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In this communication, we study the existence of nonnegative solutions of a 

nonlinear system in Banach spaces. These maps involved in the system defined on 

cone do not necessarily take values in the cone. Using fixed point theorems just 

established for this type of mappings, nonnegative solutions of the system are 

obtained and used to investigate elliptic boundary value problems (BVPs). 

 

MSC(2010): 47H10, 35J57. 

Keywords: Nonlinear system, Nonnegative solutions, Nowhere normal-outward 

maps, Fixed point, Elliptic BVPs. 

 

 

 

 

 

 

 

 

 

 

 

 
1 College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, 

Sichuan 610225, P. R. China.  
2 College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, 

Sichuan 610225, P. R. China.  

 

Article Info: Received: August 14, 2021. Revised: August 27, 2021.  

Published online: August 31, 2021. 



16                                         Yang and Chen  

1. Introduction  

It has been well-known that nonlinear systems arise in many fields of scientific 

researches and engineering practices, the study on existence of nonnegative 

solutions for that is very interesting and of great importance, see, for example, [1, 

2] and the references there. However, the nonlinear terms involved in that take 

negative values in many cases, to the best of our knowledge, there is little study on 

it.  

Recently, Yang, one of authors of [3], and Lan established a new fixed point index 

theory for nowhere normal-outward compact maps [4] and proved a few fixed point 

theorems, which were used to population models with sign-changing nonlinearities 

[5]. In this communication, we expand some results [3] to systems and apply them 

to investigate elliptic boundary value problems (BVPs). 

We recall some knowledge on r-nowhere normal-outward maps and a fixed point 

theorem for these maps obtained in [3]. 

Let K  be a closed convex set in a Banach space X  with norm   , and 

let :r X K→  be a retraction, that is,  r  is continuous and satisfies ( )r y y=  

for y K . Recall that a map :A D K X →  is called to be a r-nowhere normal 

-outward map on D  relative to K  if 

( )( )  1\Ax X r x x−    for x D . 

The following criterion was obtained in [3, Proposition 2.1]. 

Lemma 1.1 Let :A D K X →  be a map and let :r X K→  be a retraction. If 

 

 ( )( )x A r x=   for some ( )1x r D−   (1.1) 

 

implies x D , then A  is a r-nowhere normal-outward map on D relative to K. 

A map :A D X X →  is said to be compact if A  is continuous and ( )A S  is 

relatively compact for each bounded subset S  of D . 

Let KD D K=  , KD D K=   and KD D K =   . In [3], we established 

the following known result (see [3, Theorem 3.2]). 

Theorem 1.1 Let K  be a closed convex set in X  and let :r X K→  be a 

retraction. Let 1,D D  be bounded open sets in X such that 1

K KD D  and 

1

KD   . Assume that 
1: \K KA D D X→  is compact such that the following 

conditions hold. 

(h1) There exists 0 Kx D  such that 𝑡𝐴 + (1 − 𝑡)𝑥0̂  is r-nowhere normal-

outward on KD  relative to K  for (0,1]t . 

(LS) 0(1 )x tAx t x + −  for Kx D  and (0,1)t . 
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(h2) There exists  \ 0e K  such that A e+  is a r-nowhere normal-

outward on 1

KD  relative to K  for 0  . 

(E) x Ax e +  for 1

Kx D  and 0  . 

Then A  has a fixed point in 
1

\K KD D . 

Let K  be a cone in X . Then K  defines a partial order   in X  by 

x y  if and only if 0y x−  . A cone K  is said to be reproducing if X K K= − , 

to be total if X K K= −  and to be normal if there exists 0   such that 

0 x y   implies x y  [1]. 

Recall that a real number   is called an eigenvalue of a linear operator 

:L X X→  if there exists  \ 0X  such that L = . The radius of the 

spectrum of L  in X , denoted by ( )r L , is given by ( ) lim
m

m

m
r L L

→
= .  

