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Abstract 
 

In this study, we predict Bitcoin price trends using the back propagation neural 

network (BPNN), autoregressive integrated moving average (ARIMA), and 

generalized autoregressive conditional heteroscedasticity (GARCH) models. Based 

on principal component analysis (PCA), we extract two new input components for 

BPNN from Bitcoin’s three-day closing prices, MA5, MA20, daily trading volume, 

Ether price, and Ripple price. The training set covers the period between September 

1, 2015 and March 31, 2020, and the forecasting set covers the period between April 

1, 2020 and June 30, 2020. Empirical results reveal (1) the predictive ability of 

BPNN over that of the ARIMA models; (2) BPNN with two hidden layers is able 

to predict price trends more precisely than that with only one hidden layer; (3) in 

terms of time series models, the ARIMA-GARCH family of models demonstrates 

better predictive performance than ARIMA models; and (4) among the ARIMA-

GARCH family of models, the ARIMA-EGARCH model is proven to produce the 

best predictive results on price, and the ARIMA-GARCH model predicts more 

accurately than the ARIMA-GJR-GARCH model. Specifically, our findings 

provide a reference on Bitcoin for market participants. 

 

JEL classification numbers: C32, C45, C53, G17. 

Keywords: Bitcoin, Back propagation neural network, Autoregressive integrated 

moving average, Generalized autoregressive conditional heteroscedasticity, 

Principal component analysis. 

 
1 Assistant Professor, Department of Business Administration, Fu Jen Catholic University, New 

Taipei City, Taiwan.  Corresponding author. 
2 Department of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan. 
3 Department of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan. 

 

Article Info: Received: May 3, 2022. Revised: June 1, 2022.  

Published online: June 6, 2022. 

 



26                                           Lian et al.   

1. Introduction  

Bitcoin, proposed by Satoshi Nakamoto in 2008, was the first cryptocurrency. Its 

peer-to-peer structure enables cryptocurrency transactions in a decentralized rather 

than centralized structure. However, Bitcoin transactions often require hours for 

confirmation, and Bitcoin is mainly acquired through costly “mining.” 

Cryptocurrency value also fluctuates more than fiat currency. Accurate price 

forecasts enable investors to formulate better strategies. 

Time series models have always been used for price forecasting. Ohyver and 

Pudjihastuti (2018) formulated autoregressive integrated moving average (ARIMA) 

models to forecast the price of rice from January 2015 to April 2017 and obtained 

the optimal ARIMA(1,1,2) model. Empirical analyses suggested that ARIMA 

models were better in the short term, so the data require frequent updating. The 

government can reference historical data price to make better decisions. Wood and 

Dasgupta (1996) used an ARIMA model, a neural network (NN), and a regression 

model to predict trends in the MSCI U.S.A. Capital Market Index; their empirical 

analysis indicated that the ARIMA model had the best predictive accuracy. To 

capture price volatility, the GARCH family of models is often employed. Qiao et al. 

(2020) forecast the VIX index using the GARCH, GJR-GARCH, E-GARCH, and 

DJI-GARCH models and found that GARCH(1,1) and GJR-GARCH are relatively 

better for out-of-sample testing. Lama et al. (2015) applied the ARIMA, GARCH, 

and EGARCH models to forecast an international cotton price series and found that 

the EGARCH model provided more precise predictions. 

As artificial intelligence grow, machine learning methods such as NN and back 

propagation neural networks (BPNN) have become more popular. Liu and Ma 

(2012) demonstrated that BPNN was able to forecast the Shanghai stock index, and 

that BPNN with one hidden layer could deal with complex continuous questions. 

Grudnitski and Osburn (1993) used BPNN to predict monthly price changes in gold 

futures and the S&P 500 index; the accuracy rate for predicting gold futures was 

61% and for the S&P 500 was 75%. To predict Canadian stock returns, Olson and 

Mossman (2003) classified 2,353 Canadian companies’ 61 accounting ratios into 

four to six categories as input data and compared BPNN forecasts with ordinary 

least squares and logistic regression (logit) techniques; BPNN outperformed 

traditional regression-based forecasting in non-linear situations. 

