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Abstract 
 

Time series analyzing is very important tool for economic and financial system. 

However, recent developments show that financial systems are known in a 

structural change. Therefore, nonlinear time series have been analyzed for past 

decades because of these changes. In this paper, we consider Threshold 

Autoregressive (TAR) model. The most popular method for estimating the 

parameters and threshold value is least square (LS) method. However, LS method 

is not robust to the outliers and departures from normality. Therefore, we propose a 

robust version of estimation in order to provide robust results.  
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1. Introduction  

In Statistical applications, linear time series models have been widely used over the 

past decades. However, in real world, nonlinear cases give much better modeling 

and solutions. Because of this reason, nonlinear time series models have been 

studied in economic and statistics literature. Threshold Autoregressive (TAR) 

models are quite popular in nonlinear time series modeling. This popularity comes 

from its easy calculation and estimation according other nonlinear alternatives. At 

first TAR models had not been widely used because of its adversity to identify and 

estimate threshold value and modeling. However, having been proposed more 

simple procedures, they have been become the most popular nonlinear models used 

in economic and statistical literature. Now it becomes a more or less standard model 

in nonlinear time series and has been widely used in diverse areas, including 

biological sciences, econometrics, environmental sciences, finance, hydrology, 

physics, and population dynamics (Li et al., 2011).  

The class of TAR models was firstly introduced to literature by Tong (1978, 1983), 

and Tong and Lim (1980) as an alternative model for describing time models. TAR 

models have good properties that cannot be captured by linear time series models, 

like limit cycles, amplitude dependent frequencies and jump phenomena (Tsay, 

1989). A time series {𝑦𝑡} is said to be TAR model with k regimes if it satisfies, 

 

𝑦𝑡 = Φ0
(𝑗)

+ ∑ Φ𝑖
(𝑗)

𝑦𝑡−𝑖
𝑝𝑖
𝑖=1 + 𝜀𝑡

(𝑗)
    𝑟𝑗−1 ≤ 𝑦𝑡−𝑑 < 𝑟𝑗,   𝑗 = 1,2, … , 𝑘         (1)                  

 

where, 𝜀𝑡 is identically and independently distributed error term, k is the number 

of regimes, d is the delay parameter and pi is the order of AR process in ith regime. 

It should be also noted that the orders (p) of AR models may differ from regime to 

regime. Additionally, the TAR model becomes a nonhomogeneous linear AR model 

when the variance of error terms is different in each regime and it reduces to random 

level shift model if the constants in each regime (Φ0
(𝑗)

) are different.  

In application, it must firstly be detected the nonlinearity in data. For this reason, 

the nonlinearity tests have been proposed for TAR models; see Tong and Lim 

(1980), Tsay (1989) and Hansen (1997). In this paper Tsay’s approach is used. 

Because, it is based on simple linear regression techniques and simpler than the 

method proposed by Tong and Lim (1980). On the other hand, Hansen’s method 

supports only two regime TAR models. Tsay’s approach is a combined version of 

nonlinearity test introduced by Keenan (1985) and Petruccelli and Davies (1986). 

Its asymptotic distribution under the linear assumption is central F distribution.  

After detecting nonlinearity, threshold values and delay parameter are estimated in 

order to go on modeling. There are various forms of detecting threshold values but 

in this paper, we use again Tsay’s approach to detect the delay parameters and 

threshold value. This method is based on simple scatter diagram and F statistics 

mentioned before. Then, the unknown model parameters are estimated with Least 

Squares (LS) or Maximum Likelihood (ML) methods when the error terms are 
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normally distributed with mean 0 and variance 𝜎2. However, when the normality 

assumption is not satisfied, LS estimators of parameters and the test statistics based 

on them lose their efficiency, see Tukey (1960). There are lots of studies in the 

literature pointing out that nonnormal distributions are more prevalent than normal 

distribution in practice, see for example, Geary (1947), Huber (1981), Pearson 

(1932) and Tan and Tiku (1999). For this reason, to solve this problem, robust 

procedures that are not unduly affected by small departures from normality 

assumptions are proposed. In this paper, we propose robust method to estimate the 

model parameters for TAR models. 

