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Abstract 

Robust Portfolio Modeling (RPM) Theory is a decision-support methodology to 

analyze multiple criteria project portfolio problems. Liesioa et al [17] generalized 

RPM based on the appendix information, and studied the characteristics of 

non-inferior solution sets, but they did not compare the portfolio of each other in 

this non-inferior solution sets, and could not offer a precise decision. This paper 

considers this question, and gives a positive answer. The results posed in this 

paper can be regarded as a natural generalization of the work [17]. 
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1  Introduction  

Portfolio selection theory by H. Markowitz [19] initiated a new epoch for the 

mathematical tool to studying the financial issues; F. W. McFarlan [21] first 

applied this modern portfolio theory to study the project selection and risk 

management. 

It is well known that the core idea of portfolio theory is to balance risks and 

returns, and it requires investors to make a trade-off between the high risk-high 

return and the low risk-low return.  

For the research headway of should be the of portfolio selection theory, we 

now first take an overview of this theory as follows. 

(A) The kind of return-risk models represented by Markowitz [19]; The 

single-index model by Sharpe [31]; The mean-lower-semi variance model by 

Markowitz [20] and Mao [23]; The mean-variance skewness model by Konno and 

Suzuki [16]; 

(B) The model of controlling the probability of losses represented by VaR:  

safety first model by Roy [27]; VaR-model by Philippe [26]; CVaR -model by 

Rockafenar and Uryasev [29]; 

(C) The selection model of dynamic portfolios: Mossin [24] used the 

dynamic programming method to extend the single-term model to the multi-term 

situation; Yin and Zhou [36] proposed a discrete-time mean-variance portfolio 

selection model; Zhou and Yin [38] studied the continuous-time mean-variance 

portfolio theory. 

There are many other methods of portfolio managements as follows:  
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1) Financial models: The net present value (NPV), the method of internal 

should be intrinsic rates of returns (IRR), the method of financial ratios J. F. Bard 

[3];  

2) Stochastic financial models: Monte Carlo method, Decision tree method, 

Option pricing theory, etc., T. Luehrman [18]; 

3) Scoring models: score and grade should be grade approaches according to 

the quantified problems by D.L.Hall and A.Naudia [12];  

4) AHP methods: the multi-objective decision-making approach which was 

most commonly used and usually compared based on the project, such as the 

scoring method;  

5) Behavioral approaches: decision-makers being involved in 

decision-making models, such as the Delphi method and Q-sort Ulrich K. 

Eppinger S.[33]; Beaujon et al [4] proposed a mixed integer programming model 

to solve the project portfolio issues and obtained an optimal solution; Dickinson et 

al [8] proposed the concept of the trust matrix to describe the relationship among 

projects, and presented a multi-stage model of optimal portfolios of projects; 

Golabi et al.[10] took the preference in the solar energy project portfolio selection 

into account; Kleinmuntz and Kleinmuntz [15] adopted the strategy of 

approaching the valuation of health care funds; Stummer and Heidenberger [32] 

considered the interactivity of the project with multi-attribute parameters; G. 

Iyengar and D. Goldfarb [14] established a robust portfolio investment model with 

regard to the case of the uncertain information. 

On the other hand, the multi-criteria decision was from the concept of Pareto 

optimal proposed by Pareto, it wasn’t until 1960s that the multi-criteria decision 

really were turned into a normative decision-making approach by Charnes and 

Cooper [6], and the Electre method by Roy [28]; Hwang and Yoon [13] divided 

the multi-criteria decision problems into the multi-attribute decision making and 

the multi-objective decision making, and discussed them separately. Mac 

Crimmon [22] summarized the methods and applications of the multi-attribute 
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decision making, and presented many potential conceptual methods, etc. 

At the same time, Von Neumann and Morgenstern [25] proposed the axiom 

system of the expected utility, and obtained the conclusion that the decision- 

makers could maximize the effectiveness; Savage [30] carried out a further 

expansion to expected utility model with the subjective probability factor; Zadeh 

[37] proposed the concept of fuzzy sets, and distinguished between vague and 

random, and applied it to a decision making. Since 1970s, S. Greco et al [11] and 

others compared the fuzzy sets, and studied the sorting methods; Bellman and 

Zadeh [5] proposed a basic model of fuzzy decisions based on the multi-objective 

decision; Danzig [7] studied the stochastic programming; The typical 

representation of description targets were rough sets and multivariable statistical 

methods, S. Greco et al. [11] and others carried out some remarkable researches 

on rough sets. 

For the theory of RPM, Liesiöa et al [17] made a further expansion of RPM 

and studied the properties of non-inferior solution sets based on the impact of the 

additional information, but they did not make further comparisons on the 

programs in non-inferior solution sets, and thus they failed to provide an accurate 

decision which can make a program to decision makers. 

Motivated by these statements above, it is interesting to study and provide an 

optimal program to a decision-maker in non inferior solution sets. We in this paper 

wish to study it and present an accurate decision-making program in the case 

when the decision maker's preference is considered.  

