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Abstract

This work considers the distribution of goods from different factories

to a number of ware houses (stores). Dynamic programming principle

with error bounds are used under different operational policies to deter-

mine the minimum transportation cost. The minimum transportation

cost of all the optimal cost of shipping goods from factories to stores

was obtained as 6,300,100 Naira, and this was under the first control

policy π1. We also find that the minimum costs of the distribution of

the goods with and without error bounds coincide only at infinity. We

further find that at various values of β (the parameter that measures

the percentage of goods loss in transit), the first policy (i.e., π1) remains

the optimal policy of all the optimal ones.
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1 Introduction

A distribution company plans to minimize the cost of distributing m kinds

of products from m number of factories to n number of stores. The company

distributes a particular product from one factory to all the stores (a single

product), that is, at factory S1, product A is distributed to all the n stores.

Again, at factory S2, product B is distributed to all the n stores, and so on. It

is also expected that the goods that leave the factories will not come back to

the factories(in the case of defective, damage, e.t.c, items). The company con-

sidered n number of control policies, µ = {π1, π2, . . . , πn} to determine which

of them will yield the optimum control policy. They also estimated that cer-

tain percentage of the products are to reach their final destination successfully

at a minimum costs. In a related literature, Mulvey and Vladimirou [7] used

the stochastic programming technique of dynamic Programming in financial

asset allocation problems for designing low-risk portfolios. Van Roy et al. [15]

proposed the idea of using a parsimonious sufficient static in an application

of approximate dynamic programming (DP) to inventory management. Pow-

ell and Van Roy [13] described an algorithm for computing parameter values

to fit linear and separable concave approximations to the value function for

large-scale problems in transportation and logistics. Powell and Topaloglu

[12] described a more complicated variation of the algorithm that implores

execution time and memory requirements. The improvement is critical for

practical applications to realistic large-scale problems. Powell [11] used DP

for large-scale asset management problems for both single and multiple assets.

Topaloglu and Kunnumkal [14] extended an approximate DP method to opti-

mize the distribution operations of a company manufacturing certain products

at multiple production plants and shipping to different customer locations for

sales. Nwozo and Nkeki [10], used DPP to considered the allocation of buses

from single station to different routes in Nigeria for profit maximization. In

this paper, we consider the used of DPP for allocation of buses from different

stations to different routes in a transportation company in Nigeria in order to

maximize expected profit. Nkeki [9] considered the use of dynamic optimiza-

tion technique for the allocation of buses from different stations to different

routes by a transportation company in Nigeria. The result shows that careful

planning and effective allocation of the buses will enhance profitability of the
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operation. In this paper, we consider the distribution of goods from different

factories to different stores in a production company. In the next section, we

formulate the problem as a dynamic program.

2 Problem Formulation

We consider a problem where there are n states and n control policies. Sfactory =

{Sf1 , S
f
2 , . . . , S

f
m}, Sstore = {Ss1, Ss2, . . . , Ssn} for all Sfactory, Sstore ∈ S, where S

is the state space. The transition matrices corresponding to the control policies

π1, π2, . . . , πn are given as

P (πk) = Pi,j(π
k), i, j = 1, 2, . . . , n. (1)

The transition costs is given by ϕ(St, π
k(St)), k = 1, 2, . . . , n; t ∈ T , St ∈ S

where T is the set of time period in the planning horizon, St is state variable

at period t and the discount factor β, (0 ≤ β < 1), where β is the expected

percentage loss of the products in transit. We define the function Rπk
as the

cost corresponding to the control policies πk, k = 1, 2, . . . , n. The function

xπ
k

p,t represents the different kinds of products at period t under the policies

πk, k = 1, 2, . . . , n.

2.1 One-Period Expected Cost Function

Suppose that the costs of distributing the products from factory Si, i =

1, 2, . . . ,m to store Sj, j = 1, 2, . . . , n is ϕi,jt at period t, the number of prod-

ucts in factories is Sfit at period t and the number of products in stores is S
sj
t

at period t, then the obtained costs over T -horizon is

T∑
t=0

m∑
i=1

n∑
j=1

ϕi,jt (St, µ(St)).

