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Abstract

In this communication, we study the existence of nonnegative solutions of a
nonlinear system in Banach spaces. These maps involved in the system defined on
cone do not necessarily take values in the cone. Using fixed point theorems just
established for this type of mappings, nonnegative solutions of the system are
obtained and used to investigate elliptic boundary value problems (BVPs).
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1. Introduction

It has been well-known that nonlinear systems arise in many fields of scientific
researches and engineering practices, the study on existence of nonnegative
solutions for that is very interesting and of great importance, see, for example, [1,
2] and the references there. However, the nonlinear terms involved in that take
negative values in many cases, to the best of our knowledge, there is little study on
it.

Recently, Yang, one of authors of [3], and Lan established a new fixed point index
theory for nowhere normal-outward compact maps [4] and proved a few fixed point
theorems, which were used to population models with sign-changing nonlinearities
[5]. In this communication, we expand some results [3] to systems and apply them
to investigate elliptic boundary value problems (BVPs).

We recall some knowledge on r-nowhere normal-outward maps and a fixed point
theorem for these maps obtained in [3].

Let K be aclosed convex set in a Banach space X with norm |- |, and
let r: X — K bearetraction, thatis, r is continuous and satisfies r(y) =y
for yeK.Recall thatamap A:Dc K — X s called to be a r-nowhere normal
-outward mapon D relativeto K if

Axe(X\r*(x))u{x} for xeD.

The following criterion was obtained in [3, Proposition 2.1].
Lemmalllet A:DcK—>X beamapandlet r: X — K be a retraction. If

x=A(r(x)) forsome xer™(D) (1.1)

implies xe D, then A is ar-nowhere normal-outward map on D relative to K.
Amap A:Dc X — X issaid to be compact if A is continuous and A(S) is
relatively compact for each bounded subset S of D.

Let D, =DnK, Dk =DNK and oD, =D K. In [3], we established

the following known result (see [3, Theorem 3.2]).
Theorem 1.1 Let K be a closed convex set in X and let r: X - K be a

retraction. Let D',D be bounded open sets in X such that D_ic D, and
Dy =@ . Assume that A:BK\Di — X is compact such that the following
conditions hold.

(h1) There exists X, € D, such that tA + (1 —t)x, is r-nowhere normal-
outward on Dx relativeto K for te(0,1].

(LS) x=tAx+(@-t)x, for xeoD, and te(0,1).
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(h2) There exists eeK\{O} such that A-+1e is a r-nowhere normal-

outward on D_i relativeto K for 4>0.
(E) x= Ax+1e for xeoDy and 1>0.

Then A has a fixed pointin D« \ Dx.
Let K be a cone in X . Then K defines a partial order < in X by
x<y ifandonlyif y—x>0.Acone K issaidtobereproducingif X =K-K,

to be total if X =K—K and to be normal if there exists o >0 such that
0<x<y implies ||x|<aolly| [1].

Recall that a real number A4 is called an eigenvalue of a linear operator
L:X — X if there exists @ e X\{0} such that Ap=Lg. The radius of the

spectrum of L in X, denoted by r(L), isgivenby r(L)=Ilimg/L|" .

We write

1
L)=——:. 1.2
(L) 0 (12)
We denote by L(K) the set of compact linear operators L: X — X satisfying
L(K)c K and r(L)>0.By Krein-Rutman theorem (see [6, Theorem 3.1] or [7]),

if K isa total cone and L € L(K), then there exists an eigenvector ¢ e K\{0}
such that
(pzlul(L)L(p. (1.3)

2. Nonnegative solutions of a nonlinear system
Let n>2, K"=KxKx...xK and A :K"— X.We shall establish the existence
results of nonzero solutions in K" for the following system of the form

x=A(x) for iel ={12...,n}, (2.1)
where X =(%,%,,...,%, )€ X,.
Let X, =XxX x...x X with the maximum norm
1= max i - I
and  rx=(r,MNG,....1x,) . Then r:X —K" is a retraction. A map

A:K" — X is called to be a r-nowhere normal-outward map with respect to
component x (iel,) on K" relative to K, if xeX_ , X =Arx implies
X K.
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Using Theorem 1.1, we prove
Theorem 2.1 Let K be a total and normal conein X ,andlet r: X - K bea

retraction. Assume that A :K" — X is compact and satisfies the following

conditions:

(hn) For any iel, , there exists x. € K such that tA; + (1 —t)x, is

r-nowhere normal-outward map with respect to component x, on K" relative to
K for te(0,1].

(LS)» For any iel , there exist v,eK\{0} , LelL(K) and
& €(0,24(L;)) such that

Ax<(s(L)-&)L(x)+y, for xeK.
(E)n There exist iyel,, p,>0 and L, eL(K) such that
Ax= (L)L (x ) for xedK, .