The arrangement of this paper is as follows. In the first-two Sections, we 

state some necessary notations and terminologies. In Section 3, we first discuss the 

narrowing role of the preference in non-inferior solution sets, and describe that 

any form of preference plans would not lead any new element into the non-inferior 

solution set. Next, by using a few decision-making criteria related to the stability, 

we present the construction of ordering relations under the case of the complete 

uncertainty information with a priori probability, and give the algorithm of 
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optimal solutions based on the ordering relation. Section 4 considers the case of 

projects with variable scales. For the case of variable scales, it poses a method of 

stable optimal solutions considering the risk preference of decision makers. In this 

setting, it gives the algorithm process to solve the stable optimal solution with the 

risk preference of decision makers.  

The results obtained in this paper are interesting and can be regarded as a 

natural generalization of the classical conclusions for project decisions. 

 

 

2  Preliminary Notes 

2.1 The robust portfolio model with incomplete information 

J. Liesiöa et al [17] described the extended RPM as follows: 
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where V  is the total revenue of a portfolio program, ix  is the i-th program in 

the alternative project library, and takes only  0 or 1; iv is the comprehensive 

income of the i -th program in the alternative project library, C  indicates the 

consumed resource, B  indicates the constrained resource.  

In the evaluation of multi-indexes, it is easy to see that the return of a 

portfolio p is given as follows 

1

( , , ) ( )
j

n
j j

i i
ip x p

V p w v V x w v
 

  
jx

                 (1) 

where j
iv  is the return score of the alternative project jx  with respect to the i-th 

indicator, [0,1]j
iv  , 1[ , , ]j j j

nv v v   means the return score vector of the j-th 
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alternative project; ),,( 1 nwww  , 0

1

{ | 0, 1}
n

n
w i i

i

w S w R w w


     , where 

iw  is used to measure the relative importance of the i-th evaluated parameter; 

( , , )V p w v  is the comprehensive income of the portfolio p; p X is a subset of 

viable projects and indicates a feasible portfolio. Rewrite the formula (1) and get: 

1
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                           (2) 

where
j

j
i

x p

v

  is the return score of the portfolio p with the i-th indicator. 

The portfolio collection satisfying some constraint conditions can be denoted 

by: 

    { | ( ) }FP p P C p B                       (3) 

Considering the incomplete information, the upper and lower bounds of return 

scores j
iv  of the alternative project jx  with respect to the i-th indicator are 

j
iv  

and j
iv , respectively, so, for the indicators of program properties, the incomplete 

information set can be described as an interval [ , ]
jj
iiv v  containing  the return 

score j
iv . The weight set wS  is a convex set which is limited by the decision 

maker's preference and expressed by a linear inequality. Then, the feasible 

solution set vS can be expressed as { | [ , ]}
jjm n j
iiv iS v R v v v

   .  

For a given portfolio p, there is ( , , ) [min ( , ), max ( , )]
w ww S w S

V p w v V p w V p w
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 , ww S , 

vv S , where ( , , )V p w v  is the comprehensive income of the portfolio  p. 

Considering two mappings V ,V : 0
wP S R   given as the following 
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The formulae (4) and (5) indicate the upper and lower bounds of comprehensive 

incomes of the portfolio P. We denote by w vS S S  the information set. 

Then, ( , )s w v S means ,w vw S v S  . Thus, S is a completely information set 

with respect to weights and the parameter value. 

Referring to (2) and (3), the project portfolio model with incomplete 

information can be expressed as follows: 

1

    ( , , )
j

n
j

i i
i x p

Max V p w v w v
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where [ , ]
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iiiv v v , 0

1
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i
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2.2 The order relations and non-inferior set  

Definition 2.2.1 [17]  If  

V( , , ) V( ', , ), ( , )

V( , , )>V( ', , ), ( , ) ,  , '

p w v p w v w v S

p w v p w v w v S p p P

  
   

, 

then we call 'p p . For  two portfolios , 'p p P , 'p p  means that the 

portfolio p is superior than 'p  in S. 

The following Theorem shows the comparison of two portfolios. 

Definition 2.2.2 The non-inferior set referring to information set S is denoted 

by NP ( )S , and defined as N ( ) { |FP S p P p   ', ' }s Fp p P  . 

If there’s no disagreement about the information of S, we mark that N N ( )P P S . 
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2.3 The calculation of non-inferior sets 

If the score of characteristic assessments is completely determined, the 

calculation of non-inferior solution sets is easy and achieved should be easily 

achieved easy and achieved through the gradual reduction algorithm of the 

multi-objective multi-attribute (see Ehrgott and Gandibleux [9]), but up to now, 

the gradual reduction algorithm of multi-objectives under the incomplete 

information has not been solved. J. Liesiöa [17] proposed a dynamic programming 

algorithm to calculate the non- inferior set.  