Let xp, p = 1, 2, . . . ,m be different kinds of products to be distributed from

the factories to the stores. Then,

n∑
p=1

xfp,t ≥
m∑
p=1

xsp,t, x
f , xs ∈ X, t ∈ T,
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where xfp,t is the number of products before distribution at period t and xsp,t is

the number of products that is already in the stores at period t.

The expected minimum cost function obtained under control policies πk, at

period t is given as follows:

Qπk

t (St) = Et( min
xf ,xs∈X

T∑
t=0

m∑
i=1

n∑
j=1

βtϕi,jt (xπ
k

t (St−1))), k = 1, 2, . . . , n

subject to:

n∑
p=1

xfp,t ≥
m∑
p=1

xsp,t, x
f , xs ∈ X, t ∈ T, xfp,t, xsp,t ≥ 0, p = 1, . . . ,m,

where xfp,t, x
s
p,t ∈ X, is the set of feasible solutions of problem (1). We can

express (1) above as the expected minimal cost from period t onward as an

optimization over {x1, x2, . . . , xT} condition on St = st as follows:

Qπk

t (St) = Et( min
xt,...,xT−1

{
T∑
t′=t

m∑
i=1

n∑
j=1

βt
′
ϕi,jt′ (xπ

k

t′ (St′−1))|St = st}), (2)

where St ∈ S, xt ∈ X, k = 1, 2, . . . , n, subject to:

n∑
p=1

xfp,t ≥
m∑
p=1

xsp,t, x
f , xs ∈ X, t ∈ T, xfp,t, xsp,t ≥ 0, p = 1, . . . ,m.

For a function ϕi,j : S → <n×m, i = 1, 2, . . . ,m; j = 1, 2, . . . , n, if we accumu-

late the cost of the first T -stage and add to it the terminal cost

ϕT (ST ) =
m∑
i=1

n∑
j=1

ϕi,jT (ST ),

then the Equation (2) for St ∈ S, xt ∈ X becomes

Qπk

t (St) = Et(min
xt
{
T−1∑
t′=t

m∑
i=1

n∑
j=1

βt
′
ϕi,jt′ (xπ

k

t′ (St′−1)) + βTϕT (ST )|St = st}),

subject to:

n∑
p=1

xfp,t ≥
m∑
p=1

xsp,t, x
f , xs ∈ X, t ∈ T, xfp,t, xsp,t ≥ 0, p = 1, . . . ,m.
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2.2 Dynamic Programming Formulation

Let St be the state variable at period t and S the state space, we formulate

the problem as a dynamic program. The number of product i that leave the

factory i to store j at period t is given by Pi,jx
fi
p,t, where Pi,j is the transition

percentage from factory i to store j. Hence, the total expected cost of goods

lost in transit is given by

β

m∑
p=1

n∑
j=1

Pi,jx
fi
p,t, t = 1, 2, . . . , T ; i = 1, 2, . . . ,m.

Let Sit−1 be the number of products to be distributed from factory i to the

stores in period t−1, then Sit is the expected number of products that will get

to the stores from factory i to the stores and let α be the expected percentage

of the products that is recovered from the lost ones which are expected to go

to the stores at period t, then we have that

Sit = Sit−1 − (1− α)
m∑
p=1

n∑
j=1

Pi,jx
πk

p,t, (3)

for i = 1, 2, . . . ,m, k = 1, 2, . . . , n, t = 1, 2, . . . , T, where Sit is the products

from factory i that are successfully in the stores from factory i and Sit−1 is the

goods that are in factory i before distributing to the stores. Equation (3) is

the transformation equation and is a random variable. We can express (3) as

follows:

