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1 Introduction

The aim of this paper is to scrutinize some properties of Bochner-square-

integrable Hilbert C∗-module-valued maps defined on compact groups. Intro-

duced by Kaplansky in the first half of 1950’s, the concept of Hilbert C∗-module

is straightforward generalization of the notion of Hilbert space. Roughly speak-

ing, it consists to endow a vector space with an inner product which takes

values not in the field of complex numbers but in a C∗-algebra. The results

were applied by Kaplansky to solve certains problems in operator theory such

as the structure of derivations of AW ∗-algebras [10]. At the present time, the

challenge is to invesgate for Hilbert C∗-modules the analogues of various facts

true for Hilbert spaces. However the methods to handle problems related to

Hilbert C∗-modules may not be easy to foresee since they are not orthogonally

complemented in general like Hilbert spaces.

On the other hand, square integrable functions are almost ubiquitous in

mathematics and its applications. They are encountered for instance in signal

processing (signals with finite energy), in stochastic calculus (random variables

with finite second moment), in mathematical physiscs (concrete realisation of

some Hilbert spaces)...

The vector valued functions are useful tools in the study of some geometri-

cal properties of Banach spaces. Here in particular we are interested in study-

ing some properties of the space of square integrable Hilbert C∗-module-valued

functions on compact groups.

The rest of the paper is structured as follows. Section 2.1 contains defini-

tions and facts about Hilbert C∗-modules. Section 2.2 furnishes basic notions

on the representation theory of groups with emphasis on compact groups. Sec-

tion 2.3 gives some facts about Fourier transform of vector-valued functions

on compact groups. We establish our main results in section 3.

2 Preliminary Notes

2.1 Hilbert C∗-modules

In this section we recall the definition of a Hilbert C∗-module and some
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properties related to its norm. For more details, we refer to [11].

Definition 2.1. Let A be a C∗-algebra. A pre-Hilbert A-module is a vector

space M which is a right A-module equipped with an A-valued inner product

(x, y) 7→ 〈x, y〉 : M×M→ A such that the following conditions are satisfied:

1. ∀x, y, z ∈M,∀α, β ∈ C, 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉.

2. ∀x, y ∈M, ∀a ∈ A, 〈x, ya〉 = 〈x, y〉a.

3. ∀x, y ∈M, 〈y, x〉 = 〈x, y〉∗.

4. ∀x ∈M, 〈x, x〉 ≥ 0 and if 〈x, x〉 = 0 then x = 0.

If M is a Banach space under the norm ||x||M = ||〈x, x〉||
1
2
A, where ‖ · ‖A is

the norm in A, then M is called a Hilbert A-module (or Hilbert C∗-module

over A). Otherwise, by using the completeness of the C∗-algebra A, the A-

valued inner product and the action of A on M can be extended to form the

completion M̂ of M which becomes a Hilbert A-module.

Hereafter are some simple examples of Hilbert C∗-modules.

1. Every complex Hilbert space is a Hilbert C∗-module over C.

2. Every C∗-algebra A is a Hilbert module over A. The A-valued inner

product is given by 〈a, b〉 = a∗b, ∀ a, b ∈ A. A concrete example is B(H)

the set of bounded operators on a Hilbert space H.

The norm || · ||M satisfies the following properties.

1. ∀x ∈M, ∀a ∈ A, ||x · a||M ≤ ||x||M||a||A.

2. ∀x, y ∈M, ||〈x, y〉||A ≤ ||x||M||y||M.

In the category of Hilbert A-modules the isomorphisms are defined as fol-

lows.

Definition 2.2. Two Hilbert A-modules M1 and M2, with respective A-

valued inner products 〈·, ·〉1 and 〈·, ·〉2 are isomorphic if there exists a bi-

jective bounded A-linear mapping L : M1 → M2 such that the identity

〈L(x), L(y)〉2 = 〈x, y〉1 holds for all x, y ∈M1.
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In the sequel, we call the A-valued inner product simply an A-product and

we make the convention that all A-modules will be right modules. Interested

readers can consult [8, 11], Frank and references therein for more details on

Hilbert C∗-modules.