In recent years, Bitcoin has attracted investors’ attention. Lian et al. (2019) proposed 

a Monte Carlo simulation and spot-futures with the cost of carry to build a dynamic 

price model for Bitcoin futures. According to the results, various factors had a 

significant impact on the Bitcoin futures price. Katsiampa (2017) applied various 

GARCH models to analyze Bitcoin volatility and showed that AR-CGARCH was 

the best model. Since Bitcoin differs from other financial assets, it is possible to 

create benefits for stakeholders using portfolio analysis and risk management. Chen 

et al. (2019) employed BPNN and ARIMA models to forecast the Bitcoin price from 

2014 to 2018 and demonstrated that BPNN exhibited better predictive performance 

than ARIMA models. ARIMA models exhibited smaller deviations when price 
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volatility was relatively stable. Therefore, the study suggested that investors should 

observe the characteristics of recent Bitcoin historical data when establishing a 

forecasting model. Furthermore, Corbet et al. (2020a, 2020b) provided the feasible 

works so that the empirical results are achieved. Lian and Chen (2021) empirically 

investigated the properties of cryptocurrency returns and priced the European-style 

cryptocurrency options. 

Most previous studies believe that time series models have good price predictive 

ability considering different targets, and BPNN explains non-linear data more 

effectively. Therefore, due to Bitcoin’s high price volatility, this study uses BPNN 

and time series models to determine the most precise Bitcoin price prediction trend. 

This study makes three main contributions. First, we depict the Bitcoin price 

dynamics through the BPNN and the ARIMA-GARCH family of models to 

understand the operation of the cryptocurrency market and the risks involved. Our 

findings are valuable for the investment of other virtual currency-linked products 

for which the process of Bitcoin prices are expected to follow the proposed models. 

Second, we employ the principal component analysis (PCA) to extract two new 

input components for BPNN and maintain the nature of statistical significance. 

Finally, we evaluate the predictive performance of the BPNN and the ARIMA-

GARCH family of models, compared with the actual Bitcoin price data to 

demonstrate the best predictive model. The empirical results are significant for 

investors and for the organization of the Bitcoin market. 

The remainder of this study is structured as follows. Section 2 introduces the 

prediction models and demonstrates the parameter setting process. Section 3 

presents the empirical analysis. Section 4 concludes. 

 

2. Methodology 

2.1 Back propagation neural network (BPNN) 

2.1.1 BPNN 

BPNN, a type of NN, was first released by McClelland and Rumelhart in 1986. The 

BPNN training process is divided into two stages: learning and recalling. In the 

learning phase, BPNN is a supervised algorithm trained using known data. When 

the initial system output differs from the desired output, the error difference is back 

propagated into the network using the gradient steepest descent method. BPNN then 

constantly adjusts the weights to minimize the loss function. During the recalling 

phase, BPNN recalls an optimal pattern from the learning phase and generates 

output. BPNN is suitable for prediction, diagnosis, and classification, and it defined 

as follows: 
 

𝑌𝑗  = (𝑛𝑒𝑡)=𝑓(∑ 𝑤𝑛
𝑖=1 𝑖𝑗

𝑋𝑖−θ𝑗),                                 (1) 

 

where 𝑌𝑗 represents the output layer neurons and 𝑛𝑒𝑡 represents the summation 

function. 𝑋𝑖  is the input variable,  𝑊𝑖𝑗  is the weight, and θ𝑗  is the bias, or 

threshold of hidden layer neurons. 𝑓 represents the transfer or activation function. 
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2.1.2 Transfer function 

The transfer function introduces non-linear characteristics into BPNN. Thus, the 

sigmoid function is used to convey the output value between 0 and 1. Its equation 

is expressed as follows: 
 

(𝑛𝑒𝑡) =
1

1+𝑒𝑥𝑝−𝑛𝑒𝑡,                      (2) 

 

2.1.3 The dimensionality reduction of BPNN 

Principal component analysis (PCA), which simplifies several relative variables 

into a few independent, principal components by computing the weighted average 

of each variable, is represented by the following formula: 
 

𝑦𝑗 = 𝑎𝑗1𝑥1 + 𝑎𝑗2𝑥2 + ⋯ + 𝑎𝑗𝑝𝑥𝑝,                                     (3) 
 

where 𝑦𝑗  represents the 𝑗𝑡ℎ  principal component, 𝑥𝑝  represents the original 

variable, and 𝑎𝑗  is the covariance matrix, which represents the 𝜆𝑗  eigenvector 

corresponding to the 𝑗𝑡ℎ  eigenvalue.  