Sit = Sit−1 − β
m∑
p=1

n∑
j=1

Pi,jx
πk

p,t,

for i = 1, 2, . . . ,m, k = 1, 2, . . . , n, t = 1, 2, . . . , T . The optimal policy can be

found by computing the value functions through the optimality equation

Rπk

t (Sit) = min
xt

m∑
i=1

n∑
j=1

ϕi,jt (xπ
k

t (Sit−1)) + βE(Ri
t+1(S

i
t+1))|Sit = St, (4)

for i = 1, 2, . . . ,m, k = 1, 2, . . . , n, t = 1, 2, . . . , T, subject to:

n∑
p=1

xfp,t ≥
m∑
p=1

xsp,t, x
f , xs ∈ X, t ∈ T, xfp,t, xsp,t ≥ 0, p = 1, . . . ,m.

The Equation (4) can be rewritten as follows:

Rπk

t (Sit) = min
xt

m∑
i=1

n∑
j=1

ϕi,jt (xπ
k

t (Sit−1)) + β

n∑
j=1

Pi,j(π
k)(Ri

t−1(S
i
t)),
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subject to:

n∑
p=1

xfp,t ≥
m∑
p=1

xsp,t, x
f , xs ∈ X, t ∈ T, xfp,t, xsp,t ≥ 0, p = 1, . . . ,m.

Equivalently,∑n
p=1 x

fi
p,t =

∑m
p=1 x

sj
p,t + δi,jt , x

f , xs ∈ X, t ∈ T, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

where xfp,t, x
s
p,t ≥ 0, p = 1, . . . ,m and δi,jt , is the number of products that is

lost in transit from factory i to store j at period t. If δi,jt = 0, it implies that

all the products that left the factories get to the stores successfully without

damages or lost. It can be shown that (2) is equal to (4), (see Powell[11]). We

may use (2) and (4) interchangeably. We now find the best control policy, µ,

that minimize our problem ,i.e, we search for

Φ∗t (St) = min
πk∈µ

Φπk

t (St), t = 1, 2, . . . , T ; k = 1, 2, . . . , n;St = Sit .

We do that by solving the optimality equation

Rπk

t (St) = min
xft ,x

s
t∈X

m∑
i=1

n∑
j=1

ϕi,jt (xπ
k

t (St−1)) + β
n∑
j=1

Pi,j(π
k)(Ri

t−1(St)), (5)

subject to:

n∑
p=1

xfip,t =
m∑
p=1

x
sj
p,t + δit, x

f , xs ∈ X, t ∈ T, i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

with xfp,t, x
s
p,t ≥ 0, p = 1, . . . ,m.

If ϕ̃it(S
f
t , π

k, Sst ) =
∑m

i=1

∑n
j=1 ϕ̃

i,j(Sft , π
k, Sst ) is the cost of using policy πk at

state Sft = i and moving to state Sst = j at period t, we use as cost per stage

the expected cost ϕi(Sfi , πk, S
sj
t ) =

∑m
i=1

∑n
j=1 ϕ

i,j(Sft , π
k, Sst ) given by

ϕit(S
fi
t , π

k, S
sj
t ) =

n∑
j=1

Pi,j(π
k)ϕ̃i(Sft , π

k, Sst ), t ∈ T,

=
n∑
j=1

Pi,j(π
k)ϕ̃i(i, π, j), i = 1, 2, . . . , n,

where for simplicity, we set m = n. Using the mapping Γ : R → <n and

Γµ : R→ <n, we express

(ΓR)(Sit) = min
π∈µ(St)

(ϕ(Sft , π
k
t , S

s
t ) + β

n∑
j=1

Pi,j(π
k)(R(Sjt )), i = 1, 2, . . . , n
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and

(ΓµR)(Sit) = min
π∈µ(St)

(ϕ(Sft , π
k
t , S

s
t ) + β

n∑
j=1

Pi,j(π
k)(Rµ(Sjt )), i = 1, 2, . . . , n

Theorem 2.1. (i) Let B(S) be the set of all bounded real-valued functions

R : S → <n. The mapping Γ : B(S)→ B(S) is a contraction.