2.2 Representation theory of groups

The representations of groups play a central role in noncommutative har-

monic analysis. In this section we recall some elements of the representation

theory that we may need with emphasis on the compact groups case.

Let G be a group and H be a vector space. A representation of G on H

is a homomorphism U : t 7→ Ut from G into GL(H) the group of invertible

operators in H. The space H is called the representation space of U . If G

and H are topological spaces then U is said to be a continuous representation

if the map G × H → H, (t, ξ) 7→ Utξ is continuous. Moreover when H is a

Hilbert space, if for any t ∈ G, Ut is a unitary operator of H then U is called

a unitary representation. In this case, the representation U is continuous if

only if the map t 7→ Utξ defined from G to H is continuous for all ξ ∈ H. The

representation U is said to be of finite dimension if its representation space H

is of finite dimension.

Two representations U and V of a group G with representation spaces H

and K respectively are said to be equivalent if there exists an isomorphism

T : H → K that intertwines U and V , that is ∀t ∈ G, T ◦ Ut = Vt ◦ T .

A subvector space L of H is said to be invariant by the representation

U if ∀t ∈ G, ∀ξ ∈ L, Utξ ∈ L. Any representation admits at least two

trivial invariant subspaces: {0} and H. The representation U is said to be

irreducible if it does not admit a non trivial invariant subspace, otherwise U is

said to be decomposable. The set of all equivalent classes of unitary irreducible

representations of G is called the unitary dual of G and will be denoted Σ.

If L is invariant then one can define in an obvious way a represention

of G on L called a subrepresentation of U . A representation U of G with

representation space H is the direct sum of representations Ui of G on Hi if

every Hi is an invariant subspace of H, H is the direct sum of Hi and each Ui

is a subrepresentation of U . One writes U = ⊕iUi.

The representations of a compact group behave nicely. Their main prop-
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erties are gathered in the following proposition.

vspace0.2 cm

Proposition 2.1. Let G be a compact group. Then

1. Every unitary representation of G admits a subrepresentation of finite

dimension.

2. Every irreducible unitary representation of G is finite dimensional.

3. Every unitary representation of G is the direct sum of irreducible unitary

representations.

For more details on representation theory we refer to [6] and [9].

2.3 Fourier transform on compact groups

This section draws a lot from [2], [4], [5] and [12]. In what follows, G is a

compact group and Σ denotes its dual objet, the set of all equivalence classes

of unitary irreducible representations of G. We denote by Uσ an element of the

class σ ∈ Σ, by Hσ its Hilbert representation space and by dσ the dimension

of Hσ. Let (ξσ
1 , · · · , ξσ

dσ
) be a basis of Hσ. The matrix elements of Uσ related

to the above basis are defined by uσ
ij(t) = 〈Uσ

t ξσ
j , ξσ

i 〉 for all i, j ∈ {1, · · · , dσ}
and t ∈ G. The contragredient of the representation Uσ is the representation

denoted by Uσ whose matrix elements are the complex conjugate of those of

Uσ. We recall the orthogonality relations due to Schur:

∫

G

uσ
ij(t)u

σ
kl(t)dλ(t) =

1

dσ

δk
i δ

l
j

where the integration is taken against the normalized Haar measure λ of G

and δj
i is the Kronecker’s delta [9, section 27].

Let us denote by L1(G,M) the space of Bochner-integrableM-valued maps

on G. For f ∈ L1(G,M), the Fourier transform f̂ of f is given by

f̂(σ)(ξ, η) =

∫

G

〈Uσ
t ξ, η〉Hσf(t)dλ(t), ξ, η ∈ Hσ.