 

2.2 ARIMA 

2.2.1 Introduction of ARIMA 

The ARIMA(p,d,q) model, introduced by Box and Jenkins (1976), combines the 

AR(autoregressive) model, I(integrated), and MA(moving average) models. The 

ARIMA(p,d,q) model can be written as Equations (4)–(6): 
 

𝑦𝑡 = 𝑎0 + ∑ 𝑎𝑖 
𝑝
𝑖=1 𝑦𝑡−𝑖 + 𝜀𝑡,                                         (4) 

 

∆𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1,                                                 (5) 
 

𝑦𝑡 = 𝑏0 + ∑ 𝑏𝑖 
𝑞
𝑖=1 𝜀𝑡−𝑖 + 𝜀𝑡,                                         (6) 

 

where 𝑎0 is a constant, 𝑝 is the order of lagged value, 𝑎𝑖 are the actual values, 𝜀𝑡 

is the random error at time t, 𝑋𝑡is the first-order difference, ∆𝑑𝑋𝑡 is the 𝑑-order 

difference, 𝑏0 is a constant, q is the order of lagged value, 𝑏𝑖 is the coefficient of 

𝜀𝑡−𝑖, and 𝜀𝑡 is the random error at t. 

 

2.2.2 Establish the ARIMA model 

The first step in establishing the model is the unit root test. This study adapts the 

Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) tests to examine stationarity. If the sequence is unsteady, we 

proceed to the second step to determine I(d). Then, the white noise test is performed 

on the sequence. In this process, we use the Ljung-Box test to test the white noise, 

the null hypothesis is that the test sequence is purely random, and the statistic for 

this test is Q.  
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The Ljung-Box test can be represented as follows: 

 

𝑄(𝑚) = 𝑛(𝑛 + 2) ∑
𝜌𝑘

2

𝑛−𝑘
~𝜒𝑚

2𝑚
𝑘=1 ,                                     (7)  

 

where 𝜌𝑘
2 is the k-order autocorrelation coefficient of the sequence, n is the number 

of samples, and m is the set lagging order. 

The last step is to determine the AR(p) and MA(q) model orders. We use the most 

common tools, autocorrelation function (ACF) and partial correlation function 

(PACF), to identify the order of p and q. 

 

2.2.3 Model selection 

We adopt the Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) to find the optimal model. The AIC was introduced by Akaike 

(1974), and the BIC was developed by Gideon Schwarz (1978). The smaller their 

values, the closer the models’ goodness-of-fit. Their expressions are provided in 

Equations (8) and (9) as follows: 
 

AIC = T ln(SSE) + 2k,                                             (8) 
 

BIC = T ln(SSE) + k ln(T),                                         (9) 

 

where T is total number of samples, ln(SSE)  is the natural logarithm of the 

residual sum of squares, k is total number of parameters to be estimated, and 

ln(T) is the natural logarithm of the total number of samples. 

 

2.3 GARCH family models 

2.3.1 GARCH model 

To explain the volatility clustering of financial data, we use the GARCH model to 

augment the lagging periods of the residual sum of squares and conditional variance 

in the ARIMA model. According to Bollerslev, Chou, and Kroner (1992), the 

GARCH(1,1) model is sufficient for most economic data. Therefore, we chose 

GARCH(1,1) as the parameter value in our study. The GARCH model is defined as 

follows: 

 

𝑦𝑡 = 𝑥𝑡 + ɛ𝑡,                                                    (10) 
 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖ɛ𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1 ,                                (11) 

 

𝑦𝑡|Ω𝑡~𝑁(𝑥𝑡𝛼, 𝜎𝑡),                                                (12) 

 

where 𝑥𝑡 is the variable vector, α is the coefficient vector, ɛ𝑡 is the residual value 

of t period, 𝜎𝑡
2 is the residual variance, q is the residual lagging period, p is the 

residual variance lagging period, and if p = 0, the model is the same as ARCH(q). 
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2.3.2 GJR-GARCH model 