(ii) The operator Γ has a unique fixed point (given R∗).

(iii) For any R, Γ∞R = R∗.

(iv) For any R, if ΓR ≤ R, then ΓtR ≥ R∗, ∀t = {1, 2, . . . }.

Proof (see Powell [11]).

Theorem 2.2. Let the bounded optimal cost function R : S → <n be

n-dimensional vectors. Then R satisfies

R∗(S0) = lim
T→∞

(ΓTR)(S0),∀S0 ∈ S.

Proof Let y be a positive integer, S0 ∈ S and policy µ = {π1, π2, . . . , πn},
we can decompose the return

Rµ(S0) = lim
T→∞

E{
T−1∑
t=0

n∑
i=1

n∑
j=1

βtGi,j
t (xπ

k

t,i,j(St)}

into the portion received over the first y stages and over the remaining stages.

Rµ(S0) = lim
T→∞

E{
y−1∑
t=0

n∑
i=1

n∑
j=1

βtGi,j
t (xπ

k

t,i,j(St)}+ lim
T→∞

E{
T−1∑
t=y

n∑
i=1

n∑
j=1

βtGi,j
t (xπ

k

t,i,j(St)}.

But

| lim
T→∞

E{
T−1∑
t=y

n∑
i=1

n∑
j=1

βtGi,j
t (xπ

k

t,i,j(St)}| ≤ Λ
∞∑
t=y

βt =
βyΛ

1− β
.

Therefore,

Rµ(S0) ≤ lim
T→∞

E{
y−1∑
t=0

n∑
i=1

n∑
j=1

βtGi,j
t (xπ

k

t,i,j(St)}+
βyΛ

1− β
.

Thus, it follows that

Rµ(S0)−
βyΛ

1− β
− βy inf

S0∈S
|G(S0)| ≤ E[βyϕ(S0y) +

y−1∑
t=0

n∑
i=1

n∑
j=1

βtGi,j
t (xπ

k

t,i,j(St)]

≤ Rµ(S0) +
βyΛ

1− β
+ βy inf

S0∈S
|G(S0)|.
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By taking the infimum over µ, we obtain for all S0 and y,

Rµ(S0)−
βyΛ

1− β
−βy inf

S0∈S
|G(S0)| ≤ (ΓyR)(S0) ≤ Rµ(S0)+

βyΛ

1− β
+βy inf

S0∈S
|G(S0)|.

and by taking the limit as y →∞, we obtain

R∗(S0) ≤ (ΓyR)(S0) ≤ R∗(S0).

Hence,

R∗(S0) = lim
y→∞

(ΓyR)(S0),∀S0 ∈ S.

This result shows that our optimization problem converges to a fixed point

R∗ in an infinite horizon. Therefore it follows that

R∗(S0) = min
x∈X

E[
n∑
i=1

n∑
j=1

Gi,j
t (x(S0)) + βR∗(x(S0))], ∀S0 ∈ S.

3 Dynamic Programming Principle and Error

Bounds

In this section, we consider the optimality equation with error bounds. Let

Rµ(St) = ϕ(St, µ(St)) +
∞∑
t=1

βtE(ϕ(St, µ(St))|S0).

But,

Λ′ ≤ ‖ϕ(St, µ(St)‖ ≤ Λ′′

and

‖ lim
T→∞

βtEϕ(St, µ(St)‖ ≤ Λ
∞∑
t=T

βt =
βTΛ

1− β
.

It then follows that

ϕµ + (
βΛ′

1− β
)e ≤ Rµ ≤ ϕµ + (

βΛ′′

1− β
)e. (6)

where e is the unit vector and Λ′ and Λ′′ are such that

Λ′ = min
St

ϕ(St, µ(St)).
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Λ′′ = max
St

ϕ(St, µ(St)).

(6) can be improve upon as follows:

(
Λ′

1− β
)e ≤ ϕµ + (

βΛ′

1− β
)e ≤ Rµ ≤ ϕµ + (

βΛ′′

1− β
)e ≤ (

Λ′′

1− β
)e.