In this paper we are mostly interested in the space L2(G,M) of Bochner-

square-integrable M-valued maps on G. Since the Haar measure on G is finite,
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we have L2(G,M) ⊂ L1(G,M) so the above Fourier transform formula is valid

for functions in L2(G,M). Each f̂(σ) is interpreted as a sesquilinear mapping

from Hσ ×Hσ in M. Now set S(Σ,M) =
∏
σ∈Σ

S(Hσ;M) where S(Hσ;M) is

the space of all sesquilinear maps from Hσ ×Hσ to M.

We consider

S2(Σ,M) =

{
φ ∈ S(Σ,M) :

∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

||φ(σ)(ξσ
j , ξσ

i )||2M < ∞
}

.

The authors in [3] proved that the Fourier transform is a norm preserving

isomorphism from L2(G,M) on S2(Σ;M) when they are respectively endowed

with the norms

||f ||L =

(∫

G

||f(t)||2Mdλ(t)

) 1
2

(1)

and

||φ||S =

(∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

||φ(σ)(ξσ
j , ξσ

i )||2M
) 1

2

. (2)

Moreover they proved the following reconstruction formula which is valid

for all f ∈ L2(G,M):

f =
∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

f̂(σ)(ξσ
j , ξσ

i )uσ
ij. (3)

3 Main Results

Proposition 3.1. The mapping A×L2(G,M) → L2(G,M), (a, f) 7→ f ·a
with

(f · a)(t) = f(t)a for all t ∈ G (4)

is an action of A on L2(G,M).
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Proof. Let f ∈ L2(G,M) and a ∈ A, we have f · a ∈ L2(G,M) since
∫

G

||f · a(t)||2Mdλ(t) =

∫

G

||f(t)a||2Mdλ(t)

=

∫

G

||〈f(t)a, f(t)a〉||Adλ(t)

=

∫

G

||a∗〈f(t), f(t)〉a||Adλ(t)

≤
∫

G

||a∗||A||f(t)||2M||a||Adλ(t)

=

∫

G

||f(t)||2M||a||2Adλ(t)

=

(∫

G

||f(t)||2Mdλ(t)

)
||a||2A < ∞.

Moreover for t ∈ G and a, b ∈ A we have

((f · a) · b)(t) = (f · a)(t)b = (f(t)a)b = f(t)(ab) = (f · (ab))(t).

Therefore (f · a) · b = f · (ab). ¤

Let f and g be in L2(G,M). We set

〈f, g〉L =

∫

G

〈f(t), g(t)〉dλ(t). (5)

Proposition 3.2. The mapping L2(G,M) × L2(G,M) → A, (f, g) 7→
〈f, g〉L is an A-product on L2(G,M).

Proof. Let f, g ∈ L2(G,M) and a ∈ A.

1. Then ||f(·)||M and ||g(·)||M belong to L2(G), so ||f(·)||M||g(·)||M ∈
L1(G). We have∫

G

||〈f(t), g(t)〉||Adλ(t) ≤
∫

G

||f(t)||M||g(t)||Mdλ(t) < ∞. Hence 〈·, ·〉L
is well-defined.

2. Let α, β ∈ C. We have

〈f, αg + βh〉L =

∫

G

〈f(t), αg(t) + βh(t)〉dλ(t) = α〈f, g〉L + β〈f, h〉L.
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3. We have

〈f, g · a〉L =

∫

G

〈f(t), g(t)a〉dλ(t) =

∫

G

〈f(t), g(t)〉adλ(t) = 〈f, g〉La.

4. We have

〈f, g〉L =

∫

G

〈f(t), g(t)〉dλ(t) =

∫

G

〈g(t), f(t)〉∗dλ(t)

=

(∫

G

〈g(t), f(t)〉dλ(t)

)∗
= 〈g, f〉∗L.

5. We have 〈f, f〉L =

∫

G

〈f(t), f(t)〉dλ(t) ≥ 0 as ∀t ∈ G, 〈f(t), f(t)〉 ≥ 0.