The GJR-GARCH, or TGARCH, model is used to explain the effect of leverage in 

financial markets and the asymmetric phenomenon of conditional variance 

fluctuations (Glosten, Jaganathan, and Runkle, 1993). If it represents the rate of 

return of a financial asset at time t, it can be expressed as Equation (13): 

 

 𝑦𝑡 =  𝑎0 + 𝜀𝑡,                                                   (13) 

 

where 𝜀𝑡 is the residual, indicating that when 𝜀𝑡−1 < 0, the previous rate of return 

is lower than 𝑎0, 𝜀𝑡−1 =  𝑦𝑡−1 − 𝑎0 < 0, so it is bad news for financial assets. 

Relatively, if the previous residual 𝜀𝑡−1 ≥ 0, at least it is not bad news for financial 

assets. The GJR-GARCH model represents the previous 𝜀𝑡−1 of good and bad 

news, and the threshold is set to zero. The equations are as follows: 

 

𝜎𝑡
2 =  𝛼0 + 𝛼1𝜀𝑡−1

2 +  𝛾𝜀𝑡−1
2𝐷𝑡−1 +  𝛽1 𝜎𝑡−1

2,                        (14) 

 

𝐷𝑡−1 =  {
1 𝑖𝑓 𝜀𝑡−1 < 0
0 𝑖𝑓 𝜀𝑡−1 ≥ 0

,                                            (15) 

 

If the estimated result > 0, the leverage effect exists. It also indicates that bad news 

in the previous period will make the conditional variation value of the current period 

greater than good news, which is consistent with the leverage effect. 

 

2.3.3 EGARCH (exponential GARCH) model 

The EGARCH model is similar to GJR-GARCH, but EGARCH takes the logarithm 

of the conditional variance and lagged terms in the model. It uses the absolute value 

of the standardized residual to maintain the conditional variance in the condition of 

positive variance (Nelson, 1991). The EGARCH(1,1,1) variance equation is defined 

as follows: 

 

ln(𝜎𝑡
2) =  𝛼0 + 𝛼1 |

𝜀𝑡−1

𝜎𝑡−1
| +  𝛾

𝜀𝑡−1

𝜎𝑡−1
+ 𝛽1 ln(𝜎𝑡−1

2 ),                       (16) 

 

When 𝜀𝑡−1 < 0, |
𝜀𝑡−1

𝜎𝑡−1
|  and 

𝜀𝑡−1

𝜎𝑡−1
 are equal, the leverage effect exists, and 𝛾 < 0. 

In the equation, bad news increases the value of conditional variation in the current 

period. 

 

2.4 Performance evaluation 

We evaluate predictive ability using MSE, MAE, and MAPE. The lower the 

estimators of MSE, MAE, MAPE are, the better the model’s accuracy.  
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The formulas are given by the following: 

 

MSE =
1

𝑛
∑ (𝑦𝑡 − �̂�𝑡)2𝑛

𝑖=1 ,                                        (17) 

 

MAE =
1

𝑛
∑ |𝑦𝑡 − �̂�𝑡|𝑛

𝑖=1 ,                                           (18) 

 

MAPE =
1

𝑛
∑ |

𝑦𝑡−�̂�𝑡

𝑦𝑡
|𝑛

𝑖=1 ,                                            (19) 

 

where 𝑦𝑡 represents actual value, �̂�𝑡 is predictive value, and n is the number of 

samples. 

 

3. Empirical analytics 

We use BPNN and time series models to predict the Bitcoin price trend and evaluate 

predictive performance using MSE, MAE, and MAPE. The training set covers 

September 1, 2015–March 31, 2020, and the forecasting set covers April 1, 2020–

June 30, 2020. The data for BPNN and the ARIMA-GARCH family of models are 

from Yahoo! Finance.com. 

 

3.1 BPNN 

3.1.1 Variable setting 

Inputting variables correlated to the desired output trains BPNN to learn 

autonomously. Table 1 presents and describes the eight variables selected for BPNN. 