Then (2.1) has a solution in K" \{0} .
Proof. Let A:K"— X, be defined by Ax=(Ax AX...,AX). Then A is
compact since A is compact. Let xe X, such that x=tArx+(1-t)x,, where

n?

Xo =(X,%,,.... %) . Then x =tArx+(1—t)x . By (hn), we see x K . Hence

tA + (1 — t)x, isarn-nowhere normal-outward map on K" relativeto K" and
(h/) of Theorem 1.1 holds.

Let p>0, K;={X:XGK”,||X||<,0} and 5K2={XIX€ K”,||x||=p}.
Since

r((4(L)-&)L)=(m(L)-&)r(L)<1,

(I —(,ul(Li)—gi ) Li) exists and is a bounded linear operator such that

-1
(1-(m(L)-&)L) (K)cK,
where |:X — X is the identical mapping 1(z)=z.
Let o be the normality constant of K and

. 1 .
o =max{p0,aH(l—(yi(Li)—gi)Li) (vi+xi)H,|eln}.
Let p>p  and X, =(X,X%,,....X,). Then x, e K". We prove that

x#tAX+(1-t)x, for xedK} and te(0,1]. (2.2)
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In fact, if not, there exist xe0K) and te(0,1] suchthat x=tAx+(L-t)x,. This,
together with (LS)n, implies

X =1AX+(1-1)x, sl[(,ul(l_i)—gi)l_i(x)+vi]+(1—l)xi
s(yl(l_i)—gi)Li(x)+vi+xi

and
( -& L,)x <v,+x  for iel,.

This, together with (1 - ( &)L) (K “(K)c K, implies

X g(u —(,ui(Li)—gi)Li) v+ %),
Since K is anormal cone with normality constant o, it follows that
||x||<aH (4 (L) i)l_i)_l(vi+xi)H£p* for iel .
Hence, we have p=|x|< p" < p, a contradiction. (LS) of Theorem 1.1 holds.

Without loss of generality, we may assume A has not fixed point in oP,

(otherwise, the result has been proved). Since K is total, it follows from the Krein-
Rutman theorem that there exists ¢, € K \{0} such that

2=t (L) Lo ()
Let e[0,0,...,O,ng,O,...,OJ.
io—1 n—iy
We prove that

x=Ax+1e for xedK} and 1>0. (2.3)

In fact, if not, there exist x e aK/’;O and A>0 such that

X=Ax+le. (2.4)

When i=#i,, we have X, =Arx and x, € K by (hn) with t=1. When i=i,, by
(B, X, =ATIX+ip,>1¢p,. Hence xe K" and A+ Ae is r-nowhere normal-
outward map on K, relative to K". This implies A1>0. By (E), and (2.4), we
have AOXZM(LO)LO(XiO)ZO and x> Ag,. Let

Alzsup{/1>0:xiO Zl%}. (2.5)
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Then 0<A<A <o, X =A@, and Lo(xio)Z/yLo((po): 4 @, - By (2.4)

(L)

X, = A (X)+ A0, = 14 (Lo ) Lo (X%, )+ Ao = (4 +2) @,
Hence, by (2.5), we have A, > A, + A > A, acontradiction. (E) of Theorem 1.1 holds.

and (E)n,

By Theorem 1.1, A has a fixed point in K_;\Rpo, that is, (2.1) has a solution in
K"\{0}.

The following result shows the nome-type compression and expansion theorem of
(2.2).

Theorem 2.2 Let K be a total, normal cone in X, r: X — K be a retraction,
A :K" —> X be compact and satisfy:

(h,)" tA is r-nowhere normal-outward map with respect to component x
on K" relativeto K forany iel, and te(0,1].

Assume that the following conditions hold: there exist p,, p, € (0,0) with
P, < p, suchthatforany iel,

(E)n AxeK for xeK’ and |Ax|>|x]| for xe K} with |x|=p,.
(Ho) [Ax|<|x] and xeK} with |x]=p.
Then (2.1) has a solution in K" \{0} .
Proof. Let A be defined by Theorem 2.1 and x =0(iel ). Then (h,) implies
that tA is rp-nowhere normal-outward map on K" relativeto K, for t<(0,1].
Let xedK) . Then there is x, € P such that |x|=p, and |AX|>|Ax]|>
I%|=p=|x| by (En). Since A:K) —K", the standard argument shows
I (A, K2, ) =iy (A, K2 ) =0, for example, see [6].
Without loss of generality, we may assume that A has no a fixed point in 8K;l

(otherwise, the result has been proved). We prove Xx=AAXx for Xe K,Zl and
0< A<l
In fact, if there exist XGﬁK;l and 0<A<1 such that x=AAx, then A<l

since A has no a fixed point in K . From x =AAx forany iel , we have

]l =2lAX]-

Let i, 1, such that HXiOHZ/’l' By (Hn), <

Xio

:,1‘
it is a contradiction. By Theorem 3.1 [3], i, « (A, K ) =1.