Furthermore let f ∈ L2(G,M) such that

∫

G

〈f(t), f(t)〉dλ(t) = 0, then

t 7→ 〈f(t), f(t)〉 is null λ-a.e., hence f = 0 λ-a.e.. So 〈f, f〉L = 0 gives

f = 0 since f ∈ L2(G,M).

¤

As a consequence of Proposition 3.1 and Proposition 3.2 we have:

Corollary 3.1. The space L2(G,M) is a pre-Hilbert A-module under the

action of A on L2(G,M) defined by f · a = f(·)a for all f ∈ L2(G,M), a ∈ A
and the A-valued inner product 〈·, ·〉L.

Proof. We will only show that L2(G,M) is a complex vector space. Let

f , g ∈ L2(G,M), we have

∫

G

||(f + g)(t)||2Mdλ(t) =

∫

G

||〈f(t) + g(t), f(t) + g(t)〉||Adλ(t)

6
∫

G

||〈f(t), f(t)〉||Adλ(t) +

∫

G

||〈f(t), g(t)〉||Adλ(t)

+

∫

G

||〈g(t), f(t)〉||Adλ(t) +

∫

G

||〈g(t), g(t)〉||Adλ(t).

The integral

∫

G

||〈f(t), f(t)〉||Adλ(t) =

∫

G

||f(t)||2Mdλ(t) is finite. It is the

same to

∫

G

||〈g(t), g(t)〉||Adλ(t).
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By Hölder’s inequality,

∫

G

||〈f(t), g(t)〉||Adλ(t) 6
∫

G

||f(t)||M||g(t)||Mdλ(t)

6
(∫

G

||f(t)||2Mdλ(t)

)1

2
(∫

G

||g(t)||2Mdλ(t)

)1

2 < +∞.

Similary

∫

G

||〈g(t), f(t)〉||Adλ(t) < +∞.

Hence

∫

G

||(f + g)(t)||2Mdλ(t) < +∞ and f + g ∈ L2(G,M).

Moreover for all f ∈ L2(G,M) and α ∈ C, αf ∈ L2(G,M). ¤

The discrete analogues of the above results are proved for S2(Σ,M).

Proposition 3.3. The mapping A× S2(Σ,M) 7→ S2(Σ,M), (a, φ) 7→ φ · a
with

(φ · a)(σ)(ξ, η) = (φ(σ)(ξ, η))a,

for all σ ∈ Σ and ξ, η ∈ Hσ, is an action of A on S2(Σ,M).

Proof. Let φ ∈ S2(Σ,M) and a ∈ A, we have:

||φ · a||2S =
∑
σ∈Σ

dσ

dσ∑
i,j=1

||(φ · a)(σ)(ξσ
j , ξσ

i )||2M

=
∑
σ∈Σ

dσ

dσ∑
i,j=1

||φ(σ)(ξσ
j , ξσ

i )a||2M

≤
∑
σ∈Σ

dσ

dσ∑
i,j=1

||φ(σ)(ξσ
j , ξσ

i )||2M||a||2A < ∞.

For σ ∈ Σ, a, b ∈ A and η, ξ ∈ Hσ, we have

[(φ · a) · b](σ)(ξ, η) = [(φ · a)(σ)(ξ, η)]b = (φ(σ)(ξ, η)a)b = φ(σ)(ξ, η)(ab)

= (φ · (ab))(σ)(ξ, η).

¤
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For φ, ψ ∈ S2(Σ,M), we set

〈φ, ψ〉S =
∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

〈φ(σ)(ξσ
i , ξσ

j ), ψ(σ)(ξσ
i , ξσ

j )〉. (6)

Proposition 3.4. The mapping S2(Σ,M) × S2(Σ,M) → A, (φ, ψ) 7→
〈φ, ψ〉S is an A-product on S2(Σ,M).

Proof. Let φ, ψ, ϕ ∈ S2(Σ,M), α, β ∈ C and a ∈ A.