For a vector R, we compute

ΓµR = ϕµ + βPµR, (7)

Rµ = ϕµ + βPµR
µ. (8)

By subtracting (7) and (8), we have

Rµ = ΓµR + βPµ(Rµ −R).

Rµ is the cost vector associated with the control policy µ and R is the cost per

stage vector. It then follows from (6) that for

η′ = min
St

(ΓµR)(St)−R(St))

and

η′′ = max
St

(ΓµR)(St)−R(St))

we have

(
η′

1− β
)e ≤ ΓµR−R+ (

βη′

1− β
)e ≤ Rµ−R ≤ ΓµR−R+ (

βη′′

1− β
)e ≤ (

η′′

1− β
)e.

Equivalently, for the vector R, we have

R +
ψ′

β
e ≤ ΓµR + ψ′e ≤ Rµ ≤ ΓµR + ψ′′e ≤ R +

ψ′′

β
e, (9)

where ψ′ = βη′

1−β and ψ′′ = βη′′

1−β . (9) can be improve upon as follows. From (7),

we have η′ = minSt(ΓR)(St)−R(St)), It follows that

R + η′e ≤ ΓR (10)

From (10), we obtain

Γ(ΓR− η′e) = min
πk
‖ϕπk

t + βPπk(ΓR− η′e)‖ (11)

= min
πk
‖ϕπk

t + βPπkΓR‖ − βη′e (12)

= Γ2R− βη′e. (13)
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Now, combining (10) and (11), we have

R + (1− β)βη′e ≤ Γ2R + β2η′e ≤ Γ3R. (14)

Substituting (9) into (14), we have

R + (1 + β + β2)η′e ≤ ΓR + (β + β2)η′e ≤ Γ2R + β2η′e ≤ Γ3R.

After k steps, we have

R + (
k∑
i=0

βi)η′e ≤ ΓR + (
k∑
i=1

βi)η′e ≤ Γ2R + (
k∑
i=2

βi)η′e ≤ · · · ≤ Γk+1R.

As k →∞, we have

R +
βη′e

β(1− β)
≤ ΓR +

βη′e

1− β
≤ Γ2R +

β2η′e

1− β
≤ · · · ≤ R∗.

Let ψ′1 = βη′

1−β , we have

R +
ψ′1e

β
≤ ΓR + ψ′1e ≤ Γ2R + βψ′1e ≤ R∗. (15)

Let R = Γk+1R in (15), we have

Γk+1R + ψ′k+1e ≤ R∗.

From (10), we have that minSt((Γ
2R)(St)− (ΓR)(St)) ≥ βη′ and

βψ′1 = β2η′

1−β ≤ ψ′2. Therefore, we have

ΓR + ψ′1e ≤ Γ2R + ψ′2e ≤ R∗.

It implies that

(ΓkR)(St) + ψ′k ≤ (Γk+1R)(St) + ψ′k+1 ≤ R∗(St).

Similarly, η′′ = ‖ΓR−R‖∞. We therefore have that

(ΓkR)(St) + ψ′k ≤ (Γk+1R)(St) + ψ′k+1

≤ R∗(St) ≤ (Γk+1R)(St) + ψ′′k+1 ≤ (ΓkR)(St) + ψ′′k .

This is the dynamic programming (value iteration) that is bounded above and

below. The value (ΓkR)(St) + ψ′k, is the value iteration with minimum error

bound and (ΓkR)(St) + ψ′′k is the value iteration with maximum error bound.
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4 Numerical Simulation

In this section, we present the numerical simulation of the company prob-

lem. The state transition diagrams of the distribution of goods from factories

to stores, under the control policies π1, π2, π3, π4, π5, π6, π7 are given below:

The transition matrices corresponding to the control policies

π1, π2, π3, π4, π5, π6, π7

are presented below:
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P (π3) =
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The transition cost of the goods are given in the Table 1.1.