 
Table 1: Variable setting for BPNN 

Variable (𝑿𝒌) Description 

𝑋1~𝑋3 𝑃𝑡−1, 𝑃𝑡−2, 𝑃𝑡−3 Past three-day closing prices 

𝑋4~𝑋5 𝐸𝑇𝐻, 𝑋𝑅𝑃 Ether and Ripple prices 

𝑋6~𝑋7 𝑀𝐴5, 𝑀𝐴20 5 and 20 days moving averages 

𝑋8 𝑉𝑜𝑙 Daily trading volume 

 

3.1.2 PCA 

According to Table 2, the first and second principal components explain 94.906% 

of the original variables. The empirical results indicate that first to second principal 

components should be selected and their eigenvalues should be greater than 1. Thus, 

we adopt the first and second principal components as new variables of BPNN. 
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Table 2: Description of variance ratios 

 Eigenvalue 
Percentage 

of variance 

Cumulative 

percentage of 

variance 

Principal component 1 6.521 81.512 81.512% 

Principal component 2 1.072 13.394 94.906% 

Principal component 3 0.264 3.302 98.208% 

Principal component 4 0.116 1.446 99.654% 

Principal component 5 0.020 0.246 99.900% 

Principal component 6 0.006 0.070 99.970% 

Principal component 7 0.002 0.026 99.996% 

Principal component 8 0.000 0.004 100.000% 

 

Table 3: The PCA model 

 Mathematical equation 

The first 

principal 

component 

𝑦1 = 0.165𝑥1 + 0. 164𝑥2 + 0. 162𝑥3−0.255𝑥4−0.264𝑥5

+ 0.164𝑥6 + 0. 147𝑥7 + 0. 524𝑥8 

The second 

principal 

component 

𝑦2 = 0.048𝑥1 + 0. 05𝑥2 + 0.051𝑥3 + 0. 434𝑥4 + 0. 436𝑥5

+ 0.05𝑥6 + 0. 067𝑥7−0.394𝑥8 

 

3.1.3 The structure of BPNN 

The optimal parameters and output values for BPNN are conducted by 2,000 times 

of training; the five learning rates are 0.1, 0.3, 0.5, 0.7, and 0.9; and the momentum 

terms are 0.5, 0.7, and 0.9. The sigmoid function is employed as the transfer 

function in this process. According to the rule of thumb, one to two hidden layers 

have the best convergence properties. Therefore, we set the number of hidden layers 

to one and two with the trial-and-error method, with 1 to 14 neurons in one hidden 

layer. Regarding the two hidden layers, 1 to 14 neurons are set in the first layer, and 

2 to 7 neurons are set in the second layer. Table 4 demonstrates the number of 

hidden layers and neurons used in this study. 
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Table 4: Neuron setting for BPNN 

 
One 

hidden layer 

Two 

hidden layers 

The number of input layer neurons 2 2 

The number of 1𝑠𝑡 hidden layer neurons 1~14 1~14 

The number of 2𝑛𝑑 hidden layer neurons － 2~7 

The number of output layer neurons 1 1 

 

3.1.4 Evaluation of prediction ability 

MSE, MAE, and MAPE are used to assess prediction error between the actual 

Bitcoin price and the price forecast by the models. Tables 5–7 show the top three 

BPNNs with one hidden layer, based on the three performance assessments; the 

optimal BPNN structures occur with the learning rate set to 0.9 and with 4 to 5 

hidden layer neurons. Tables 8–10 show the top three BPNNs with two hidden 

layers. Based on the three evaluation indicators, the optimal network structures are 

those with, respectively, 4 and 3 neurons at the first and the second hidden layer, a 

0.1 learning rate, and a 0.7 momentum term. BPNN with two hidden layers has a 

slightly better predictive performance. Regardless of the number of hidden layers, 

4 neurons tend to be selected for the first hidden layer. 

