2(a) SIDWT 4.96 35.95 35.91 0.1101 0.1107 0.0833 

Contourlet 32.66 32.66 33.94 0.1240 0.1243 0.1040 

Figure 2(b) SIDWT 35.32 35.08 38.28 0.1160 0.1185 0.0809 

Contourlet 33.43 33.44 35.16 0.1339 0.1341 0.1067 

Figure 2(c) SIDWT 33.12 33.06 34.74 0.1496 0.1507 0.1013 

Contourlet 31.86 31.93 32.92 0.1620 0.1611 0.1307 

Figure 2(d)SIDWT 35.26 35.17 36.80 0.1597 0.1612 0.1376 

Contourlet 33.95 34.02 35.33 0.1691 0.1687 0.1462 

Figure 2(e) SIDWT 34.24 34.24 35.91 0.1459 0.1459 0.1219 

Contourlet 35.43 35.47 37.11 0.1518 0.1520 0.1294 
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Table 5: PSNR(dB) values and RLNE for various methods for the test images 

undersampled by the pseudo-radial mask and with Gaussian noise 

Image frame PSNR RLNE 

SFISTA pFISTA Proposed SFISTA pFISTA Proposed 

Figure 2(a) SIDWT 37.26 36.96 37.77 0.0601 0.0619 0.0579 

Contourlet 35.55 35.50 36.03 0.0731 0.0738 0.0708 

Figure 2(b) SIDWT 38.64 38.38 39.06 0.0614 0.0629 0.0598 

Contourlet 36.90 36.84 37.25 0.0749 0.0759 0.0738 

Figure 2(c) SIDWT 31.27 30.99 30.87 0.1132 0.1163 0.1077 

Contourlet 30.25 30.22 30.87 0.1275 0.1281 0.1212 

Figure 2(d)SIDWT 36.14 35.91 36.91 0.1167 0.1192 0.1036 

Contourlet 35.08 35.04 35.84 0.1318 0.1329 0.1253 

Figure 2(e) SIDWT 33.22 33.00 34.34 0.1201 0.1226 0.1094 

Contourlet 34.43 34.41 35.04 0.1306 0.1314 0.1254 

 

Table 6: PSNR(dB) values and RLNE for various methods for the test images 

undersampled by 30% sampled 2D Gaussian mask and with Gaussian noise   

Image frame PSNR RLNE 

SFISTA pFISTA Proposed SFISTA pFISTA Proposed 

Figure 2(a) SIDWT 36.32 35.99 37.87 0.0745 0.0768 0.0580 

Contourlet 34.13 34.19 35.85 0.0987 0.0985 0.0812 

Figure 2(b) SIDWT 38.05 37.68 40.40 0.0718 0.0742 0.0589 

Contourlet 35.70 35.77 37.53 0.0971 0.0970 0.0811 

Figure 2(c) SIDWT 31.62 31.42 35.93 0.1276 0.1303 0.0936 

Contourlet 32.22 32.29 32.93 0.1518 0.1512 0.1300 

Figure 2(d)SIDWT 36.32 36.12 39.42 0.1276 0.1303 0.0991 

Contourlet 34.98 35.06 36.83 0.1529 0.1527 0.1302 

Figure 2(e) SIDWT 35.42 35.26 37.00 0.1302 0.1323 0.0982 

Contourlet 34.50 34.58 35.97 0.1484 0.1479 0.1292 

 

Take the case of the images in Figure 2 (b) and (d) (undersample by the masks in 

Figure 3 (b) and (c)), the restored images of by all the methods are shown in Figure 

4-5(c)-(e), and the difference images of the restored images in Figure 4-5(f)-(h). 

The regularization parameters ( , , )s p    are set to be (0.002, 0.002, 0.008), 

(0.008, 0.008, 0.008), (0.004, 0.004, 0.004), (0.005, 0.005, 0.005), (0.003, 0.003, 

0.003) for SFISTA, PFISTA and our method respectively, and the parameter   in 

Algorithm 2 is 0.4, 0.24, 0.12, 1, 0.6, when the images in Figure 2(a)-(e) are 

undersampled by the Cartesian mask and reconstructed by SIDWT. 

The regularization parameters ( , , )s p    are set to be 0.007 for SFISTA, PFISTA 

and our method respectively, and the parameter   in Algorithm 2 is 0.35, 0.35, 
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0.35, 0.56, 0.15, when the images in Figure 2(a)-(e) are undersampled by the 

Cartesian mask, added the Gaussian noise with standard deviation 0.01, and 

reconstructed by Contourlet. 