1. The equality 〈φ, αψ + βϕ〉S = α〈φ,ψ〉S + β〈φ, ϕ〉S is trivial.

2.

〈φ, ϕ · a〉S =
∑
σ∈Σ

dσ

dσ∑
i,j=1

〈φ(σ)(ξσ
i , ξσ

j ), ϕ(σ)(ξσ
i , ξσ

j )a〉

=

(∑
σ∈Σ

dσ

dσ∑
i,j=1

〈φ(σ)(ξσ
i , ξσ

j ), ϕ(σ)(ξσ
i , ξσ

j )〉
)

a = 〈φ, ϕ〉Sa.

3.

〈φ, ϕ〉S =
∑
σ∈Σ

dσ

dσ∑
i,j=1

〈φ(σ)(ξσ
i , ξσ

j ), ϕ(σ)(ξσ
i , ξσ

j )〉

=
∑
σ∈Σ

dσ

dσ∑
i,j=1

〈ϕ(σ)(ξσ
i , ξσ

j ), φ(σ)(ξσ
i , ξσ

j )〉∗

=

(∑
σ∈Σ

dσ

dσ∑
i,j=1

〈ϕ(σ)(ξσ
i , ξσ

j ), φ(σ)(ξσ
i , ξσ

j )〉
)∗

= 〈ϕ, φ〉∗S.

4. 〈φ, φ〉S = 0 ⇒ φ = 0. Indeed, if
∑
σ∈Σ

dσ

dσ∑
i=1

dσ∑
j=1

〈φ(σ)(ξσ
i , ξσ

j ), φ(σ)(ξσ
i , ξσ

j )〉 =

0 then 〈φ(σ)(ξσ
i , ξσ

j ), φ(σ)(ξσ
i , ξσ

j )〉 = 0 for σ ∈ Σ, i, j ∈ {1, 2, · · · , dσ}.
But 〈φ(σ)(ξσ

i , ξσ
j ), φ(σ)(ξσ

i , ξσ
j )〉 = 0 for all σ ∈ Σ, i, j ∈ {1, 2, · · · , dσ}

implies φ(σ)(ξσ
i , ξσ

j ) = 0 for all σ ∈ Σ, i, j ∈ {1, 2, · · · , dσ}. So φ = 0. ¤

We deduce from the two propositions above the following corollary.

Corollary 3.2. The space S2(Σ,M) is a pre-Hilbert module under the ac-

tion of A on S2(Σ,M) defined by φ · a = φ(·)a and with the A-valued inner

product 〈·, ·〉S.
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The following Parseval type result holds.

Proposition 3.5. Let f, g ∈ L2(G,M). We have 〈f, g〉L = 〈f̂ , ĝ〉S.

Proof.

Let f, g ∈ L2(G,M). We can write f =
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσa
σ
iju

σ
ij and

g =
∑
σ∈Σ

dσ∑

k=1

dσ∑

l=1

dσb
σ
klu

σ
kl where aσ

ij = f̂(σ)(ξσ
j , ξσ

i ) and bσ
kl = ĝ(σ)(ξσ

l , ξσ
k ). Then

〈f, g〉L = 〈
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσa
σ
iju

σ
ij,

∑
σ∈Σ

dσ∑

k=1

dσ∑

l=1

dσb
σ
klu

σ
kl〉L

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

d2
σ〈aσ

iju
σ
ij, b

σ
klu

σ
kl〉L

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

d2
σ

∫

G

〈aσ
iju

σ
ij(t), b

σ
klu

σ
kl(t)〉dλ(t)

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

d2
σ

∫

G

〈aσ
ij, b

σ
kl〉uσ

ij(t)u
σ
kl(t)dλ(t)

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

d2
σ〈aσ

ij, b
σ
kl〉

∫

G

uσ
ij(t)u

σ
kl(t)dλ(t)

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

d2
σ〈aσ

ij, b
σ
kl〉δk

i δ
l
j

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ〈aσ
ij, b

σ
ij〉

= 〈f̂ , ĝ〉S.