To facilitate the narrative, let us define the sets of two portfolios below: 

1{ | { , , }},k k
F FP p P p x x    { |k k

N FP p P   ' , . ' , ( ') ( )}k
Fp P s t p p C p C p     

1, ,k m  , where k
NP  is a non-inferior solution set of k alternative programs. 

 

 

3 Project Selection Problems of Robust Portfolio Models 

Based on Incomplete Information 

For a given non-inferior set ( )NP S , it is naturally to ask a question that for 

the element of solutions in an non-inferior solution set, how to compare it with 

others, how to find out an optimal solution in so many non-inferior solutions 

without undermining the stability of the model. 

For the stability of solutions, we think that the pessimistic person should use 

the pessimistic criterion (max-min criterion) to get the best choice under the worst 

situation, the program selected at this point is recorded as worstA . Taking an 

acceptable possible value worstP , and fitting the  project with the possibility being 

larger than worstP  into the alternative set. Next, considering the regret criterion 

(min-max criterion), and the maximum possible loss, in this setting, one can take 

the maximum possible loss that the decision maker accepted as worstL , if there is 
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any element in the alternative set with the maximum possible loss which is less 

than worstL  comparing with program worstA , then one can select the one with the 

largest expectation satisfying the  claim. Then, the optimal solution *A  is 

obtained. 

The optimal solution *A in general is stable even though it may take the one 

which is poorer than the lower bound of program worstA , and this loss-possibility is 

less than worstP . 

 

 

3.1 The form-preference of a information set S 

An information set with preferences is denoted by S
~

, this information set 

contains the  no-weight information wS  and the property indicator information 

vS . The preference is expressed by the weight w and the assessment score v of 

index returns. Set w vS S S  , it is not hard to show that there holds the 

following. 

Lemma 3.1.1 If SSthenSSSS vvww 
~

,
~

,
~

. 

Lemma 3.1.2 If SSthenSSSS vvww 
~

,
~

,
~

. 

Theorem 3.1.1 For the information set wS
~

 and vS
~

, if one of them at least is 

really included in S , where w vS S S  ,  SS
~

)int( , then  there holds 

)()
~

( SPSP NN  . 

Proof. By Lemma 3.1.1 and Lemma 3.1.2 and the work of J. Liesiöa et al [17], it 

is not hard to show that Theorem 3.1.1 is tenable. This ends the proof of Theorem 

3.1.1.                                                             
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It is well known from Theorem 3.1.1 that the weight w  and the additional 

preference information of the assessment score v  do not add any new element to 

the non-inferior solution set. Thus, we can present the optimal solution of 

non-inferior solution sets and narrow the non-inferior solution set based on the 

earlier works. 

 

The form preference of the order relationship   

In order to narrow the non-inferior set ( )NP S , we need the more strict partial 

order relation to make the comparing project be clearer. Here's the definition of 

the partial order structure in order relations. 

Definition 3.1.1 If 
1 2

2 1
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, it is called that  2  is 

stronger than 1  defined on P. 

Theorem 3.1.2 Suppose that  2  is stronger than 1 , then 2 1( ) ( )N NP P  . 

Proof. Assume that 2 1( ) ( )N NP P   is not tenable, then there is at least 

a 0 2( ),Np P   but 0 1( )Np P  ， thus 0 1\ ( )F Np P P  . By Definition of the 

non-inferior set, we know that 
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NFN
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         (6) 

Since 2  is stronger than 1 , then there is 

02101 ),(\),( ppthenPPpPp NFN           (7) 

Formulas (6) and (7) are contradictory 2 1( ) ( )N NP P   . This ends the proof of 

Theorem 3.1.2.                                                     
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3.2  The determination of objective weights 

Definition 3.2.1 [35] Define a  as  [ , ] { |  , , }a a a a a a a a a R     . a  is 

called an interval number. If a a , a  degenerates into a real number. The 

center and width of the interval number a  are defined as  

1
( ) [ ]

2
m a a a  , 

1
( ) [ ]

2
w a a a  , 

respectively. 

Definition 3.2.2 [1]  Let { , , , }      be a binary operation on a real space, 

we call { : , }a b x y x a y b       a binary operation of all closed interval sets. 

In the setting of division operation, b
~

can not be equal to 0. The other operations 

can be stated as 
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Making a standardized treatment on v , then one arrives at a standardized matrix 

nm
j

irR  )~(
~

. 

The normalization formula is  

                  
j

i
ni

j
ij

i v

v
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},,2,1{
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                            (8) 

From the algorithm of interval numbers, it is easy to know that j
ir  is an interval 

number, and denoted by ],[~ j
i

j
i

j
i rrr  . It is obvious that the consolidated 

revenue is  

                    
1
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j

n
j

i i
i x p

V p w v w v
 

  . 

Xu [34] thinks that the departure  ( , )d a b a b b a b a        between 

interval numbers a  and b reflects the ease-level of comparing programs of each 

other. In this article, a different view is presented. The departure-degree is an 

absolute quantity, but the ease-level to compare two intervals should be reflected 

by the possibility of comparing their sizes, and should be a relative number. 

