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Abstract 
 

In this study, we propose a method in order to estimate the strength of a 

cryptographic algorithm. The method combines the evaluation of the cryptographic 

key length and the evaluation of the success rate of the randomness tests in the 

algorithm output samples. In the first step, the algorithm is classified into one of 

four general categories, according to its key size, taking into account the current 

computer power which a cryptanalyst can use for exhaustive key search. In the 

second step, we examine the success rate of the tests on the output samples. For this, 

the maximum accepted number of the rejected samples is calculated, taking as 

parameters the total number of samples (which depends from the selected sampling 

error) and the desired significance level and confidence interval for the success rate 

of the tests. If the rejected samples do not exceed the maximum number, the 

algorithm is considered as “random” and it is rated in the initial strength category 

due to its key size. If the rejected samples exceed the maximum number, the 

algorithm is submitted to further tests under certain conditions. 
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1. Introduction  

Due to the large size of cryptographic keys (usually from 128 to 256 bits), it is 

practically impossible to test the modern symmetric cryptographic algorithms for 

all key combinations (which are 2^128 to 2^256 respectively). Therefore, the 

sampling method is used, where instead of testing the algorithm for the huge number 

N of all key combinations, a much smaller number of n keys is selected, with the 

acceptance of a predetermined sampling error. Then, using a software simulation of 

the algorithm, for each of the n sampling keys, a sample output of the algorithm is 

generated and these n samples are submitted to statistical randomness tests. The 

final decision of the algorithm cryptographic strength is made based on the overall 

success rate of the tests, which are extremely time consuming. Therefore, if we want 

a reliable sampling (small sampling error) but also a practically feasible time to 

perform the tests, the main problems are: 

a. How many output samples should we check? 

b. What should be the size of each sample? 

c. How can we reduce the extremely long time required for the tests? 

d. What criteria should we use in order to select the sampling keys? 

e. How do we rate the strength of the algorithm based on the test results of its 

samples? 

Solutions to the problems (a), (b), (c) were addressed in (Marinakis, May 2021) [1] 

and solutions to the problem (d) were addressed in (Marinakis, July 2021) [2]. The 

problem (e) which remains, will be addressed in the present study. 

The methods which will be proposed are focused on symmetric cryptographic 

algorithms (block ciphers and stream ciphers), but similar methods can be applied 

for asymmetric cryptographic algorithms.  
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2. Length of the Key 

The security of a cryptographic algorithm is based on its internal complexity and its 

key length. But when the algorithm does not have a known and exploitable defect in 

its internal structure, then the only cryptanalytic attack that can be applied to it is the 

method of the exhaustive search of its keys (known as Exhaustive Key Search or 

Brute Force Attack). This attack process is extremely time consuming and if the 

length of the key is big enough, then the exhaustive search is practically impossible 

and therefore we can say that the algorithm is practically secure. 

Table 1 gives the relative strengths of symmetric and asymmetric algorithms based 

on their key length and known cryptanalytic attacks, according to (NIST.SP.800-57 

pt1r4, 2016) [3].  It is obvious that Table 1 is valid when the algorithm does not 

have a vulnerability (the exploitation of which can reduce the number of keys or 

totally bypass them), so the only possible attack to it is the exhaustive key search2.     
 

Table 1: Correspondence of symmetric and asymmetric algorithms security strength 

based on their key length (from NIST SP800-57 pt1r4). 

Security 

strength 

 

Symmetric 

key 

algorithms 

Asymmetric key algorithms 

FFC 

(e.g., DSA, D-H) 

IFC 

(e.g., RSA) 

ECC 

(e.g., ECDSA) 

< 80 2TDEA (2-DES) L=1024 

N=160 

1024 160-223 

112 3TDEA (3-DES) L=2048       

N=224 

2048 224-255 

128 AES-128 L=3072       

N=256 

3072 256-383 

192 AES-192 L=7680       

N=384 

7680 384-511 

256 AES-256 L=15360 

N=512 

15360 512+ 

 

As is it shown, Table 1 contains only specific key lengths, from cryptographic 

algorithms which are designed in the US (excluding AES) and approved by NIST. 