<|

AX|<|Ax

x|
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Hence, A has a fixed point in K;\K_; and (2.1) has a solutionin K"\ {0}.

Remark 2.1 One may refer to [8] for the nome-type compression and expansion
theorem, where maps defined on cone and take values in the cone.

3. Nonnegative solutions of elliptic boundary value problems

In this section, we investigate the existence of nonzero nonnegative (classical)
solutions of the following elliptic systems:

{Liui(z) = fi(zu(2)) in Q and for eachi € I, 3.1)

u;(z) =0 on 00,

where Qc R™"(meN, m>2) isabounded domain,

m 8u( ) ou; (z)

al ( b (7 O (2)u (2), (3.2

@5 22| S 0% @), 62

where  u(z)=(u,(2),u,(2)....u,(2)) . z2=(2.2,.....2,) . f:QxR] >R,

f,eC*(QxR")and xe(01) is a given constant. When f, eC*(QxR")
R, , system (3.1) was studied in [10]. A single Elliptic BVP with Dirichlet

boundary condition was studied in [5]. The definitions of L and Q are same as in
[2, 10].
u is called to a (classical) solution of (3.1), we mean a function

u, eCZ(Q)mC(s_)) satisfying (3.1) pointwise. A solution u of (3.1) is said to be
nonnegative if u, € P, where
:{UEC(ﬁ):u(z)ZO for2e£_2} (3.3)

is the positive cone in C(ﬁ), which is total and normal.
We always assume that the following conditions hold for each i€l :

(C1) a,(;]),b](l), € c(Q) for k,jel,,and c”(z2)=0 for zeQ.

(C2) af(z)=a(z) for zeQ and k, jel,, andthereexists s >0 suchthat

Za‘” )L, > i |é* for xeQ and &= (&) eR™.

k,j=1
da (L)
(Cs) L e Ch(Q) for k,jel,.
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b o

(Ca) a—‘eC(f_Z) and ﬁsZc‘”(z) for xeQ and jel, .
7.
]

axj
() f; € CA(Qx RY),

(h2) (Positivity condition) f. (Z, ylo) >0 for zeQ,

where Y= (Y1 Yo ¥ias 0 Yigreenn ¥y ) and y; eR,.
Let L be defined by [5] and all assumptions on L hold. Following the known
results [5], there is a bounded linear operator L satisfying

(1) L maps C(ﬁ) to C**R(Q).

(2 If ueC?*(Q) and v e CH(Q) satisfy u=Lv, then u and v
satisfy

{Lu(z) =v(z) in Q (3.4)
u(z) =0 on 09,
see [1, Theorem 4.2].
Let 1 € CA(Q) and let
L, (u)=L(yu) for UEC(S_)) (3.5)

and _
y/:min{z//(z): z eQ}.

It is well known that if ¥ € C*(2) with >0, then L,:C(Q)—>C(Q)c

C(Q) is a compact linear operator such that L, (P)cP foreach o<(0,2) and
there exists @ € P N Co>**(2)\{0} such that

p=m(L, )L, (3.6)

where 4 (L, )=1/r(L,) and r(L,) is the spectral radius of L,,
see [1, Theorem 4.2].
We define an operator A :P" — C(Q_z) by

(AU)(2)= (LFu)(2) @)

where L, is an operator corresponding to L when L=1L; in (3.4) and F:

P"—>C (5) is a Nemytskii operator defined by
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(Fu)(z)= 1, (2.u(2)) 9

Let A:P”—>C(£_2)n by Au=(AuAu,...,Au).

By the known results, it is easy to verify under the conditions (h1) that A is

compact, and ueP" isa
solution of the following fixed point equation

u(z)=Au(z) for zeQ, (3.9)

if and only if u; € C,>**(2) and u is a nonnegative solution of (3.1), see [5,
Lemma 2.2].

Let r:C(s_))—>P be defined by
r(u)(z)=u"(z)=max{u(z),0}. (3.10)

Then it is easy to know that r is a retraction from C(ﬁ) to P,r*(P)= C(.(._z)

and r:C (g_z) — P is a Lipschitz continuous map with Lipschitz constant 1.

Theorem 3.1 Assume that (C.), (h1) and (h2) hold. Then tA is a rp-nowhere
normal-outward map on P" relativeto P" for te<(0,1], where A and r are
same as in (3.7) and (3.10), respectively.