The regularization parameters ( , , )s p    are set to be (0.006, 0.006, 0.006), 

(0.006, 0.006, 0.006), (0.008, 0.008, 0.008), (0.006, 0.006, 0.006), (0.006, 0.006, 

0.006) for SFISTA, PFISTA and our method respectively, and the parameter   in 

Algorithm 2 is 0.36, 0.36, 0.24, 0.18, 0.36, when the images in Figure 2(a)-(e) are 

undersampled by the pseudo-radial mask and reconstructed by SIDWT. 

The regularization parameters ( , , )s p    are set to be 0.003 for SFISTA, PFISTA 

and our method respectively, and the parameter in Algorithm 2 is 0.45, 0.45, 4.5, 

3, 3, when the images in Figure 2(a)-(e) are undersampled by the pseudo-radial 

mask, added the Gaussian noise with standard deviation 0.01, and reconstructed by 

Contourlet. 

The regularization parameters ( , , )s p   are set to be (0.006, 0.006, 0.006), (0.006, 

0.006, 0.006), (0.006, 0.006, 0.006), (0.006, 0.006, 0.006), (0.006, 0.006, 0.006) for 

SFISTA, PFISTA and our method respectively, and the parameter  in Algorithm 2 

is 0.18, when the images in Figure 2(a)-(e) are undersampled by the 30% sampled 

2D Gaussian mask and reconstructed by SIDWT. 

The regularization parameters ( , , )s p    are set to be (0.003, 0.003, 0.003), (0.003, 

0.003, 0.003), (0.003, 0.003, 0.003), (0.003, 0.003, 0.003), (0.003, 0.003, 0.003) for 

SFISTA, PFISTA and our method respectively, and the parameter  in Algorithm 2 

is 3, 3, 3, 0.15, 3, when the images in Figure 2(a)-(e) are undersampled by the 30% 

sampled 2D Gaussian mask, added the Gaussian noise with standard deviation 0.01, 

and reconstructed by Contourlet. 
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(a)                   (b) 

 

         (c)                  (d)                  (e) 

 

              (e)                 （f）                (h) 

Figure 4: Reconstructed images of different methods using SIDWT on the 

image in Figure 2 (a) which is undersampled by the Cartesian mask. (a) is the 

original image. (b) is the Cartesian mask. (c)-(e) are the reconstructed images 

of (a). (f)-(h) are the different images of (c)-(e) to the ground truth image 
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     (a)      (b) 

 

 

             (c)                  (d)                  (e) 

             (f)                  (g)                  (h) 

Figure 5: Reconstructed images of different methods using Contourlet on the 

image in Figure 2 (a) which is undersampled by the pseudo-radial mask. (a) is 

the original image. (b) is the pseudo-radial mask. (c)-(e) are the reconstructed 

images of (a). (f)-(h) are the different images of (c)-(e) to the ground truth 

image. 



18                                           Yang and Jing  

 

 

 

 

 

 

 

 

 

                    (a)                   (b) 

 

            （c）               (d)                   (e) 

 

             (f)                  (g)                  (h) 

Figure 6: Reconstructed images of different methods using SIDWT on the 

image in Figure 2 (a) which is undersampled by the 30% sampled 2D 

Gaussian mask and with Gaussian noise. (a) is the original image. (b) is the 

30% sampled 2D Gaussian mask. (c)-(e) are the reconstructed images of (a). 

(f)-(h) are the different images of (c)-(e) to the ground truth image. 
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    (a) (b) 

                     

   (c)                     (d)                     (e) 

                                    

(f) (g) (h) 

                                          

Figure 7: Reconstructed images of different methods using contourlet on the 

image in Figure 2 (a) which is undersampled by the pseudo-radial mask and 

with Gaussian noise. (a) is the original image. (b) is the pseudo-radial mask. 

(c)-(e) are the reconstructed images of (a). (f)-(h) are the different images of 

(c)-(e) to the ground truth image. 
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               (a) (b) 

 

 

 
                (c)                                 (d) 

 

Figure 8: (a) and (b) are the empirical convergence results without noise and 

(c)-(d) with noise. The brain image in Figure 2(b), the Cartesian mask and 

SIDWT are adopted in (a). The brain image in Figure 2 (e), the pseudo-radial 

mask and contourlet are adopted in (b). The brain image in Figure 2 (b), the 

30% sampled 2D Gaussian mask and SIDWT are adopted in (c). The brain 

image in Figure 2 (d), the pseudo-radial mask and contourlet are adopted in 

(d). 
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5. Conclusion 

In this paper, we propose a variation model for compressed sensing recovery. This 

model takes advantage of the wavelet tight frame and nonconvex shrinkage 

penalties. We discuss the condition of strict convexity of the model. Various 

numerical results were reported to exhibit the performance of the new model in 

terms of the convergence speed and reconstruction errors. 
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