In order to classify the security strength of the symmetric cryptographic algorithms 

including all the possible intermediate lengths of the keys between 80 bits and 256 

bits, we constructed Table 2, in which we classified the strength of the algorithms 

 
2 The first column of Table 1 expresses the active (actual) length of the key, which may be shorter 

than the nominal. E.g. while 3DES has a theoretical key length of 3x56 = 168 bits, however there 

is a cryptanalytic attack which reduces its active length to 112 bits. Similarly, for 2DES it has been 

found that if the cryptanalyst has at its disposal about 2^40 pairs of plain / crypto texts, the active 

key is reduced from the nominal value of 112 bits to 80 bits, while if the cryptanalyst knows 2^56 

pairs of plain / crypto texts, the active key is reduced to 56 bits. (In the third column, L is the 

public key and N is the private key).  
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into four strength categories: Low, Medium, High and Very High, based on the 

value range to which their key length falls. 

 
Table 2: Comparative strength of symmetric cryptographic algorithms based on the 

length of their key, according to current cryptanalytic and technological data   

(year 2022). 

 

We note that the above strength classification of cryptographic algorithms mainly 

shows the comparison between them, i.e. it is relative and not absolute. For 

example, for current computer technology, the 128-bit key length it is considered to 

give a high strength against the Exhaustive Key Search. However, the length of 128 

bits compared to 256 bits should be considered at least one degree lower. In this 

study, we consider the key length of 256 bits as the upper limit for today symmetric 

ciphers, but it is obvious that an algorithm with a longer key length, from a 

cryptanalytic point of view, can "withstand" the Exhaustive Key Search attack over 

a longer period of time. 

Table 2 shows the strength of cryptographic algorithms, based on current 

cryptanalytic and technological data (year 2022). But as it is mentioned in 

(Marinakis, 2013) [4], in order to compensate for the constant evolution of 

integrated circuits (due to the Moore's law) and the relative increase of computer 

power, the key must increase by one bit each year. In this way the cryptographic 

algorithm will be safe from the evolution of the exhaustive key search. 

As a comparative example, we designed Table 3, which shows the key lengths that 

must be applied after 20 years, in order the cryptographic algorithms be secure 

against the exhaustive key search, according to the expected technological 

development (year 2042). We see that compared to Table 2, the values of the keys 

have increased by 20 (one bit increment for each year). 

 
  Table 3: Comparative strength of symmetric cryptographic algorithms based on 

the length of their key, after 20 years, due to the expected technological evolution 

(year 2042).  

 

 

 

 

 

KEY 

LENGTH (Κ) 

80 ≤ Κ ≤ 112 112 < Κ < 128 128 ≤ Κ ≤ 192 192 < Κ ≤ 256 

ALGORITHM 

STRENGTH 

LOW MEDIUM HIGH VERY 

HIGH 

KEY LENGTH 

(Κ) 
100 ≤ Κ ≤ 132 132 < Κ < 148 148 ≤ Κ ≤ 212 212 < Κ ≤ 276 

ALGORITHM 

STRENGTH 

LOW MEDIUM HIGH VERY HIGH 
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In any case, the final choice of the appropriate cryptographic algorithm (or the 

cryptographic system in general), must be made based on the desired duration of 

the protection of the encrypted information, combined with the analysis of the risks 

that the cryptographic system faces from potential threats which will take advantage 

of its weaknesses. These issues will be considered in a future study. 

 

3. Calculation of the Success Rate 
 

As mentioned in paragraph 1, in order to investigate the required randomness, 

independence and unpredictability of the generated digital sequences of an 

algorithm, special statistical and cryptanalytic tests are performed on its output bits. 

Three suites of these statistical tests are shown in Table 4, as they are referred to 

(Marinakis, 2015) [5]. These tests, essentially examine the randomness in the output 

bitstreams of  Random Number Generators (RNG), Pseudo Random Number 

Generators (PRNG) and symmetric cryptographic algorithms (Stream and Block 

Ciphers). 
 

Table 4: Three suites of statistical tests for randomness (available in software) 

 

For each statistical test suite from those that will be selected from Table 4, we must 

examine as many output samples of the algorithm as possible and then calculate the 

overall success rate, i.e. how many of the samples successfully passed each 

individual statistical test of the suite. 

As it is mentioned in (NIST.SP.800-22, 2010) [6] , for each statistical test we must 

define a success criterion, which is called significance level and is denoted by α. 