We write 

 ( )
( )

1

1
L

r L
 = . (1.2) 

We denote by 𝐿(𝐾) the set of compact linear operators :L X X→  satisfying 

( )L K K  and ( ) 0r L  . By Krein-Rutman theorem (see [6, Theorem 3.1] or [7]), 

if K  is a total cone and 𝐿 ∈ 𝐿(𝐾), then there exists an eigenvector  \ 0K  

such that 

 ( )1 L L  = . (1.3) 

 

2. Nonnegative solutions of a nonlinear system 

Let 2, nn K K K K =     and : n

iA K X→ . We shall establish the existence 

results of nonzero solutions in 
nK  for the following system of the form 

 

 ( )i ix A x=  for  : 1,2, ,ni I n = ,  (2.1) 

where ( )1 2, , , n nx x x x X=  . 

Let nX X X X=    with the maximum norm 

 x =  1 2max , , , nx x x   

and ( )1 2, , ,n nr x rx rx rx= . Then : n

n nr X K→  is a retraction. A map 

: nA K X→  is called to be a r-nowhere normal-outward map with respect to 

component ( )i nx i I  on 
nK  relative to K , if nx X , i i nx Ar x= implies 

ix K . 
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Using Theorem 1.1, we prove 

Theorem 2.1 Let K  be a total and normal cone in X , and let :r X K→  be a 

retraction. Assume that : n

iA K X→  is compact and satisfies the following 

conditions: 

(hn) For any ni I , there exists ix K  such that 𝑡𝐴𝑖 + (1 − 𝑡)𝑥𝑖̂  is      

r-nowhere normal-outward map with respect to component ix  on nK  relative to 

K  for (0,1]t .  

(LS)n For any ni I , there exist  \ 0iv K ， ( )iL KL  and 

( )( )10,i iL   such that 

( )( ) ( )1i i i i i iA x L L x v  − +   for x K . 

(E)n There exist 0 0,  0ni I    and ( )0L KL  such that 

( ) ( )
0 01 0 0i iA x L L x   for 

0
x K . 

Then (2.1) has a solution in  \ 0nK . 

Proof. Let : n

nA K X→  be defined by ( )1 2, , , nAx A x A x A x= . Then A  is 

compact since iA  is compact. Let nx X  such that 0(1 )x tArx t x= + − , where 

( )0 1 2, , , nx x x x= . Then (1 )i i ix tArx t x= + − . By (hn), we see ix K . Hence 

𝑡𝐴 + (1 − 𝑡)𝑥0̂ is a rn-nowhere normal-outward map on 
nK  relative to 

nK  and 

( 1h ) of Theorem 1.1 holds. 

    Let 0  ,  : ,n nK x x K x =  
 
and  : ,n nK x x K x  =  = . 

Since 

( )( )( ) ( )( ) ( )1 1i i i i i i ir L L L r L   − = −  , 

( )( )( )
1

1 i i iI L L 
−

− −  exists and is a bounded linear operator such that 

( )( )( ) ( )
1

1 i i iI L L K K 
−

− −  , 

where :I X X→  is the identical mapping ( )I z z= . 

Let   be the normality constant of K  and 

( )( )( ) ( ) 1
*

0max , ,i i i i i i nI L L v x i I    
−

= − − +  . 

Let *   and ( )0 1 2, , , nx x x x= . Then 0

nx K . We prove that 

 

 0(1 )x tAx t x + −   for 
nx K  and (0,1]t .  (2.2) 
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In fact, if not, there exist 
nx K  and (0,1]t  such that 0(1 )x tAx t x= + − . This, 

together with (LS)n, implies 

( ) ( )( ) ( ) ( )

( )( ) ( )

1

1

1 1i i i i i i i i

i i i i i

x lA x l x l L L x v l x

L L x v x

 

 

 = + −  − + + − 

 − + +   
 

and 

( )( )( )i i i i i i iI L L x v x − −  +   for ni I . 