The rest of the paper organizes as follows; In Section 2, we give details about the 

robust estimation methods and features of it. We propose a simple algorithm for 

modeling TAR models with a robust version of the algorithm proposed by Tsay 

(1989). In Section 3, Monte Carlo simulation study is done in order to compare the 

proposed method with traditionally used method. A real-life example is given in 

Section 4 just for illustration. Conclusion is given at the end of the paper. 

 

2. Estimation 
Although TAR models are one of the most important nonlinear time series models, 

in estimation unknown model parameters, LS method can be applied since they are 

locally linear models. The details and features LS techniques used in TAR models 

have been argued in different papers; see Tsay (1989), Chan (1993) and Qian (1998). 

The bad performance of LS estimators for contaminated data shows the necessity 

of robust estimation methods, methods which are robust toward outliers and wrong 

specification of the model (Stockinger and Dutter, 1983). In modeling time series 

data, different type of outlier may be dealt with such as additive outliers (AOs), 

replacement outliers (ROs) and innovations outliers (IOs). Time series outliers can 

have an arbitrarily adverse influence on parameter estimates for time series models, 

and the nature of this influence depends on the type of outlier (Maronna and Zamar, 

2002). For this reason, a robust estimation technique is introduced in order to get 

robust estimators in TAR models.  

 

2.1 M estimation method for AR(p) models 

AR(p) models can be represented linear regression models like,  
 

𝒚 = 𝒁𝜷 + 𝜺                 (2) 
 

where 𝜷 = (Φ0, Φ1, … , Φ𝑝)
𝑇

 parameter vector, 𝒚 = (y𝑝+1, y𝑝+2, … , y𝑛)
𝑇
 

observations, 𝜺 = (ε𝑝+1, ε𝑝+2, … , ε𝑛)
𝑇
 error terms and 𝒁 = (Z𝑝+1, Z𝑝+2, … , Z𝑛)

𝑇
.  

 

An M-estimator of  𝜷̂ is defined by 

 

∑ Q (
𝑦𝑖−𝑍𝑖

𝑇𝛽′

𝜎̂
)n

i=p+1 = 𝑚𝑖𝑛               (3) 
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where Q(.) is a loss function and  𝜎̂ is an estimate of the scale parameter. The loss 

function is often used in the form of its first derivative 𝜓(𝑡) =
𝑑𝑄(𝑡)

𝑑𝑡
. There is 

various form of 𝜓(𝑡) function in the literature, in this paper we use Tukey’s 𝜓(𝑡) 

function introduced in Huber, 1981.  

 

𝜓(𝑡) = {𝑡 (1 − (
𝑡

𝑐
)

2

)
2

     |𝑡| ≤ 𝑐

𝑡                              |𝑡| > 𝑐
              (4) 

 

According to its purpose, a 𝜓(𝑡) function should be odd, bounded and continuous. 

The following iterated weighted least squares (IWLS) algorithm can be used for 

estimating 𝛽̂ and 𝜎̂ simultaneously. A convergence proof for the estimation of 

linear models is given by Dutter (1975). 

 

2.2 IWLS Algorithm 

• Identify the initial values 𝛽(0) ,𝜎(0) and tolerance level 𝜖, 
• Set the iteration m=0, 

• Denote 𝑟𝑖
(𝑚)

= 𝑦𝑖 − 𝑍𝑖
𝑇𝜷(𝑚)   𝑖 = 𝑝 + 1, … , 𝑛 

• Compute 𝜎 using 

(𝜎(𝑚+1))
2

=
1

𝑐
∑ 𝜒 (

𝑟𝑖
(𝑚)

𝜎(𝑚)
) (𝜎(𝑚))

2
𝑛

𝑖=𝑝+1

 

where 𝜒(𝑡) = 𝑡𝜓(𝑡) − 𝑄(𝑡). 