The α expresses the probability that a Type 1 error occurs, i.e. the test shows that 
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the sequence is not random, when in fact it is random. For example, if we set α = 

0.03 , it means that an algorithm successfully passes the test, if out of the 100 output 

samples that we have examined, at most three are not random. 

The standard values of the significance level α for cryptography are around 0.01, 

which means that at most one in 100 algorithm output sequences we accept that it 

is not random. However, as it is mentioned in (Soto, 1999) [7], in practice any set 

of digital sequences of an algorithm that we will choose, it will most likely deviate 

from this ideal case.  

A more realistic approach is to use a confidence interval (CI) for the percentage of 

the sequences that are expected to pass the desired α = 0.01. In this case the most 

appropriate confidence interval (CI) is 95%. This means that if more than 5% of the 

samples fail a test, then the algorithm is considered "suspicious" for generating non-

random outputs. The maximum number of the rejected samples m  that can be 

accepted in each test with a 95% confidence interval is given in (Soto, 1999) [7] by 

the formula (1), where n is the total number of samples tested and α is the 

significance level. 
 

 

(1) 
 

 

In our case the distribution is binomial (two attributes, random and non-random 

sample). However, formula (1) is derived from the normal distribution curve, which 

approximates the binomial distribution curve for large n. 

Table 5 shows the maximum accepted number of the rejected samples, based on the 

desired sampling error e (column 1) and the corresponding number of the samples 

n that must be tested (column 2). The first and second column of Table 5 were taken 

from (Marinakis, 2021) [1]. The maximum accepted number of the rejected 

samples, are calculated first taking into account only the significance level (column 

3) and then taking into account both the significance level and the confidence 

interval CI (column 4) based on formula (1).  
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     Table 5: Maximum accepted number of samples to be rejected, based on the 

desired sampling error e and the corresponding number of samples n that must be 

tested. 

 

 

 

SAMPLING 

ERROR 

( e ) 

 

 

 

NUMBER 

OF SAMPLES 

( n ) 

MAXIMUM ACCEPTED NUMBER 

OF REJECTED SAMPLES ( m ) 

(the integer part of the number is taken into account) 

For 

significance level 

α = 0.01 

For 

significance level 

α = 0.01 

and CI = 95% 

5  % 384 3,84 9,689 

4  % 600 6,00 13,311 

3  % 1067 10,67 20,420 

2  % 2401 24,01 38,636 

1  % 9604 96,04 125,292 

 

Example: Suppose that during a randomness test we want to have a very small 

sampling error of 1%. Therefore, from the second column of Table 5 we see that we 

will need to examine 9604 samples. If we want the test to be strict, we must choose 

a success rate of 99%. This will give a failure rate of 1% (significance level α = 

0.01), which means that up to 96 samples can be accepted as rejected (third column 

of Table 5). But since, as mentioned, an absolute success rate of 99% of the samples 

is almost impossible in practice, a more realistic approach is to use a confidence 

interval in which the desired success rate will most likely be found. So, if we choose 

a 95% confidence interval, from the fourth column of  Table 5 we find that in this 

test we can accept up to 125 rejected samples. 

 

4. Algorithm Rating Process 

The security strength of a cryptographic algorithm (hereafter will be referred as 

cryptographic strength), concerns the randomness, independence and 

unpredictability of its output bitstreams and is essentially the measure of the 

difficulty that an cryptanalyst pays to break it.                             

The process of strength rating of a cryptographic algorithm that we propose in the 

present study is as follows:  

In the first step, the algorithm is classified into one of four general cryptographic 

strength categories, based on its key size (Low, Medium, High, Very High). In the 

second step, the final degree of cryptographic strength is determined gradually, 

based on the results of the statistical randomness tests on its output bitstream 

samples, using one of the test suites from these that are shown in Table 4. It is at the 
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discretion of the evaluator to use more than one test suite, but this will take much 

more time. 