This, together with ( )( )( ) ( )
1

i i i iI L L K K 
−

− −  , implies 

( )( )( ) ( )
1

i i i i i i ix I L L v x 
−

 − − + . 

Since K  is a normal cone with normality constant  , it follows that 

( )( )( ) ( )
1

*

i i i i i i ix I L L v x   
−

 − − +   for ni I . 

Hence, we have 
*x  =   , a contradiction. (LS) of Theorem 1.1 holds. 

Without loss of generality, we may assume A  has not fixed point in 
0

P

(otherwise, the result has been proved). Since K  is total, it follows from the Krein-

Rutman theorem that there exists  0 \ 0K   such that        

( ) ( )0 1 0 0 0L L  = .    

    Let 

0 0

0

1

0,0, ,0, ,0, ,0

i n i

e 

− −

 
 =
 
 

.  

We prove that 

 

 x Ax e= +  for 
0

nx K  and 0  .  (2.3) 

 

In fact, if not, there exist 
0

nx K  and 0   such that 

 

 x Ax e= + . (2.4) 

 

When 0i i , we have i ix Arx=  and ix K  by (hn) with 1t = . When 0i i= , by 

(E)n, 
0 0 0 0i ix A rx  = +  . Hence nx K  and A e+  is r-nowhere normal-

outward map on 
0

n

K   relative to 
nK . This implies 0  . By (E)n and (2.4), we 

have ( ) ( )
0 01 0 0 0i iA x L L x   and 

0 0ix  . Let 

  
01 0sup 0: ix  =   .  (2.5) 
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Then 10      , 
0 1 0ix   and ( ) ( )

( )0

1
0 1 0 0 0

1 0

iL x L
L


  


 = . By (2.4) 

and (E)n, 

( ) ( ) ( ) ( )
0 0 00 1 0 0 1 0 1 0i i ix A x L L x     = +  +  + . 

Hence, by (2.5), we have 1 1 1    +  , a contradiction. (E) of Theorem 1.1 holds. 

By Theorem 1.1, A  has a fixed point in 
0

\nK K  , that is, (2.1) has a solution in 

 \ 0nK .                                                

The following result shows the nome-type compression and expansion theorem of 

(2.1). 

Theorem 2.2 Let K  be a total, normal cone in X , :r X K→  be a retraction, 

: n

iA K X→  be compact and satisfy:  

( )nh   itA  is r-nowhere normal-outward map with respect to component ix  

on 
nK  relative to K  for any ni I  and (0,1]t . 

Assume that the following conditions hold: there exist 0 1, (0, )     with

0 1   such that for any ni I  

(E)n iA x K  for 
0

nx K  and i iA x x  for 
0

nx K with 0ix = . 

(Hn) i iA x x  and 
1

nx K  with 1ix = . 

Then (2.1) has a solution in  \ 0nK . 

Proof. Let A  be defined by Theorem 2.1 and ( )0i nx i I=  . Then ( )nh  implies 

that tA  is rn-nowhere normal-outward map on 
nK  relative to nK  for (0,1]t . 

Let 
0

nx K . Then there is ix P  such that 0ix =  and iAx A x 

0ix x= =  by (En). Since 
0

: n nA K K → , the standard argument shows 

( ) ( )
0 0, , , 0n n

r K Ki A K i A K = = , for example, see [6]. 

Without loss of generality, we may assume that A  has no a fixed point in 
1

nK  

(otherwise, the result has been proved). We prove x Ax  for 
1

nx K  and 

0 1  . 

In fact, if there exist 
1

nx K  and 0 1   such that x Ax= , then 1   

since A  has no a fixed point in 
1

nK . From i ix A x=  for any ni I , we have 

i ix A x= .  