Proof. Let u:(ul,uz,...,ui,...,un)eC(f_z) such that u(z)=tA(r,u)(z). Then
u,(z)=tA(ru,)(z) forany iel,.Similarity to the proof of Theorem 3.1 [5], we

obtain u, eP and ueP".

By using Theorems 2.1 and 3.1, we prove our main result on the existence of
nonzero nonnegative solutions of (3.1).
Theorem 3.2 Assume that (Ca), (h1), (h2) and the following conditions hold.

(H1) Forany iel,, thereexist ¢, € C #(Q) with ¢ >0, ¢ E(O,ﬂl(L(h ))
andug € P such that
fi(z,y)gug(z)+(;¢1(L‘h)—gi)(b,(y)yi for zeQ and yeR".

(H2) There exists iy <1, and 1, € C*(Q) with y,>0 such that
fio(z,y)z,LLl(I%)t//p(y)yio for zeQ, |y|€[0,p] and yeR].
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Then (3.1) has a solution ue P"\{0} with u; € C,***(Q).

Proof. By Theorem 3.1, we have that tA is a r,-nowhere normal-outward map on
P" relativeto P" for te<(0,1].

Since L (P)c P, by (H1) we have
Au(z)sul‘(z)Jr(ul(L(h)—g)L(h (u) for ueP" and zeQ.
where u;(z2)=L(u)(2)=0 for zeQ.Hence, A satisfies Theorem 2.1 (LS)n.
By (Hz)and L, (P)c P, we have
AOU(Z)ZM(LWP)L.Vp(uiO) for uedP) and zeQ.

and A satisfies Theorem 2.1 (E)n.
By Theorem 2.1, there exists ue P"\P suchthat u= Au. Itfollows that u is

a solution of (3.1) and u; € C,**(Q).
Notation: Let y;:Q—>(0,0) with y, >0.For y, (R"\{0}), let

f, (%)= inf Mf_(yi)= sup fi@zy)

@ wi(z) @pear Wi(2)
(f, )O:y!ijlg+inf£(yi)/yi, (1) :yliimosupf_%(yi)/yi.

As a special case of Theorem 3.2, we obtain the following result.
Corollary 3.1 Assume that (C4), (h1), (h2) and there exists 1; € C#(Q) withy, >0

such that the following condition holds.
(H) (f,) <m(L,) forany iel,.
(H,) M(Lwio)<(fwio)0 for some 1<i,<n.
(H;) Forany re(0,) and iel , thereis M/ >0 suchthat f,(z,y)<M,
for zeR! and vy, €[0,r].
Then (3.1) has a solution ueP"\{0} with u; € C,***(Q).
Proof. By (H,)" and (Hs), there exists ¢ >0 such that
fi(z,y)s(,ul(L%)—gi)gz/i(z)yi for (z,y)eQxR! and y, e[r, o)
and
fi(z,y)sMii+(,ul(LWi)—gi)y/i(z)yi for (z,y)eQxR!.
By (H,), itis easy to see that there exists p>0 suchthat f(z,y)>0 for
2€Q, |y|<p forevery iel, and



Nonnegative Solutions of a Nonlinear System and Applications to Elliptic BVPs* 25

fio(Z,Y)ZM(L%)%O(Z)MO for (z,y)e QxR and |y|<[0, p].

The result follows from Theorem 3.2.

aiizzﬂﬁ”yrﬂzrfl kiy
Remark 3.1 Let f(zy)=v;(2)ye Y

sl yi7ii
1+ yiyii +Zj=1,j==i ai y?j
When o, =1, population models of Ricker types (3.1) and Beverton-Holt types (4.1)
in [10] were studied. However, the results can be not utilized to discuss a case of

—dyy or fi(zly):

—d.y”, all the parameters are nonnegative, o; >1.

o, >1, but we can treat the case of o; >1 since f. (z, y'o)zo.

4. Conclusions and Remarks

We study the existence of nonnegative solutions of a nonlinear system consisting of
nowhere normal-outward maps in Banach spaces, this type of maps defined on a
cone does not necessarily take values in the cone and contains weakly inward maps
and generalized inward maps under the appropriate conditions [3]. In history,
someone established the fixed point index of weakly inward maps or generalized
inward maps, but it is difficult to use the index since verifying the weakly inward
maps or generalized inward maps is very difficult [9]. From the discussion in this
paper, we know that verifying the nowhere normal-outward map is easy in
applications. The existence of nonnegative solutions [5] of a single elliptic BVP is
extended to system (3.1) via using Theorem 2.1, system (3.1) has many uses such
as population models [10] or Volterra-Lotka competition models [11] or steady state
periodic solutions for parabolic systems [12]. We hope that the results of this paper
will be applied in many fields.
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