 
Table 5: The top three BPNNs with one hidden layer based on MSE 

MSE 

ranking 

The number 

of hidden 

layer 

The 

structure 

of BPNN 

Learning 

rate 

Momentum 

term 
MSE 

1 1 02-04-01 0.9 0.9 443493.359 

2 1 02-04-01 0.7 0.9 445035.193 

3 1 02-04-01 0.3 0.9 447239.754 

 

Table 6: The top three BPNNs with one hidden layer based on MAE 

MAE 

ranking 

The number 

of hidden 

layer 

The 

structure 

of BPNN 

Learning 

rate 

Momentum 

term 
MAE 

1 1 02-05-01 0.3 0.9 513.648 

2 1 02-04-01 0.3 0.7 515.066 

3 1 02-03-01 0.5 0.5 515.439 



34                                           Lian et al.   

Table 7: The top three BPNNs with one hidden layer based on MAPE 

MAPE 

ranking 

The number 

of hidden 

layer 

The 

structure 

of BPNN 

Learning 

rate 

Momentum 

term 
MAPE 

1 1 02-04-01 0.9 0.9 593.672% 

2 1 02-04-01 0.7 0.9 594.759% 

3 1 02-04-01 0.3 0.9 596.138% 

 

Table 8: The top three BPNNs with two hidden layers based on MSE 

MSE 

ranking 

The 

number of 

hidden 

layer 

The 

structure of 

BPNN 

Learning 

rate 

Momentum 

term 
MSE 

1 2 02-04-03-01 0.1 0.7 431041.920 

2 2 02-04-02-01 0.5 0.9 438732.042 

3 2 02-04-02-01 0.3 0.9 446393.075 

 

Table 9: The top three BPNNs with two hidden layers based on MAE 

MAE 

ranking 

The 

number of 

hidden 

layer 

The 

structure of 

BPNN 

Learning 

rate 

Momentum 

term 
MAE 

1 2 02-04-03-01 0.1 0.7 511.581 

2 2 02-04-02-01 0.5 0.9 520.859 

3 2 02-02-04-01 0.1 0.5 521.119 

 

Table 10: The top three BPNNs with two hidden layers based on MAPE 

MAPE 

ranking 

The 

number of 

hidden 

layer 

The 

structure of 

BPNN 

Learning 

rate 

Momentum 

term 
MAPE 

1 2 02-04-03-01 0.1 0.7 589.767% 

2 2 02-04-02-01 0.3 0.9 597.737% 

3 2 02-04-02-01 0.5 0.9 598.780% 
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Figures 1–2 illustrate the prediction trends of BPNN with one and two hidden layers 

during the training period. We demonstrate the best prediction model for each 

hidden layer. The optimal network structure of BPNN with one hidden layer is (02-

04-01) with a 0.9 learning rate and a 0.9 momentum term. The optimal network 

structure of BPNN with two hidden layers is (02-04-03-01) with a 0.1 learning rate 

and a 0.7 momentum term. In conclusion, the models’ forecasting price fits well 

with the actual Bitcoin price with both one and two hidden layers. 
 

 

Figure 1: Prediction trend of the best BPNN with one hidden layer (2-4-1) 

under training 

 

Figure 2: Prediction trend of the best BPNN with two hidden layers (2-4-3-1) 

under training 
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3.2 ARIMA model 

3.2.1 Unit root test and white noise 

We use ADF, PP, and KPSS to test whether the sequence is steady. Table 11 shows 

that the original Bitcoin sequence is unsteady. After the first-order difference, the 

sequence is steady as an I(1) sequence. Table 12 illustrates that the I(1) sequence is 

tested by white noise, and its p-value is less than 5%. Therefore, the null hypothesis 

is rejected, indicating that the sequence exhibits autocorrelation. 

 
Table 11: Unit root test 

 ADF PP KPSS 

Level -1.94294(10) -1.72797(10) 107.4131(0)* 

1𝑠𝑡  difference -11.5604(9)* -41.1503(0)* 0.0411 (4) 

Notes: * represents statistical significance at the 0.05 level. 

 
Table 12: White noise test 

 p-value Result 

1𝑠𝑡  difference of series 2.5183374624102813e-14 
Reject the null 

hypothesis 

Notes: The null hypothesis 𝑯𝟎 indicates series are purely random processes. 