Table 1.1: Transition Costs
r 1? 2? 3? 4? 5? 6? 7?

1 120 110 78 59 108.2 105.6 122

2 56 80 105 140 101 112.6 192

3 100 120 64 92 85.5 90.1 80.25

4 75 60 132 112.8 72.05 80.4 80

5 80.5 65 84.2 62 76.5 79.5 77

6 90 70 93 69 66.4 67.5 75.2

7 92 75 95 75.3 65.3 59 69.9

1? : ϕ(S1, π
r)× 100000 (Naira) 2? : ϕ(S2, π

r)× 100000 (Naira)

3? : ϕ(S3, π
r)× 100000 (Naira) 4? : ϕ(S4, π

r)× 100000 (Naira)

5? : ϕ(S5, π
r)× 100000 (Naira) 6? : ϕ(S6, π

r)× 100000 (Naira)

7? : ϕ(S7, π
r)× 100000 (Naira)
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The company estimates β = 0.1 of the goods in transit to be lost or damage.

But in this paper, we take different values of β to demonstrate the behavior of

the cost function. The cost of the damage goods are added to the cost of the

shipment. MATLAB was used to solve the problem. The results are presented

in the tables below.

Table 1.2: The Costs of Distributing the Goods without Error Bound

k Γk(R)? Γk(R)?? Γk(R)??? Γk(R)???? Γk(R)????? Γk(R)?????? Γk(R)???????

0 - - - - - - -

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 5.6000 6.0000 6.4000 5.9000 6.5300 5.9000 6.9900

2 6.2314 6.6187 7.0267 6.5038 7.1494 6.5194 7.6094

3 6.2932 6.6808 7.0883 6.5659 7.2116 6.5816 7.6716

4 6.2994 6.6870 7.0946 6.5721 7.2178 6.5878 7.6778

5 6.3000 6.6876 7.0951 6.5727 7.2184 6.5884 7.6784

∞ 6.3001 6.6877 7.0952 6.5728 7.2184 6.5884 7.6784
?Γk(R)(S1)× 100000 (Naira) ??Γk(R)(S2)× 100000 (Naira)
???Γk(R)(S3)× 100000 (Naira) ????Γk(R)(S4)× 100000 (Naira)
?????Γk(R)(S5)× 100000 (Naira) ??????Γk(R)(S6)× 100000 (Naira)
???????Γk(R)(S7)× 100000 (Naira)

Table 1.3: The Costs of Distributing the Goods with Minimum Error Bound

k Γk(R)? Γk(R)?? Γk(R)??? Γk(R)???? Γk(R)????? Γk(R)?????? Γk(R)???????

0 - - - - - - -

1 6.2222 6.6222 6.0222 5.5222 7.1522 6.5222 7.6122

2 6.2985 6.6858 7.0938 6.5709 7.2165 6.5865 7.6765

3 6.3000 6.6877 7.0952 6.5728 7.2184 6.5884 7.6784

∞ 6.3001 6.6877 7.0952 6.5728 7.2184 6.5884 7.6784
?Γk(R)(S1) + ψ′ × 100000 (Naira) ??Γk(R)(S2) + ψ′ × 100000 (Naira)
???Γk(R)(S3) + ψ′ × 100000 (Naira) ????Γk(R)(S4) + ψ′ × 100000 (Naira)
?????Γk(R)(S5)+ψ′×100000 (Naira) ??????Γk(R)(S6)+ψ′×100000 (Naira)
???????Γk(R)(S7) + ψ′ × 100000 (Naira)
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Table 1.4: The Costs of Distributing the Goods with Maximum Error Bound

k Γk(R)? Γk(R)?? Γk(R)??? Γk(R)???? Γk(R)????? Γk(R)?????? Γk(R)???????