 

          Figure 1:  The simple case: a, b, c are of comparable 

 

As shown in Figure 1, it is easy to see that ( , ) ( , )d a b d c b    and c b  . The 

relationship between interval numbers a and b is not very clear, but it is very 

easy by Definition 3.2.3 to reflect it. 
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Determination of weights with subjective preferences on projects 

Definition 3.2.4  max( , ) min( , )
( , )

( ) ( )

a b a b
a b

a a b b
 


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  is called the coincidence degree 

of the interval numbers a and b , where  [ , ]a a a , [ , ]b b b . 
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Then we can translate it into the following optimization problem: 
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Considering a Lagrange function below 

2

1 1 1

max( , ) min( , ) 1
( , ) ( 1)

2( ) ( )

j jn m n
i i i i

j jj j
i j ji i i i

r r
L w w w

r r

 
 

   


   

  
  . 

Take the partial derivative to this Lagrange function, and make it be equal to 0, 
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The optimal solution is  
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max( , ) min( , )

( ) ( )

j jn
i i i i

j j
i i i i i

j j jm n
i i i i

j j
j i i i i i

r r

r r
w

r r

r r

 
 

 
 



 



  




  




                  (9) 

That’s the objective weight required to determine. 

 

 

3.3 The optimal solution and the algorithm 

Definition 3.3.1 Let a andb be two interval numbers or one of them be an interval 

number, where  [ , ]a a a , [ , ]b b b , we call 



1,                                                              

1
( )                                      

2

1
     

2

a b

b b a b
p a b a b b a

a a a a

a b b a a b b a b a
a b b a

b b b b a a a a b b


 
        

 
             

    

    (10)     

the possibility of a b  , and denote by the order relationship of a and b as 


pa b  . 

The calculation of the possibility of a b   is divided into three cases as the 



D.Y. Zhou, H.L. Huang, C.Y. Teng and P.B. Zhao 171 

following figures: 

 

        Figure 2:  a and b have no overlapped, and a>b 

     

               Figure 3:  b is included in a. 

 

    

             Figure 4: a and b have part overlapped 

 

From Figures 2,3,4, it is easy to see that the possibility of a b  is 

1,                                                              

1
                                        

2

1
        

2

a b

b b a b
a b b a

a a a a

a b b a a b b a b a
b a b a

b b b b a a a a b b


 
       

 
             

    

 

Based on the regret criteria (min-max criteria), one can define the concept of the 

maximum loss miscarriage of justices as follows. 

Definition 3.3.2 Suppose that the correct order of portfolio investments is ” p is 

superior than 'p ”, and the maximum loss miscarriage of justices for investing 
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portfolios p and 'p  in the order-relationship is ( , , ) ( ', , )V p w v V p w v , and 

denote it by \ 'p pl . 

1. The definition of the order relationship based on a median 

 

Definition 3.3.3 Define a relationship 1  on P as follows: 

If 
m(V( , , )) m(V( ', , )), ( , )

m(V( , , ))>m(V( ', , )), ( , )

p w v p w v w v S

p w v p w v w v S

  
  

, then we say 1 'p p . 

The expression of 1 'p p can be obtained by Definition 3.2.1, and the 

calculation is as follows: 

j j jx x x x

1

1 1 1 1'

'

m(V( , , )) m(V( ', , )),      ( , )

m(V( , , ))>m(V( ', , )), ( , ) (11)

1 1
( ( , ) ( , )) ( ( ', ) ( ', )), ( , )

2 2
1 1

( ) (
2 2

n n n nj jj j
i ii ii i i i

i i i ip p p

p p

p w v p w v w v S

p w v p w v w v S

V p w V p w V p w V p w w v S

w v w v w v w v
     





  


 

     

       



j '

), ( , )
p

w v S


 
  

2. Construction of the order relationship based on the pessimistic criteria 

Definition 3.3.4 Construct the relationship 2  on P as follows: 

If ( , )> ( ', ), ( , )        , 'V p w V p w w v S p p P   , then we say 2 'p p . 

The expression of 2 'p p can be obtained by Definition 3.2.1, and the 

description is as follows: 

2

1 1'

'

( , )> ( ', ),     ( , )        , '

>            , '   
n n

j j
i ii i

i ip p

p p

V p w V p w w v S p p P

w v w v p p P
  

  

  



j jx x

                      (12)   
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3. Construction of the order relationship based on the probability of 

misjudgments 

We now consider the acceptance of decision makers on the investment of 

misjudgment as a parameter of a decision rule. Because the probability of a b   

is ( )p a b  , then the probability of misjudgments on the investment is 

1 ( )p a b   . 

Suppose that the highest probability of the miscarriage of justices that can be 

accepted by decision makers is [0,0.5]falsep  . Define the order relationship p  

as below. 

Definition 3.3.5. Define the order relationship p on P as follows: for the given 

[0,0.5]falsep  : there is ,',,),(),,,'(),,'( PppSvwvwpVvwpV p   if 

falsepp  1 , then  we say that 'pp p . 