 

• Calculate weights 

 

𝑤𝑖
(𝑚)

= {𝜓 (
𝑟𝑖

(𝑚)

𝜎(𝑚+1)
) / (

𝑟𝑖
(𝑚)

𝜎(𝑚)
)

1                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  𝑟𝑖
(𝑚)

≠ 0 

 

• Define a diagonal matrix 𝑊(𝑚) with 𝑤𝑖 as its (i-p)th diagonal element 

• Solve ∑ (𝑟𝑖
(𝑚)

− 𝑍𝑖
𝑇𝜏(𝑚))𝑛

𝑖=𝑝+1

2

𝑤𝑖
(𝑚)

=min   

where 

𝜏(𝑚) = (𝑍𝑇𝑊(𝑚)𝑍)
−1

𝑍𝑇𝑊(𝑚)𝑦 − 𝜷
(𝑚)

 

• Compute new value of 𝜷 

𝜷(𝑚+1) = 𝜷(𝑚) + 𝑤𝜏(𝑚) 

where 0<w<2 is an arbitrary relaxation vector. 

 

• Stop if |𝜎(𝑚) − 𝜎(𝑚+1)| < 𝜖𝜎(𝑚+1) 

• Augment m=m+1 and go to step 3. 
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Martin (1978) showed that under regularity conditions M estimators obtained by 

using IWLS are consistent and asymptotic normal.  

 

2.3 Robust autocorrelation and partial autocorrelation   

The sensitivity of the traditional estimators, the sample autocorrelation functions 

(acf) and partial autocorrelation functions (pacf), to outliers is well known (see Chan, 

1993, Deutsch et al., 1990, or Maronna et al., 2006). The acf and pacf of time series 
(𝑌𝑡) simply can be notated 𝐶𝑜𝑣(𝑌𝑡+ℎ , 𝑌ℎ) = 𝛾(ℎ) and 𝐶𝑜𝑟(𝑌𝑡+ℎ , 𝑌ℎ) = 𝜌(ℎ) for 

all 𝑡, ℎ ∈ 𝑍. It should be also noted that 𝜌(ℎ) =
𝛾(ℎ)

𝛾(0)
  where 𝛾(0) is the variance. 

Several robust alternatives have been proposed in the literature. Dürre et al., (2014) 

have resulted that the estimation approach based on robust scale estimators give 

better solutions. The estimation simply can be found like 

 

𝜌(ℎ) =
𝑉𝑎𝑟(𝑌𝑡+ℎ+𝑌𝑡)−𝑉𝑎𝑟(𝑌𝑡+ℎ−𝑌𝑡)

𝑉𝑎𝑟(𝑌𝑡+ℎ+𝑌𝑡)+𝑉𝑎𝑟(𝑌𝑡+ℎ−𝑌𝑡)
                   (5) 

 

Maronna and Zamar (2002) recommended the 𝜏 estimator which is obtained by 

 

              𝜎̂2 =
𝜎̂0

2

𝑛
∑ 𝑑𝑐2 (

𝑦𝑖−𝜇̂

𝜎𝑜
)𝑛

𝑖=1           (6) 

 

where 𝜇̂ is a weighted mean of the observations, 𝜎𝑜 is the ordinary MAD and dc(x) 

= min(x2 , c2 ). In Maronna and Zamar (2002) tuning constants c1 = 4.5 (for 𝜇̂) and 

c2 = 3. 

As a result, we propose a robust version of the algorithm given by Tsay (1989). 

  

2.4 Algorithm for modeling TAR models 

Step 1: Select the AR order p by using robust pacf and the set of possible thresholds 

S. 

Step 2: Perform a nonlinearity test for a given p and every element d of S, and if 

nonlinearity is detected select the delay parameter by using F statistics described in 

Tsay (1983). 

Step 3: For a given p and d, locate the threshold values by using the scatter diagram 

of t ratios. 

Step 4: Estimate the unknown model parameters via IWLS. 
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3. Simulation Study 

In simulation study, among nonnormal distributions used in statistics, we use long 

tailed symmetric distribution and Azzalini’s skew normal distribution (Azzalini, 

1985, 1986). Because, both distribution cover various type of distribution used in 

application. Long tailed symmetric distribution which has probability density 

function (pdf), 

 

 

2

2

1
( ) 1

e
f e

k



 

−

 
= + 

      

e−   , 2 3, 2k  = −  .