 

3.2.2 PACF and ACF 

Using the unit root test, ARIMA(0,1,0) is proven to be stationary. Figure 3 

illustrates that the highest protruding part of PACF(p) is close to 10, and the highest 

protruding part of ACF(q) is also close to 10. As a consequence, this study evaluates 

the models of ARIMA(0,1,1), ARIMA(0,1,2),…, up to ARIMA(10,1,10), and finds 

out the top three of them. 
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Figure 3: PACF (top panel) and ACF (bottom panel) after the 𝟏𝒔𝒕 difference in 

Bitcoin prices. 

 

3.2.3 AIC and BIC 

Table 13 demonstrates the evaluation results for the top three ARIMA models with 

the best goodness-of-fit of AIC and BIC. AIC selects ARIMA(10,1,10), 

ARIMA(9,1,8), ARIMA(8,1,9), and BIC selects ARIMA(0,1,0), ARIMA(0,1,1), 

ARIMA(1,1,0). 

 
Table 13: Goodness-of-fit test for ARIMA (p,d,q) 

Ranking ARIMA AIC Ranking ARIMA BIC 

1 ARIMA(10,1,10) 25202.50 1 ARIMA(0,1,0) 25289.98 

2 ARIMA(9,1,8) 25207.96 2 ARIMA(0,1,1) 25296.76 

3 ARIMA(8,1,9) 25212.74 3 ARIMA(1,1,0) 25296.78 
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3.2.4 Performance evaluation 

After the AIC and BIC tests, the prediction errors of the ARIMA models are 

compared using MSE, MAE, and MAPE. As shown in Tables 14–16, ARIMA 

(10,1,10) is the best model based on its MSE performance evaluation; as evaluated 

by MAE and MAPE, ARIMA (9,1,8) has the best predictive ability. Based on the 

white noise test, the residual of the ARIMA (10,1,10) model’s p-value is 

0.24032265 > 0.05, and the null hypothesis is not rejected, indicating that the 

Bitcoin price prediction was completely expressed by the ARIMA (10,1,10) model. 

However, the p-value of ARIMA (9,1,8) is 9.90614734E–04 < 0.05, which means 

that the null hypothesis could be rejected. This result indicates that the residuals of 

ARIMA (9,1,8) exhibit autocorrelation, so we should add a dynamic model to the 

analysis. 
Table 14: Evaluation of top three ARIMA models using MSE 

MSE Model MSE 

1 ARIMA(10,1,10) 4522056.233 

2 ARIMA(9,1,8) 4522625.575 

3 ARIMA(8,1,9) 4543247.409 

 

Table 15: Evaluation of top three ARIMA models using MAE 

MAE Model MAE 

1 ARIMA(9,1,8) 1873.794 

2 ARIMA(10,1,10) 1874.558 

3 ARIMA(8,1,9) 1879.068 

 

Table 16: Evaluation of top three ARIMA models using MAPE 

MAPE Model MAPE 

1 ARIMA(9,1,8) 1853.963% 

2 ARIMA(10,1,10) 1855.142% 

3 ARIMA(8,1,9) 1859.533% 
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3.3 ARIMA-GARCH family of models 

3.3.1 Determination of GARCH models 

As previously established, the ARIMA(9,1,8) residuals exhibit autocorrelation. 

Thus, the GARCH family of models are used to extend the ARIMA (9,1,8) model. 

We chose GARCH, EGARCH, and GJR-GARCH. Based on the literature review, 

GARCH(1,1), is the optimal predictive model. 

Therefore ARIMA(9,1,8)-GARCH(1,1), ARIMA(9,1,8)-EGARCH(1,1,1), and 

ARIMA(9,1,8)-GJR-GARCH(1,1,1) are used. 

 

3.3.2 Performance evaluation for ARIMA-GARCH family of models 

We implement MSE, MAE, and MAPE to assess the predictive accuracy of the 

ARIMA-GARCH family of models. Table 17 illustrates that ARIMA(9,1,8)-

EGARCH(1,1,1) is the optimal model as evaluated by the three performance 

indicators. In Table 19, the white noise test is performed on the residual sum of 

squares of the ARIMA(9,1,8)-GARCH(1,1), ARIMA(9,1,8)-EGARCH(1,1,1), and 

ARIMA(9,1,8)-GJR-GARCH(1,1,1) models. The results show that all of their p-

values are greater than 0.05, and the null hypothesis is not rejected. The residual 

sum of squares of the GARCH models are random sequences and completely 

explain Bitcoin price volatility.  