The expression of 'pp p can be obtained by Definition 3.2.1, the 

calculation is as follows: 

p

p

      '

V( , , ) V( ', , )

(V( , , ) V( ', , )) 1 false

p p

p w v p w v

P p w v p w v p

 

   


 

1 , if ( , ) ( ', )  ( ', ) ( , ),

1 , if  ( ', ) ( , )  ( ', ) ( , ) . 

false

false

A p V p w V p w V p w V p w

B C p V p w V p w V p w V p w

     


     


, if

, if

  

1    ( ) ( ')  ( ') ( ),

1 ( ') ( ) ( ') ( ).

false

false

A

B C

p V p V p V p V p

p V p V p V p V p






    


    

                       (13)             

where  

1 ( ', ) ( ', ) ( , ) ( ', )
:

2 ( , ) ( , ) ( , ) ( , )

V p w V p w V p w V p w
A

V p w V p w V p w V p w

 
  

 
, 
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( , ) ( ', ) ( ', ) ( , ) ( , ) ( ', )
:

( ', ) ( ', ) ( ', ) ( ', ) ( , ) ( , )

V p w V p w V p w V p w V p w V p w
B

V p w V p w V p w V p w V p w V p w

  
  

  
, 

1 ( ', ) ( , ) ( ', ) ( , )
:

2 ( , ) ( , ) ( ', ) ( ', )

V p w V p w V p w V p w
C

V p w V p w V p w V p w

 
  

 
 

1 1 1 1' ' '

1 1 1 1

1
:

2

n n n nj j jj
i i iii i i i

i i i ip p p p

n n n nj jj j
i ii ii i i i

i i i ip p p p

w v w v w v w v

A
w v w v w v w v

      

      

 
  

 

    

   

j j j j

j j j j

x x x x

x x x x

, 

1 1 1 1 1 1' ' '

1 1 1 1 1 1' ' ' '

:

n n n n n nj j jj j j
i i ii i ii i i i i i

i i i i i ip p p p p p

n n n n n nj j jj j j
i i ii i ii i i i i i

i i i i i ip p p p p p

w v w v w v w v w v w v

B
w v w v w v w v w v w v

          

          

  
  

  

     

     

j j j j j j

j j j j j j

x x x x x x

x x x x x x

1 1 1 1' '

1 1 1 1' '

1
:

2

n n n nj jj j
i ii ii i i i

i i i ip p p p

n n n nj jj j
i ii ii i i i

i i i ip p p p

w v w v w v w v

C
w v w v w v w v

      

      

 
  

 

    

   

j j j j

j j j j

x x x x

x x x x

, 

where p only describes the probability of losses, but it does not describe the 

value of losses, so it is still not reasonable. Thus we should further consider the 

losses value of misjudgments. 

4. Construction of the order relationship based on the given order relationship 

Suppose the biggest misjudgment losses is 0l , and define the order relationship 

as follows. 

Definition 3.3.6 For a given order relationship 0 and the biggest misjudgment 

loss 0l , we define the order relationship  0,l on P as follows: 

If 
0

\ ' 0

'
 , '

p p

p p
p p P

l l

  


, then  we say that 0, 'lp p . 

where 0,l  can be regarded as the value of losses based on 0 , it indicates that 

the order relationship can be established only when the order relationship 0  
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can be established and the misjudgment loss value is less than 0l . 

A specific expression of Definition 3.3.6 can be obtained from the expression 

related to the portfolio in Definition 3.3.2, and this description is just as follows: 

0

\ ' 0

0

0

'
,  , '       

'
, , '

( , ) ( , )

p p

p p
p p P

l l

p p
p p P

V p w V p w l

  
 

 




 

0

0

'
, , '

( , ) ( ', )

p p
p p P

V p w V p w l

 
 


 

0

0
1 1'

'                                         , '

 
,       

n nj j
i ii i

i ip p

p p p p P

w v w v l
  


   

 



j jx x

                  (14) 

   Definition 3.3.7 For the biggest misjudgment loss 0l , we can define the order 

relationship 0,l  on P  as follows: 

If 
\ ' 0

V( , , ) V( ', , ), ( , )  
 , '

p p

p w v p w v w v S
p p P

l l

    

p
, then we say 0, 'lp p  

Property 3.3.1 The order relationship 1 reflects the expected benefits of 

decision makers with the principle of the same possibility by the expectations of 

programs. The author thinks the solution is worse, in fact, it’s a special case of  

falsep when 0.5falsep  . 

Property 3.3.2 The order relationship 2 reflects the expected preferences of 

decision makers with the principle of the same possibility by the worst condition. 

From a certain point of view, this order relationship is stable.  