      

(7)

 

 

It may be noted that ( )v e
t k =  has Student’s t distribution with 2 1v = −  

degrees of freedom. The variance of the distribution (2) is 2  for all ( 2)  .  
 

The pdf of the skew normal distribution, on the other hand, is given by 

 

 ( ) 2 ( ) ( ),h z z z z =  − , −                       (8) 
   

where ( )z  and ( )z  are the pdf and the cumulative distribution function (cdf) 

of the standard normal distribution, respectively.   is the skewness parameter. It 

determines the shape of the distribution. We compare the M estimators and the LS 

estimators of the model parameters in terms of means, variances and mean square 

errors (MSE) for some representative alternative models. All the simulations are 

based on  1000,000 / n  Monte Carlo runs. In the simulation study, we take TAR 

model with 2 regimes and in each regime we take AR(1) models for the sake of 

brevity. Threshold value is determined 0 and the delay parameter is 1.  

 

Without loss of generality, we choose the following setting in our simulation: 

 

Φ0
(1)

= Φ0
(2)

= 0, Φ1
(1)

= 0.5, Φ1
(2)

= 0.4,     𝜎 = 1 

 

3.1 Alternative Models 

Model (1): Dixon’s outlier model: (n-1) observations come from N(0,1) but one 

observation (we do not know which one) comes from N(0,10). 
Model (2): Dixon’s outlier model: (n-1) observations come from N(0,1) but one 

observation (we do not know which one) comes from N(0,10). 
Model (3): All observation comes from SN(0,1,1). 
Model (4): All observation comes from LTS(3,3,1). 
Model (5): Mixture model: 0.90 (0,1,1)SN +0.10 (0,1,0.4)SN  

Model (6): Contamination model: 0.90 (0,1,1)SN +0.10 (0,1)N . 
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Simulation results are given in Table 1. Relative Efficiencies (RE) are calculated 

with the division of two MSE’s. 

 

Table 1: Means, variances and MSEs for the LS and M estimators for 𝚽𝟏
(𝟏)

, 𝚽𝟏
(𝟐)

 

and 𝝈. 

 Mean (𝚽𝟏
(𝟏)

) Mean (𝚽𝟏
(𝟐)

) Mean( 𝝈) RE (𝚽𝟏
(𝟏)

) RE (𝚽𝟏
(𝟐)

) RE (𝝈) 

n LS M LS M LS M    

Model 1 

25 0.522 0.515 0.438 0.413 1.313 1.242 88 89 94 

50 0.519 0.508 0.429 0.409 1.201 1.138 87 88 90 

100 0.508 0.502 0.421 0.405 1.153 1.094 83 81 88 

Model 2 

25 0.615 0.554 0.501 0.439 2.178 1.851 79 76 84 

50 0.571 0.531 0.478 0.421 1.738 1.522 75 69 83 

100 0.546 0.519 0.462 0.418 1.565 1.367 68 64 80 

Model 3 

25 0.426 0.447 0.321 0.377 1.024 0.988 91 90 90 

50 0.454 0.487 0.358 0.382 1.044 0.990 87 89 90 

100 0.479 0.509 0.378 0.389 1.045 0.992 81 84 90 

Model 4 

25 0.567 0.539 0.481 0.456 1.067 1.049 89 90 89 

50 0.546 0.521 0.467 0.423 1.054 1.041 88 87 88 

100 0.532 0.511 0.444 0.419 1.048 1.028 82 83 81 

Model 5 

25 0.586 0.546 0.501 0.467 1.046 0.994 81 82 91 

50 0.579 0.537 0.477 0.451 1.063 1.009 78 77 89 

100 0.565 0.523 0.453 0.439 1.071 1.016 70 70 88 

Model 6 

25 0.554 0.529 0.458 0.431 1.074 1.015 86 89 90 

50 0.543 0.511 0.441 0.428 1.081 1.025 82 87 88 

100 0.528 0.507 0.438 0.419 1.088 1.034 77 82 86 

 

It can be seen from Table 1; M estimators are more efficient and robust from the LS 

estimator for simulated TAR models. It should be also noted that the same results 

are obtained for different true models (3 regimes, different delay parameters and 

AR orders) and different true parameter values.  
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4. Application (Help Wanted Index Data) 

As an example, it is used Help Wanted Index (HWI) data from January 1997 to 

January 2020 in USA (https://www.conference-board.org/data/). The scatter plot of 

the data with the transformation of ( )1log t
tY Y−  is shown in Figure 1.  