¤

It follows from the above proposition that the Fourier transform is an A-

product preserving operator.

Now let us set

||f ||L = ||〈f, f〉L||
1
2
A, f ∈ L2(G,M) (7)
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and

||φ||S = ||〈φ, φ〉S||
1
2
A, φ ∈ S2(Σ,M). (8)

We deduce the following result as a consequence of Proposition 3.5.

Corollary 3.3. The map f 7→ f̂ is a linear isometry from (L2(G,M), ||·||L)

into (S2(Σ,M), || · ||S).

Set

|f |L = 〈f, f〉
1
2
L. (9)

Proposition 3.6. For all f, g ∈ L2(G,M), we have

|f − g|2 + |f + g|2L = 2(|f |2L + |g|2L).

Proof. Let f, g ∈ L2(G,M). We have

|f + g|2L + |f − g|2L = 〈f + g, f + g〉L + 〈f − g, f − g〉L
= 〈f, f〉L + 〈f, g〉L + 〈g, f〉L + 〈g, g〉L

+〈f, f〉L − 〈f, g〉L − 〈g, f〉L + 〈g, g〉L
= 2〈f, f〉L + 2〈g, g〉L
= 2(|f |2L + |g|2L).

¤

Proposition 3.7. There exists C0 > 0 such that for all σ ∈ Σ and for all

i, j, k, l ∈ {1, · · · , dσ} we have

∫

G

|uσ
ij(t)u

σ
kl(t)|dλ(t) ≤ C0.

Proof. For all σ ∈ Σ and i, j ∈ {1, · · · , dσ} the functions t 7→ uσ
ij(t) are

continuous on G. They are bounded since G is a compact. Therefore there

exists C0 > 0 such that ∀i, j, k, l ∈ {1, · · · , dσ}, ∀t ∈ G, |uσ
ij(t)u

σ
kl(t)| ≤ C0.

We obtain

∫

G

|uσ
ij(t)u

σ
kl(t)|dλ(t) ≤

∫

G

C0dλ(t) = C0λ(G) = C0 since λ(G) = 1.

¤

Proposition 3.8. ∀σ ∈ Σ, ∃Nσ ∈ N∗,
dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

||〈aσ
ij, a

σ
kl〉||A ≤ Nσ

dσ∑
i=1

dσ∑
j=1

||aσ
ij||2M.
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Proof. We have
dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

||〈aσ
ij, a

σ
kl〉||A ≤

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

||aσ
ij||M × ||aσ

kl||M

≤
dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

max(||aσ
ij||2M, ||aσ

kl||2M).

There are nσ
ij ∈ {1, 2, · · · , dσ} such that

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

max(||aσ
ij||2M, ||aσ

kl||2M) =

dσ∑
i=1

dσ∑
j=1

nσ
ij||aσ

ij||2M. Let us put Nσ = max
i,j

nσ
ij. Hence

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

||〈aσ
ij, a

σ
kl〉||A ≤

dσ∑
i=1

dσ∑
j=1

nσ
ij||aσ

ij||2M ≤ Nσ

dσ∑
i=1

dσ∑
j=1

||aσ
ij||2M. ¤

Proposition 3.9. If for all σ ∈ Σ, sup
σ∈Σ

(dσNσ) < ∞ then ∀f ∈ L2(G,M),

there exists C1 > 0 such that ||f ||L ≤ C1||f̂ ||S.