Property 3.3.3 The order relationship p reflects the relationship between the 

sizes of two portfolios when the highest probability of miscarriage of justices is 
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falsep , it also reflects the control of the possibility of losses. When the interval 

number p is bigger than 'p , the probability is bigger than1 falsep , and the sizes of 

two programs can be compared. The order relationship p  is a relaxation on the 

order relationship that only depends on the median to judge the size, where p  

presents only the condition that the misjudgment probability is less than falsep when 

there are enough advantages to satisfy the order relation, so falsep can be used as 

a criteria to measure the stable solution. 

Property 3.3.4. Given an order relationship 0 , it reflects the relationship 

between the sizes of two portfolios when the highest losses of miscarriage of 

justice is 0l , it also reflects the control of the loss value. The order relationship 

0,l implies a relaxation on the order relationship 0l  (it’s easy to prove, the order 

relationship 0  is a special case when the order relationship 0,l  achieves 

0l   ). The order relationship 0,l  is tenable only when the condition that the 

loss of miscarriage of justices is less than 0l  holds. Thus this order relationship 

can be used as an criteria to measure the stability of solutions. 

 The order relationships defined above can be combined according to the 

actual situation, it is comprehensive to be considered that, they are strict or relaxed 

on the original order relationship according to the relationship of “and” and “or” 

of the multiply constrained order relationship. Then it presents the process of 

constructing a stable optimal solution *A  based on the given order relationship. 

Note the number of elements in the non-inferior set NP  as N, and all the elements 

are denoted by 1 2{ , , }Np p p . Let the highest probability of misjudgments be 

false worstp P ( 0.5worstP  ), and the highest loss of misjudgments be 0 worstl L , and 

( )N S  be the number of elements in the set S . Then, one can give a special 

algorithm as follows: 
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Algorithm 3.3.1 

Step1 a) *
1A p ， 1T   

            b) for i=2, , N  , if *
2ip A ， *

iA p ，T i  

      c) Note， worst TA p ( )worst TA V p ， ( )worst TA V p  

Step2 for i=1, , N  ,  if *
,i p lp A ， 1( )N iP S p ， 

Step3 if 1( )NP S  ，the elements in its are 1 2{ ', ', '}Np p p *
1 'A p  

  for 1i=1, , N( ( )) NP S , if *
1'ip A ， * 'iA p  

The optimal solution *A  satisfies the following conditions: 

1) The proceed obtained within the probability which is not less than 

1 worstP  is bigger than that of the optimal solution worstA  under the 

pessimistic criterion. 

2) Even the proceed given within the less probability worstP  is smaller 

than worstA , corresponding to the proceed of worstA , its gap would not be 

larger than worstL , and the proceed under the worst condition would not 

be less than ( )worst worstV A L . 

 

 In fact, by step 2, the relationship between the elements in alternative set and 

the optimal solution worstA  with the pessimistic criterion can only be shown as in 

Figure 5; 

 

 

    Figure 5:  The relationship of the relative position between the interval  
             of elements in the alternative set and PT 
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The lower bound of 'ip is lower than that of worstA which meets step1; its 

upper bound is higher than the upper bound of worstA , the distance between the 

upper bound of 'ip and the upper bound of worstA  is larger than the distance 

between the lower bound of 'ip and the lower bound of worstA . 

Theorem 3.3.1 Let  [ , ]a a a , [ , ]b b b  satisfy  a b b a   , then there holds 

 ( ) ( ( ))p a b p a m b   . 

Proof. As shown in Figure 6, and from Definition 3.3.1 it is not hard to show that 

  1 1 1
1 2 2 2( )
2

a b b a b bb b a b
p a b

a a a a a a a a

    
     

   
                  (15) 

But 
 1

( ) 2      
a b ba m b

a a a a

 


 
(Definition 3.3.1)                  (16) 

Integrate the formula (15) and (16), it follows immediately that there holds 

 ( ) ( ( ))p a b p a m b   .  

 

    

        Figure 6:  The research on the relationship between the probability of   

                 a>b and the probability of a>m(b). 

 

Conclusion 3.3.1 The optimal solution *A implies that one can get the return 

 1
( ) ( )

2 worst worstV A V A  with the probability being at least 1 worstP , and the 

minimum return being not less than ( )worst worstV A L . Its expected profit is equal 

to *( ( ))m V A . 
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 The values of worstP and worstL  depend on the risk acceptance of decision 

makers. Especially when 0worstP   and [ ( ), ( )]worst worst worstL V A V A , the optimal 

solution is exactly worstA  under the pessimistic criteria. 

At this point, the optimal solution *A  has been constructed. 