We must emphasize that the final strength degree cannot be larger than the initial 

strength degree of the cryptographic algorithm due to the size of its key. On the 

contrary, it is very likely that the strength degree will be lower than the initial 

degree, due to significant weaknesses that the algorithm may present either in its 

internal structure (e.g. known cryptanalytic attacks against the whole structure or 

against a reduced structure of the algorithm), or in the possible non randomness of 

its digital output sequences. 
The rating process of the algorithm strength is summarized in Figure 1: Initially, the 

cryptographic algorithm is classified into one of four general strength categories, 

based on its key size K, as they were presented in paragraph 2 (Table 2): 
 

       
 

1st  category : 80 ≤ Κ ≤ 112 3rd   category : 128 ≤ Κ ≤ 192 

2nd  category : 112 < Κ < 128 4th   category : 192 < Κ ≤ 256 

 

After classifying the tested algorithm in one of the above categories, then we 

examine the success rate of the randomness tests on its n output samples. If the 

randomness test is positive, i.e. if the rejected samples do not exceed the maximum 

accepted number m which is calculated from formula (1) of the previous paragraph, 

then we classify the algorithm in the strength category resulting from its key size 

(Low, Medium, High, Very High), as shown in Figure 1. If the randomness test of 

the algorithm is negative, i.e. if the rejected samples exceed the maximum accepted 

number m, then we generate a new set of n output samples and perform for a second 

time the statistical randomness tests, with the procedures which are described in the 

next paragraph 4.1. 
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4.1 Testing of new samples 

If during the procedure shown in Figure 1, the total result of the algorithm 

randomness tests is negative, this does not necessarily mean that the algorithm has 

low cryptographic quality. According to (NIST.SP.800-22, 2010) [6] , the failure of 

a test may not be due to the low quality of the algorithm, but due to another cause, 

which may be one of the following: 

a. Incorrect implementation of the tested cryptographic algorithm or its Random 

Number Generator (in hardware or software). 

b. Incorrect software implementation of a statistical test or incorrect selection of 

its input parameters. 

c. Inadequately designed statistical test (e.g. insufficient analysis and 

implementation based on probability theory or complexity theory). 

d. Incorrect software for processing the input data of the statistical test. 

e. Inaccurate mathematical calculation of constants (a, p), mainly in terms of the 

most perfect numerical approximation of their values. 

f. Wrong selection in the characteristics of the samples (e.g. inappropriate number 

or size of the samples, inappropriate size of the blocks and patterns of the tests, 

etc.). 

Because of the above, if the randomness tests of the first group of n algorithm 

samples are negative, it makes sense to give the algorithm a “second chance” in 

YES 

NO 

YES YES YES 

NO NO NO 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 
  
                   

        Figure 1: Process for the grading of cryptographic algorithm strength 

 

 80 ≤ Κ ≤ 112 
 

112 < Κ < 128 
 

128 ≤ Κ ≤ 192 
 

192 < Κ ≤ 256 

  

  

     VERY        

     HIGH 

STRENGTH 

     

     HIGH 

STRENGTH 

                  

   MEDIUM 

STRENGTH 

    

                 Produce a new set of  n  algorithm output samples 

                and conduct new randomness tests  (paragraph 4.1) 

                  

      LOW 

STRENGTH 

Randomness 
       tests 
   positive ? 

      Randomness 
       tests 
   positive ? 

Randomness 
       tests 
   positive ? 

Randomness 
       tests 
   positive ? 
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order to rule out the possibility that the failure is not due to a defective design of the 

algorithm but due to one of the above causes. To address this problem, we propose 

to generate a new set of n algorithm output samples and to perform again a 

randomness test under certain conditions. Thus, in the case of the “re-testing” we 

will have the following two possibilities: 

a. The re-testing is negative: The algorithm is considered as “non-random” (since it 

failed twice in a row and for total 2n samples). 

b. The re-testing is positive: In this case, if m1 and m2 are the numbers of the rejected 

samples of the first and second test respectively, then their sum must not exceed the 

total m which is calculated from formula (1) of paragraph 3. 

Where in the place of n we have to put 2n (because we performed two tests with n 

samples each). Therefore, if the sum of the rejected samples is less than m, the 

algorithm is considered as “random” and it is rated in the strength category resulting 

from its key size (Low, Medium, High, Very High). If the sum of the rejected 

samples is greater than m, the algorithm is considered as “non-random” and it is not 

rated to a specific strength category. 

Example: Suppose during the initial test of an algorithm we examine 600 samples 

and from them 15 are rejected. According to Table 5 (column 4) the maximum 

accepted number of rejected samples is 13, so the first test is negative. So, we 

perform a second test, during which, out of the new 600 samples, 6 are rejected (i.e. 

the second test is positive). Thus, out of a total of 1200 tested samples, a total of 21 

samples were rejected. Applying formula (1) for n = 1200, we find that the 

maximum number of the rejected samples is m = 22. Therefore, the algorithm passes 

the tests successfully, since a total of 21 samples were rejected (less than 22 which 

is the limit). 