        Let 0 ni I  such that 
0 1ix = . By (Hn), 

0 0i ix A x= 
0 0i iA x x , 

it is a contradiction. By Theorem 3.1 [3], ( )
1, , 1n

r Ki A K = . 
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Hence, A  has a fixed point in 
1

\n nK K   and (2.1) has a solution in  \ 0nK .                                                        

 

Remark 2.1 One may refer to [8] for the nome-type compression and expansion 

theorem, where maps defined on cone and take values in the cone. 

 

3. Nonnegative solutions of elliptic boundary value problems  

In this section, we investigate the existence of nonzero nonnegative (classical) 

solutions of the following elliptic systems:  

 

 {
𝐿𝑖𝑢𝑖(𝑧) = 𝑓𝑖(𝑧, 𝔲(𝑧))   𝑖𝑛  Ω  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ∈ 𝐼𝑛,

𝑢𝑖(𝑧) = 0  𝑜𝑛  ∂Ω,
  (3.1) 

 

where ( , 2)m m m  R N   is a bounded domain, 

 

 ( ) ( )
( )

( )
( )

( ) ( )( ) ( ) ( )

, 1 1

,
m m

i ii i i

i i kj j i

k j jk j j

u z u z
u z a z b z c z u z

z z z= =

  
= − + +     
 L  (3.2) 

 

where ( ) ( ) ( ) ( )( )1 2, , , nz u z u z u z=u , ( )1 2, , , mz z z z= , : n

if + →R R , 

( )n

if C R and (0,1)  is a given constant. When ( )n

if C R
 

+→ R , system (3.1) was studied in [10]. A single Elliptic BVP with Dirichlet 

boundary condition was studied in [5]. The definitions of L and   are same as in 

[2, 10]. 

u  is called to a (classical) solution of (3.1), we mean a function 

( ) ( )2

iu C C     satisfying (3.1) pointwise. A solution u  of (3.1) is said to be 

nonnegative if iu P , where 

 ( ) ( ) : 0P u C u z for z=           (3.3) 

 

is the positive cone in ( )C  , which is total and normal. 

We always assume that the following conditions hold for each ni I : 

(C1) 𝑎𝑘𝑗
(𝑖)

, 𝑏𝑗
(𝑖)

, 𝑐
(𝑖)

∈ 𝐶𝜇̂(Ω) for , mk j I , and ( )( ) 0ic z   for z . 

(C2) ( ) ( )( ) ( )i i

kj jka z a z=  for z  and , mk j I , and there exists 0i   such that  

( )
2( )

, 1

m
i

kj k j i

k j

a z    
=

  for x  and ( )1, , m

m  = R . 

(C3) 
∂𝑎𝑘𝑗

(𝑖)

∂𝑧𝑘
∈ 𝐶𝜇̂(Ω) for , mk j I . 
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(C4) ( )
( )i

j

j

b
C

z


 


 and 

( )
( )

( )

( )2

i

j i

j

b z
c z

x





 for x  and mj I . 

(h1) 𝑓𝑖 ∈ 𝐶𝜇̂(Ω × ℝ+
𝑛 ). 

(h2) (Positivity condition) ( )0, 0
i

if z y 
 
for z ,  

where 
0

i

y =
 
( )1 2 1 1, , , ,0, , ,i i ny y y y y− +  and iy +R . 

Let L be defined by [5] and all assumptions on L hold. Following the known 

results [5], there is a bounded linear operator L  satisfying 

(1) L  maps ( )C   to 𝐶2+𝜇̂(Ω). 

(2) If 𝑢 ∈ 𝐶2+𝜇̂(Ω)  and 𝑣 ∈ 𝐶𝜇̂(Ω)  satisfy u Lv= , then u  and v  

satisfy 

 {
𝐿𝑢(𝑧) = 𝑣(𝑧)    𝑖𝑛   Ω,
𝑢(𝑧) = 0    𝑜𝑛   ∂Ω,

  (3.4) 

see [1, Theorem 4.2]. 