Construction of a stable solution with the priori probability 

 Suppose the probability density in the interval [ , ]a a  is  ( )
a

f x , the 

probability density in the interval [ , ]b b  is ( )
b

f x . If a andb do not overlap, their 

sizes can be compared easily and the probability is 1. Now should be 1. Now we 

discuss the condition when a andb have the part overlapped, as shown in the 

following Figure 7: 

 

        

b＿ a＿
-
a

-
b

n equal  par t s  

        Figure 7: The coincidence of a andb with a prior probability 

 

 Suppose the overlapped part of a andb is [ , ]c c , and [ , ]c c is divided into n 

equal portions. If the true values of a andb are in the same range, and the true 

value of a  is equal to that of b . Then the probability ( )P b a can be expressed 

as (17) below 
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


  



( ) ( ) ( ) ( )

1 1 1 1
                 ( )( ( ) ( ( 2 ) ( )))

2

1 1 1 1
                 ( 2 )( ( 2 ) (

2

c c a

b b a
b c c

b a a a

b a

P b a f x dx f x dx f x dx

c c c c c c c c c c
f c f c f c f c

n n n n n nb b a a

c c c c c c c c
f c f c f

n n n n nb b a a

   

    
           

 

   
        

 

   









 

 



 2
1

( 3 ) ( )))

1 1 1 1
                 ( )( ( ) ( ))

2

( ) ( ) ( )

1 ( ) ( ) 1
+ ( ( )( ( ) ( )

2

a a

b a a

c c a

b b a
b c c

n n

b a a
i j i

c c
c f c

n

c c c c c c c c
f c f c f c

n n n n nb b a a

f x dx f x dx f x dx

c c c c i c c j c c c c
f c f c f c i

n n n nb b a a  


  

   
         

 

  

    
     

 

  

 



 







)) (17)

                                                                               

When n is large enough, then the formula (16) can be simplified as 




2
1

( ) ( ) ( ) ( )

1 ( ) ( )
                 + ( ( ) ( ))

c c a

b b a
b c c

n n

b a
i j i

P b a f x dx f x dx f x dx

c c c c i c c j c c
f c f c

n n nb b a a  

   

   
   

 

  

 

 





     (18) 

When n goes to infinity, and the limit of type (17) does exist, then one gets 




2
1

( ) ( ) ( ) ( )

1 ( ) ( )
                 lim ( ( ) ( ))

c c a

b b a
b c c

n n

b an
i j i

P b a f x dx f x dx f x dx

c c c c i c c j c c
f c f c

n n nb b a a
 

   

   
    

 

  

 

 





      (19) 

Therefore, one can define the possibility of a b  . 

Definition 3.3.8 For the intervals  [ , ]a a a and [ , ]b b b , the overlapped part of 

a andb is [ , ]c c , hence we call 
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


2
1

( ) ( ) ( ) ( )

1 ( ) ( )
                 lim ( ( ) ( ))

c c a

b b a
b c c

n n

b an
i j i

P b a f x dx f x dx f x dx

c c c c i c c j c c
f c f c

n n nb b a a
 

   

   
    

 

  

 

 





 

the possibility of a b  , and denote the order relationship of a and b  by 


pa b  . 

Definition 3.3.9 Suppose the distribution function of the interval number 

a is  ( )
a

F x , and its density function is  ( )
a

f x , we define the expectation of the 

interval number a  as 
( ) ( )

a

aa
E a xf x dx  . 

When the random variable p moves in the range ( , , )V p w v , we can calculate the 

loss value of each point and get the result by integration. If the order of integrals 

may change, then one can give the expression of the expected losses of 

misjudgments as ( ( , , )) ( ( ', , ))E V p w v E V p w v . 

Definition 3.3.10 Suppose the correct order is the portfolio p being superior 

than 'p , we define the expected losses of misjudgments on portfolios , 'p p as 

( ( , , )) ( ( ', , ))E V p w v E V p w v , and  denote by ( \ ')lE p p . 

Specifically it can be expressed as: 

1 1 '

1 1 '

( ( , , )) ( ( ', , ))

( ) ( )

( ( ) ) ( ( ) )

j j

j j
i i

j jj j
i ii ij j

n n
j j

i i i i
i ix p x p

n nv v

i iv vv v
i ix p x p

E V p w v E V p w v

E w v E w v

E w xf x dx E w xf x dx

  

  



 

 

   

    

       (20) 

Definition 3.3.11 Define VaR of misjudgments on portfolios , 'p p as the 

maximum loss of misjudgments within the total probability of occurrences being 

less than  , and denote it by 



182                        Robust portfolio models with incomplete information  

Pr {V( , , ) V( ', , )> }ob p w v p w v VaR                 (21) 

Typically, for a given confidence level (0,1)  , and the decision variable x , we 

call 

( ) min{ : ( , ) }y x y R x y      

a loss of  -VaR of the decision variable x  with the confidence level  . 

Introduce the following function: 

1

( , ) ( )

( ) (1 ) ( , ) ( )
f x z y x

x f x z p z dz


  



    

For a given confidence level (0,1)  and the decision variable x , we call 

( )x as a loss of  -VaR of the decision variable x with the confidence level . 

 

1. Construction of the order relationship based on the expected return 

 

Definition 3.3.12 Define the order relationship 3 on P as follows: 

If E(V( , , ))>E(V( ', , )), ( , )p w v p w v w v S  , then 3 'p p . 