Alternatively, if an algorithm failed twice at the tests, instead of considered as “non-

random” and not rated, can be rated to a lower strength category than this which is 

based on its key length. This decision is up to the evaluator, who may take into 

account some additional parameters (such as details which concern the design and 

implementation of the algorithm etc.).  

In order to save time, the re-testing can be performed only for the specific statistical 

test (from the suites of Table 4) in which the samples failed. Also, we must note that 

a second, maybe a third re-testing could be carried out according to the above 

procedure. This, of course, is at the discretion of the evaluator. For example, an 

evaluator may want to repeat the tests in order to see if and when the results of the 

re-tests will "correct" the results of the first test. However, the number of the re-

tests for an algorithm cannot be excessive, for practical and ethical reasons. The 

practical reasons concern the extremely time-consuming process for the production 

of the samples and the execution of the tests. The ethical reasons concern the 

avoidance of a more “favorable” treatment of the tested algorithm, compared to 

some other algorithms which may have succeeded with the first testing. For the 

above reasons, during a comparative evaluation between different algorithms, we 

propose that an optimal rule is that the re-tests should not exceed the number of two. 
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5. Conclusion 

In this study we proposed a method in order to rate the strength of a cryptographic 

algorithm. The first step is to classify the algorithm into one of four general strength 

categories, based on its key size (Low, Medium, High, Very High). The second step 

is to examine the success rate of the randomness tests on its output samples, 

calculating the maximum accepted number of the rejected samples, based on the 

number of samples (according to the selected sampling error) and based on the 

desired significance level and confidence interval for the success rate of the tests. If 

the randomness test is positive (the rejected samples do not exceed the maximum 

number), the algorithm is considered as “random” and we rate it in the strength 

category resulting from its key size. If the randomness test is negative (the rejected 

samples exceed the maximum number), we generate a new set of n output samples 

and perform the tests for a second time. With this “re-testing”, we rule out the 

possibility that the failure is not due to the algorithm but due to other causes. If the 

second set of n output samples fails again (the rejected samples exceed again the 

maximum number), then the algorithm is considered as “non- random” and it is not 

rated or it can be rated to a lower strength category than this which is based on its 

key length. If the second set of n output samples passes the tests, we examine if the 

sum of the rejected samples of the two tests exceeds the maximum number (which 

is calculated for 2n). If the sum exceeds the maximum number, the algorithm is 

considered as “non- random” and it is not rated or rated to a lower strength category. 

If the sum does not exceed the maximum number, the algorithm is considered as 

“random”, therefore it is rated based on its key length.     

When an algorithm fails at the first re-test, it is at the discretion of the evaluator to 

perform a second re-test. However, the number of the re-tests cannot be excessive, 

firstly because the tests procedures are extremely time-consuming and secondly in 

order to avoid a “favorable” treatment of the tested algorithm, compared to other 

algorithms which may have succeeded with the first test. Therefore, during a 

comparative evaluation between different algorithms, an optimal rule is to perform 

not more than two re-tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 



46                                           Marinakis   

References 

[1] George Marinakis. (2021). “Sampling methods for cryptographic tests”. 

https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Iss

ue=2143151. May 2021. 

[2] George Marinakis. (2021). “Selection of sampling keys for cryptographic 

tests”. 

https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Iss

ue=2202191. July 2021. 

[3] NIST.SP.800-57pt1r4. (2016). “Recommendation for Key Management-1”. 

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

57pt1r4.pdf  

[4] George Marinakis. (2013). Minimum key length for cryptographic security” 

http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issu

e=597. March 2013. 

[5] George Marinakis. (2015).“Design and evaluation of random number 

generators”. 

http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issu

e=1608. September 2015. 

[6] NIST Special Publication 800-22. (2010). “A Statistical Test Suite for Random 

and Pseudorandom Number Generators for Cryptographic Applications” 

National Institute of Standards and Technology (NIST). April 2010. 

[7] Juan Soto, Jr. (1999). “Randomness Testing of the Advanced Encryption 

Standard Candidate Algorithms”, NIST, IR 6390. September 1999. 

 

https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=2143151
https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=2143151
https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=2202191
https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=2202191
http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=597
http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=597
http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=1608
http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=1608