Let 𝜓 ∈ 𝐶𝜇̂(Ω) and let 

 ( ) ( )L u L u =   for ( )u C    (3.5) 

and 

( ) min :z z =  . 

 

It is well known that if 𝜓 ∈ 𝐶𝜇̂(Ω) with 0  , then ( ) ( ):L C C

  →  

( )C   is a compact linear operator such that ( )L P P   for each (0,2)   and 

there exists 𝜑 ∈ 𝑃 ∩ 𝐶0
2+𝜇̂(Ω)\{0} such that 

 

 ( )1 L L   = ,  (3.6) 

 

where ( ) ( )1 1/L r L  =  and ( )r L  is the spectral radius of L ,  

see [1, Theorem 4.2]. 

We define an operator ( ): n

iA P C→   by 

 

 ( )( ) ( )( )i i iA z L F z=u u   (3.7) 

 

 

where iL  is an operator corresponding to L  when 𝐿 = 𝐿𝑖  in (3.4) and :iF

( )nP C→   is a Nemytskii operator defined by 
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 ( )( ) ( )( ),i iF z f z z=u u .  (3.8) 

 

   Let ( ): n

n
A P C→   by ( )1 2, , , nA A A A=u u u u .  

By the known results, it is easy to verify under the conditions (h1) that A  is 

compact, and nPu  is a 

solution of the following fixed point equation 

 

 ( ) ( )z A z=u u   for z ,  (3.9) 

 

if and only if 𝑢𝑖 ∈ 𝐶0
2+𝜇̂(Ω) and u  is a nonnegative solution of (3.1), see [5, 

Lemma 2.2]. 

Let ( ):r C P →  be defined by 

 

 ( )( ) ( ) ( ) : max ,0r u z u z u z+= = .  (3.10) 

 

Then it is easy to know that r  is a retraction from ( )C   to P , ( ) ( )1r P C− =   

and ( ):r C P →  is a Lipschitz continuous map with Lipschitz constant 1. 

Theorem 3.1 Assume that (C4), (h1) and (h2) hold. Then tA  is a rn-nowhere 

normal-outward map on 
nP  relative to 

nP  for (0,1]t , where iA  and r  are 

same as in (3.7) and (3.10), respectively. 

Proof. Let ( ) ( )1 2, , , , ,i n
n

u u u u C=  u  such that ( ) ( )( )nz tA r z=u u . Then 

( ) ( )( )i i iz tA r z=u u  for any ni I . Similarity to the proof of Theorem 3.1 [5], we 

obtain iu P  and nPu .                                        

By using Theorems 2.1 and 3.1, we prove our main result on the existence of 

nonzero nonnegative solutions of (3.1). 

Theorem 3.2 Assume that (C4), (h1), (h2) and the following conditions hold. 

(H1) For any ni I , there exist ϕ
𝑖

∈ 𝐶 𝜇̂(Ω) with 0i  , ( )( )10,
ii L    

and 0

iu P  such that 

( ) ( )( )0 1, ( ) ( )
i

i

i i i if z y u z L y y  + −   for z  and ny +R . 

 

(H2) There exists 0 ni I  and 𝜓𝜌 ∈ 𝐶𝜇̂(Ω) with 0   such that 

( ) ( ) ( )
0 01,i if z y L y y

    for z , [0, ]y   and ny +R . 
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Then (3.1) has a solution  \ 0nPu  with 𝑢𝑖 ∈ 𝐶0
2+𝜇̂(Ω). 

 

Proof. By Theorem 3.1, we have that tA  is a rn-nowhere normal-outward map on
nP  relative to nP  for (0,1]t . 

Since ( )iL P P , by (H1) we have 

( ) ( )( ) ( )1 1( )
i i

i

i iA z u z L L u   + −u  for nPu  and z . 

where ( )1 0( ) ( ) 0i iu z L u z=   for z . Hence, A  satisfies Theorem 2.1 (LS)n. 