Proof. Let f ∈ L2(G,M). One can write f =
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσa
σ
iju

σ
ij where

aσ
ij = f̂(σ)(ξσ

j , ξσ
i ). We have:

||f ||2L =

∫

G

||f(t)||2Mdλ(t)

=

∫

G

||〈f(t), f(t)〉||Adλ(t)

=

∫

G

||〈
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσa
σ
iju

σ
ij(t),

∑
σ∈Σ

dσ∑

k=1

dσ∑

l=1

dσa
σ
klu

σ
kl(t)〉||Adλ(t)

=

∫

G

||
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

d2
σ〈aσ

ij, a
σ
kl〉uσ

ij(t)u
σ
kl(t)||Adλ(t)

≤
∫

G

∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

d2
σ||〈aσ

ij, a
σ
kl〉uσ

ij(t)u
σ
kl(t)||Adλ(t)

=
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

d2
σ||〈aσ

ij, a
σ
kl〉||A

∫

G

|uσ
ij(t)u

σ
kl(t)|dλ(t)

≤ C0

∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ∑

k=1

dσ∑

l=1

d2
σ||〈aσ

ij, a
σ
kl〉||A
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≤ C0

∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

Nσd
2
σ||aσ

ij||2M

= C0

∑
σ∈Σ

Nσdσ

dσ∑
i=1

dσ∑
j=1

dσ||aσ
ij||2M

≤ C0

∑
σ∈Σ

sup
σ∈Σ

(dσNσ)
dσ∑
i=1

dσ∑
j=1

dσ||aσ
ij||2M

= C0 sup
σ∈Σ

(dσNσ)
∑
σ∈Σ

dσ∑
i=1

dσ∑
j=1

dσ||aσ
ij||2M

= C0 sup
σ∈Σ

(dσNσ)||f̂ ||2S.

We set C1 =
√

C0 sup
σ∈Σ

(dσNσ). Hence ||f ||L ≤ C1||f̂ ||S. ¤

Now we consider L2(G) ⊗M the tensor product of L2(G) and M. For a

generic element f⊗x ∈ L2(G)⊗M and a ∈ A, the relation (f⊗x)·a = f⊗(xa)

defines an action of A on L2(G) ⊗ M. In fact, let a, b ∈ A and f ⊗ x ∈
L2(G)⊗M. We have [(f⊗x) ·a] ·b = (f⊗ (xa)) ·b = f⊗ (xab) = (f⊗x) · (ab).

Let f ⊗ x and g ⊗ y be generic elements of L2(G)⊗M. We set

〈f ⊗ x, g ⊗ y〉⊗ = 〈f, g〉
l
〈x, y〉 (10)

where 〈f, g〉
l
=

∫

G

f(t)g(t)dλ(t).

Proposition 3.10. The map defined from (L2(G) ⊗M) × (L2(G) ⊗M)

into A by (f ⊗ x, g ⊗ y) 7→ 〈f ⊗ x, g ⊗ y〉⊗ is an A-product.

Proof. Let f ⊗ x, g ⊗ y ∈ L2(G) ⊗M be generic elements, a ∈ A and

λ ∈ C. We have:

1. 〈f⊗x, (g⊗y) ·a〉⊗ = 〈f⊗x, (g⊗ya)〉⊗ = 〈f, g〉
l
〈x, ya〉 = 〈f, g〉

l
〈x, y〉a =

〈f ⊗ x, g ⊗ y〉⊗a. Even 〈(f ⊗ x) · a, g ⊗ x〉⊗ = 〈f ⊗ (xa), g ⊗ x〉⊗ =

〈f, g〉
l
〈xa, y〉 = 〈f, g〉

l
a∗〈x, y〉 = a∗〈f, g〉

l
〈x, y〉 = a∗〈f ⊗ x, g ⊗ y〉⊗.

2. 〈f ⊗ x, g ⊗ y〉⊗ = 〈f, g〉
l
〈x, y〉 = 〈g, f〉

l
〈y, x〉∗ = (〈g, f〉

l
〈y, x〉)∗ = 〈g ⊗

y, f ⊗ x〉∗⊗.