 

 

 

 
Figure 1: Transformed Help Wanted Index Data 

 

In order to perform nonlinearity, test we must detect the order of AR model. We use 

robust PACF for detecting the order p. According to the robust PACF values of the 

data p=2 is found as an order. Then, the F statistics proposed by Tsay (1989) 

confirms that the process is nonlinear. The second step is detecting delay parameter. 

We use again Tsong’s technique in order to determine d. As proposed in the paper, 

maximum F statistics provided by the combination of (p,d) should be selected as a 

delay parameter. We select 𝑌𝑡−2 as the threshold value. Therefore, the scatter plot 

t ratios versus 𝑌𝑡−2  values suggest that there is one significant change which 

means we have TAR model with two regimes. From the plot it can be easily seen 

that the threshold is 0. 
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Figure 2: Scatter plot of t ratios versus 𝑌𝑡−2 

 

For the next step, we estimate the model parameters by using robust technique as 

shown in Section 2. To identify the distribution of the error terms, we use Q-Q plot 

technique which is one of the well-known and widely used graphical techniques. 

On the other hand, among the Q-Q plots of the residuals obtained for various 

different values of the skewness parameter  , SN ( ), , 1   =  adequately models 

the residuals, since the observations do not deviate very much from the straight line, 

see Figure 3. 

 

 
Figure 3: Q-Q plot for transformed help wanted index data 
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When we take the skewness parameter   as 1, the parameter estimates are 

obtained by using LS estimation method and M-estimation method as shown below 

respectively. 
 

𝑌𝑡 = {
0.775𝑌𝑡−1 + 0.087𝑌𝑡−2 + 𝜀𝑡        𝑌𝑡−2 < 0
−0.543𝑌𝑡−1 + 0.264𝑌𝑡−2 + 𝜀𝑡    𝑌𝑡−2 > 0

 

 

and 
 

𝑌𝑡 = {
0.678𝑌𝑡−1 + 0.181𝑌𝑡−2 + 𝜀𝑡        𝑌𝑡−2 < 0
−0.457𝑌𝑡−1 + 0.342𝑌𝑡−2 + 𝜀𝑡    𝑌𝑡−2 > 0

 

 

 

AIC information the 𝑅2 values for model estimation are shown in Table 2. 
 

Table 2: AIC information the 𝑹𝟐 values calculated by the LS and M estimation 

methods 

 

 

 

 

In model checking, the ACF and PACF of the standardized residuals and squared 

standardized residual of the model all fail to suggest any model inadequacy. The 

coefficient of determination value obtained by the M-estimation method is higher 

than the value obtained by the LS estimation method. On the other hand, the 

absolute value of AIC value is higher corresponding to the normal theory. In 

addition, it should be noted that the parameter estimations calculated by using M-

estimation have small standard errors than the estimations calculated by LS method.  

Therefore, the model obtained by M-estimation method is more reliable than the 

model obtained by LS estimation method. 

 

5. Conclusion 
Time series analyzing are very important tool for economic and financial system. 

However, recent developments show that financial systems are known in a 

structural change. Therefore, nonlinear time series analyzing have been analyzed 

for past decades because of modeling these structural changes. The most popular 

nonlinear time series models are threshold autoregressive models. However, despite 

of its popularity, there is only small development in TAR models. Tsay (1989) 

proposed an easy way for estimating the regimes, delay parameters and threshold 

values. The method is easy to understand and applicable to various types of data. In 

this paper, we proposed a robust way to estimate the model parameters, and then we 

combine the technique with robust methodology. The simulation study shows that 

the robust method is more robust and efficient than the traditionally used LS method. 

Therefore, in order to get rid of the normal distribution assumption difficulties and 

the problems of outlier, the proposed technique is more feasible.  

 2R  Akaike Information 

LS 0.842 -8.454 

M 0.891 -9.567 
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