By (H2) and ( )
0i

L P P , we have 

( ) ( ) ( )
0 01i iA z L L u

  u  for 
nPu  and z . 

and A  satisfies Theorem 2.1 (E)n. 

By Theorem 2.1, there exists \n nP Pu  such that Au = u . It follows that u  is 

a solution of (3.1) and 𝑢𝑖 ∈ 𝐶0
2+𝜇̂(Ω).                             

Notation: Let : (0, )i →   with 0i  . For  ( )\ 0iy R+ , let 

( ) ( )
( , ) ( , )

( , ) ( , )
,

( ) ( )i i
n n

i i
i i

z y R z y Ri i

f z y f z y
f y inf f y sup

z z
 

 
+ + 

= = , 

( ) ( ) ( ) ( )
0 0

lim inf / , lim sup /
i i i i

i i
i i i i

y y
f f y y f f y y   



→ + →
= =  . 

As a special case of Theorem 3.2, we obtain the following result. 

Corollary 3.1 Assume that (C4), (h1), (h2) and there exists 𝜓𝑖 ∈ 𝐶𝜇̂(Ω) with 0i   

such that the following condition holds. 

1( )H   ( ) ( )1i i
f L 



  for any ni I . 

2( )H   ( ) ( )
0 0

1
0i i

L f    for some 01 i n  . 

3( )H  For any ( )0,r   and ni I , there is 0i

rM   such that ( , ) i

i rf z y M  

for nz R+  and [0, ]iy r . 

Then (3.1) has a solution  \ 0nPu  with 𝑢𝑖 ∈ 𝐶0
2+𝜇̂(Ω). 

Proof. By 1( )H   and (H3), there exists 0i   such that 

( ) ( )( )1, ( )
ii i i if z y L z y   −   for ( ), nz y R+  and [ , )i iy r   

and 

( ) ( )( )1, ( )
i i

i

i r i i if z y M L z y   + −   for ( ), nz y R+ . 

By 2( )H  , it is easy to see that there exists 0   such that ( ), 0if z y   for 

z , y   for every ni I  and 
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( ) ( )
0 0 00

1, ( )
ii i if z y L z y    for ( ), nz y R+  and [0, ]y  . 

 

The result follows from Theorem 3.2.                               

Remark 3.1 Let ( )
1

1
1

, ( )

n i
i ij j nj

ij jj i

m
y

k y

i i i i if z y z y e d y

 


=

=

− −
+




= −  or ( ),if z y =

1,
1

ii

i

ijii

i i
i in

i j jj j i

s y
d y

y a y






= 

−
+ +

, all the parameters are nonnegative, 1i  .  

When 1i = , population models of Ricker types (3.1) and Beverton-Holt types (4.1) 

in [10] were studied. However, the results can be not utilized to discuss a case of 

1i  , but we can treat the case of 1i   since ( )0, 0
i

if z y  . 

 

4. Conclusions and Remarks 

We study the existence of nonnegative solutions of a nonlinear system consisting of 

nowhere normal-outward maps in Banach spaces, this type of maps defined on a 

cone does not necessarily take values in the cone and contains weakly inward maps 

and generalized inward maps under the appropriate conditions [3]. In history, 

someone established the fixed point index of weakly inward maps or generalized 

inward maps, but it is difficult to use the index since verifying the weakly inward 

maps or generalized inward maps is very difficult [9]. From the discussion in this 

paper, we know that verifying the nowhere normal-outward map is easy in 

applications. The existence of nonnegative solutions [5] of a single elliptic BVP is 

extended to system (3.1) via using Theorem 2.1, system (3.1) has many uses such 

as population models [10] or Volterra-Lotka competition models [11] or steady state 

periodic solutions for parabolic systems [12]. We hope that the results of this paper 

will be applied in many fields. 
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