 
Table 17: The top four econometric models evaluated by MSE, MAE, and MAPE 

ARIMA 
MSE 

ranking 

MAE 

ranking 

MAPE 

ranking 

ARIMA(9,1,8)-

EGARCH(1,1,1) 
1 1125136.78 1 984.9482 1 1017.696% 

ARIMA(9,1,8)-

GARCH(1,1) 
2 2833556.82 2 1461.839 2 1443.157% 

ARIMA(9,1,8)-GJR-

GARCH(1,1,1) 
3 3041903.84 3 1508.479 3 1485.892% 

ARIMA (10,1,10) 4 4522056.23 5 1874.558 5 1855.142% 

ARIMA (9,1,8) 5 4522625.57 4 1873.794 4 1853.963% 
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Table 18: The residual sum of squares of GARCH models 

Model p-value Result 

ARIMA(9,1,8)-GARCH(1,1) 0.91745257 
The residual sum of squares 

is a white noise series 

ARIMA(9,1,8)-EGARCH(1,1,1) 0.99954981 
The residual sum of squares 

is a white noise series 

ARIMA(9,1,8)-GJR-

GARCH(1,1,1) 
0.99741978 

The residual sum of squares 

is a white noise series 

Notes: The null hypothesis 𝐻0 indicates that the series is random. 

 

3.4 Comparison of BPNN and time series models 

We compare the prediction errors of the best BPNN with one and two hidden layers 

and the best time series model. Table 19 demonstrates that the BPNN models have 

smaller prediction errors and predict more accurately than ARIMA(9,1,8)-

EGARCH(1,1,1). Therefore, BPNN forecasts more precisely than time series 

models in terms of Bitcoin price prediction. 

 
Table 19: Evaluation of model performance 

MSE ranking 1 2 3 

Model BPNN(2-4-3-1) BPNN(2-4-1) 
ARIMA(9,1,8)-

EGARCH(1,1,1) 

MSE 431,041.920 443,493.359 1,125,136.78 

MAE ranking 1 2 3 

Model BPNN(2-4-3-1) BPNN(2-4-1) 
ARIMA(9,1,8)-

EGARCH(1,1,1) 

MAE 511.581 513.648 984.948 

MAPE ranking 1 2 3 

Model BPNN(2-4-3-1) BPNN(2-4-1) 
ARIMA(9,1,8)-

EGARCH(1,1,1) 

MAPE 589.767% 593.672% 1,017.696% 
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Figure 4: Comparison of the actual value, the prediction values of BPNNs, 

and the prediction values of time series models 

 

4. Conclusions 

In this study, predicting the Bitcoin price trend is performed by adopting BPNN and 

time series models. Two new input variables for BPNN were extracted using PCA 

from Bitcoin’s past three-day closing prices, MA5, MA20, daily trading volume, 

Ether price, and Ripple price. We use python to program BPNN and time series 

models, and then apply the sigmoid function as the transfer function. The BPNN 

structure with the smallest predictive error has a 0.1 learning rate, a 0.7 momentum 

term, and 4 and 3 neurons in the first and the second hidden layers, respectively. 

We utilize AIC and BIC to select the best-fitting ARIMA model and compare the 

prediction errors using MSE, MAE, and MAPE. We also perform the white noise 

test on the residuals. The results indicated that ARIMA(10,1,10) residuals fully 

expressed the sequence information; however, ARIMA(9,1,8) residuals exhibited 

autocorrelation. Therefore, we established the GARCH, EGARCH, and GJR-

GARCH models to explain the volatility.  

According to the results, the predicted price trends using ARIMA models are far 

from the actual trends. Nevertheless, the predictive ability improved significantly 

after augmenting the ARIMA models with GARCH to express volatility. The 

ARIMA-EGARCH model is the most precise time series model due to its 

consideration of the news influence. BPNN with one and two hidden layers 
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provided more accurate predictions than the time series models and BPNN with two 

hidden layers outperformed any other model. To summarize, investors can refer to 

the impact of news about Bitcoin and price volatility to predict Bitcoin prices using 

BPNN with two hidden layers. 
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