3. 〈λf ⊗ x, g ⊗ y〉⊗ = 〈λf, g〉
l
〈x, y〉 = λ〈f, g〉

l
〈x, y〉 = λ〈f ⊗ x, g ⊗ y〉⊗.
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4. 〈f ⊗ x, f ⊗ x〉⊗ = 〈f, f〉
l
〈x, x〉 ≥ 0. And, on the other hand, 〈f ⊗ x, f ⊗

x〉⊗ = 0 implies 〈f, f〉
l
= 0 or 〈x, x〉 = 0. Hence f ⊗ x = 0.

Let us denote by L2(G)⊗̂M the completion of the pre-Hilbert A-module

L2(G)⊗M with respect to the norm:

||f ⊗ x||⊗ = ||〈f ⊗ x, f ⊗ x〉⊗||
1
2
A (11)

where f ⊗ x is a generic element in L2(G)⊗M.

We denote by L2(G,M) the completion of L2(G,M) under the norm || · ||L
defined in (7).

The following proposition extends to module-valued functions on compact

groups the Proposition 4.2.1.1 in [1] concerning C∗-algebra-valued functions in

mesure spaces. Its proof follows highly [1].

Proposition 3.11. The Hilbert A-modules L2(G)⊗̂M and L2(G,M) are

isomorphic.

Proof. For f ∈ L2(G) and x ∈ M, f(·)x ∈ L2(G,M) since there is a

sequence fn(·)x of countably valued functions which converges to f(·)x almost

everywhere and

||f(·)x||2L =

∫

G

||f(t)x||2Mdλ(t)

=

∫

G

|f(t)|2||x||2Mdλ(t)

= ||f ||22||x||2M < ∞,

where || · ||2 is the L2-norm of L2(G). Since the mapping (f, x) 7→ f(·)x is

bilinear, the mapping U : L2(G)⊗M→ L2(G,M) defined by U(f⊗x) = f(·)x
for any f ∈ L2(G) and x ∈M is linear and well defined. Let us prove that U

preserves the action of A on L2(G)⊗M. Let f ⊗ x ∈ L2(G)⊗M and a ∈ A,

U((f ⊗ x) · a) = U(f · (xa)) = f(·)xa = [f(·)x]a = U(f ⊗ x) · a. On the other
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hand let f ⊗ x, g ⊗ y ∈ L2(G)⊗M be generic elements. We have

〈U(f ⊗ x), U(g ⊗ y)〉L = 〈f(·)x, g(·)y〉L
=

∫

G

〈f(t)x, g(t)y〉dλ(t)

=

∫

G

f(t)〈x, y〉g(t)dλ(t)

=

∫

G

f(t)g(t)〈x, y〉dλ(t)

=

(∫

G

f(t)g(t)dλ(t)

)
〈x, y〉

= 〈f, g〉
l
〈x, y〉

= 〈f ⊗ x, g ⊗ y〉⊗.

Hence, U preserves the inner product. It is an isometry. So U is injective and

continuous since U is an A-linear operator of L2(G)⊗M in L2(G,M). Now

let us show that the range of U is dense in L2(G,M). Let F ∈ L2(G,M) be

a simple function. For every t ∈ G, F (t) =
n∑

i=1

xiχEi
(t) =

n∑
i=1

χEi
(t)xi where

(Ei) are disjoint measurable subsets of G and χEi
is the characteristic function

of Ei. For all 1 ≤ i ≤ n, χEi
∈ L2(G) and χEi

(t)xi = U(χEi
⊗xi)(t). Therefore

F (t) =
n∑

i=1

U(χEi
⊗ xi)(t) = U(

n∑
i=1

χEi
⊗ xi)(t) and F is in the range of U .

Hence the set of simple functions is a subset of the range of U which itself is

included in L2(G,M). The range of U is dense in L2(G,M) since the M-

valued simple functions are dense in L2(G,M). Therefore, U can be extended

to a unitary operator defined from L2(G)⊗̂M to L2(G,M). Consequently, the

proposition is obtained. ¤
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