0 - - - - - - -

1 6.3767 6.7767 7.1767 6.6767 7.3067 6.6767 7.7667

2 6.3016 6.6888 7.0969 6.5739 7.2196 6.5896 7.6796

3 6.3001 6.6877 7.0953 6.5728 7.2185 6.5885 7.6784

∞ 6.3001 6.6877 7.0952 6.5728 7.2184 6.5884 7.6784
?Γk(R)(S1) + ψ′′ × 100000 (Naira) ??Γk(R)(S2) + ψ′′ × 100000 (Naira)
???Γk(R)(S3) + ψ′′ × 100000 (Naira) ????Γk(R)(S4) + ψ′′ × 100000 (Naira)
?????Γk(R)(S5)+ψ′′×100000 (Naira) ??????Γk(R)(S6)+ψ′′×100000 (Naira)
???????Γk(R)(S7) + ψ′′ × 100000 (Naira)

Table 1.1 contained the transition costs of the distributions of the goods

from the factories to stores. Table 1.2 contained the minimum costs of dis-

tributing the goods from the factories to stores without error bounds. Table

1.3 contained the minimum costs of distributing the goods with minimum er-

ror bound. Table 1.4 contained the minimum costs of the distributions with

maximum error bound. We found from Table 1.2 to Table 1.4, that the min-

imum costs with and without error bounds coincide only at infinity. Again,

the result shows that the optimal cost of the distributions of the goods from

factories to stores to be 6,300,100 Naira under the policy π1, 6,687,700 Naira

under policy π2, 7,095,200 Naira under policy π3, 6,572,800 Naira under pol-

icy π4, 7,218,400 Naira under policy π5, 6,588,400 Naira under policy π6 and

7,678,400 Naira under policy π7. We therefore recommend that if it is possible

to produce the all the products in a single factory, the company should adopt

the first policy in distributing their goods to stores.

From Figure 1, at β = 0.05, we observed that the costs of the distribution

reduces, which is expected result, since the lower the numbers damage goods,

the lower the costs of the distributions. It shows that the optimal costs to be

5,932,000 Naira under policy π1, 6,325,700 under policy π2, 6,729,600 under

policy π3, 6,218,200 under policy π4, 6,856,100 under policy π5, 6,226,100

under policy π6 and 7,316,100 under policy π7.

In Figure 2, we take β = 0.15, we found the optimal cost to be 6,710,700

Naira under policy π1, 7,092,400 under policy π2, 7,503,400 under policy π3,
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6,970,100 under policy π4, 7,623,500 under policy π5, 6,993,500 under policy

π6 and 8,083,500 under policy π7.

In Figure 3, we set β = 0.5 and the result shows that the optimal costs is

11,754,000 Naira under policy π1, 12,100,000 under policy π2, 12,528,000 under

policy π3, 11,925,000 under policy π4, 12,633,000 under policy π5, 12,003,000

under policy π6 and 13,093,000 under policy π7. In all, the optimal minimum

costs are obtained under the first policy (i.e., π1). We have that higher the

value of β, higher the costs of distributions of the goods. Hence, for the

company to spend less costs on shipment, they must ensure that their goods

get to their destination successfully or with little damages.

Figure 4 shows that after four iterations, the minimum and the maximum

error bounds coincided. We referred to this point as ”Point of Harmony” (i.e.,

a point where the errors canceled out). At infinity, the the minimum and

maximum error bounds vanishes.

5 Conclusion

We have that the optimal cost of shipping the goods from the factories to the

stores are 6,301,000 naira under policy π1, 6,687,700 Naira under policy π2,

7,095,200 Naira under policy π3, 6,572,800 Naira under policy π4, 7,218,400

Naira under policy π5, 6,588,400 Naira under policy π6 and 7,678,400 Naira

under policy π7. The company is therefore advised to maintain the first policy,

π1 if it is possible to produce all the products in a single factory, since it yields

the minimum transportation cost. We also found that the minimum costs of

the distributions of the goods with and without error bounds coincide only at

infinity. We further found that at various values of β, the first policy (i.e., π1)

remain the optimum policy of all the optimal policies.
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