The expression of 1 'p p  can be given by Definition 3.3.9 as follows: 

1

1 1 '

1 1 '

'

E(V( , , ))>E(V( ', , )), ( , )

( ) ( )

( ( ) ) ( ( ) )

j j

j j
i i

j jj j
i ii ij j

n n
j j

i i i i
i ix p x p

n nv v

i iv vv v
i ix p x p

p p

p w v p w v w v S

E w v E w v

E w xf x dx E w xf x dx

  

  

  

 

 

   

    



             (22) 

Construction of the order relationship based on the probability of misjudgments 

The expression of 'pp p can be obtained by Definition 3.3.8 as follows: 

Suppose the overlapped part of V( , , )p w v and V( ', , )p w v  is [ , ]c c , then there 

holds 
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p

p

      '

V( , , ) V( ', , )

(V( , , ) V( ', , )) 1 false

p p

p w v p w v

P p w v p w v p

 

   


 

1, if   ( ', ) ( , )

1 , ( , )  ( ', )      false

V p w V p w

E F p if V p w V p w

 
   

                              (23)             

where  '
( ', )

: ( ) ( ) ( )
c c a

b p p
V p w c c

E f x dx f x dx f x dx     , 

 2 '
1 1

1 ( ) ( )
: lim ( ( )) ( ) 

( ', ) ( ', ) ( , ) ( , )

n i

p pn
i j

c c c c i c c j c c
F f c f c

n n nV p w V p w V p w V p w
 

   
   

   
where p only describes the probability of losses, but does not describe the loss 

value, so it is still not reasonable. Then we should consider the biggest 

misjudgment loss based on the order relationship p  with the probability of 

misjudgments. 

2. Construction of the order relationship with  -CVaR based on the original 

order relationship 

Definition 3.3.13 For a given order relationship 0 and the maximum CVaR, 

0CVaR  of misjudgments with a confidence level  on the set P , we define the 

order relationship 0, varc as follows:  

If 0

0

'
  , '

p p
p p P

CVaR CVaR


 


, then 0, var 'cp p . 

where  -CvaR is the expectation value of the losse which is higher than  -VaR 

when the confidence level is  . It also presents the acceptance of decision 

makers on the loss when the condition is worse. 

The expression of 0, varc  can be obatined by Definition 3.3.11 as follows: 








0

0 ',,'

CVaRCVaR

Ppppp 
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Definition 3.3.14 For the maximum CVaR, 0CVaR  of misjudgment with a 

confidence level   on the set P , we can define the order relationship 0, varc as 

follows: 

If 
\ ' 0

V( , , ) V( ', , ), ( , )  

, ,p p

p w v p w v w v S

l l p p P

  
  

p
, then we say , var 'p cp p . 

Property 3.3.6 The order relationship 3 reflects the expected return of decision 

makers by the expected return of the program when the distribution of a priori 

probability is known. 

Property 3.3.7 The order relationship 0, varc  reflects the sizes of two portfolios 

and the control of expected losses based on 0 when the maximum CVaR of 

misjudgments that can be accepted with a confidence level  is 0CVaR . 

Property 3.3.8 The order relationship , varp c  reflects the sizes of two portfolios 

when the highest probability of misjudgments that can be accepted by decision 

makers is falsep and the maximum CVaR of misjudgments that can be accepted 

with a confidence level is 0CVaR . The order relationship , varp c  presents only 

the condition that the misjudgment probability is less than falsep and the maximum 

CVaR of misjudgments is 0CVaR  , which has enough advantages to satisfy the 
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order relation, so it can be used as a criteria to measure the stability of solutions. 

Example 3.3.1 

The indicators investigated by projects are: the cash flow 1u , the number 2u  of 

new customers, the amount 3u of tax-free concessions, the long-term development 

4u , the corporate image 5u , the good response 6u  of employees. After the 

calculation of the non-inferior solution set, there are remained 5 portfolios to be 

studied. The comprehensive scores of each program are in the tables: 

 

Table 1: The comprehensive scores 

 U1(ten thousand) U2(people) U3(ten thousand) U4 U5 U6 

X1 [8.5, 9.0] [90,92] [0.91,0.94] [0.92,0.95] [0.89,0.91] [0.92,0.97]

X2 [9.1, 9.4] [81,96] [0.83,0.99] [0.87,0.96] [0.86,0.98] [0.86,0.97]

X3 [8.8, 9.1] [82,85] [0.90,0.93] [0.90,0.93] [0.85,0.89] [0.90,0.92]

X4 [9.2, 9.6] [91,94] [0.85,0.88] [0.85,0.89] [0.84,0.90] [0.91,0.94]

X5 [8.6, 8.9] [89,92] [0.91,0.95] [0.92,0.93] [0.91,0.93] [0.85,0.88]

Use the method in Section 3.2.1 to calculate w . Concrete steps are as follows: 

Step 1: First, use the formula (8) to normalize it and get 

 

Table 2: Normalized the decision matrix 

 U1 U2 U3 U4 U5 U6 

X1 [0.377,0.401] [0.344,0.411] [0.387,0.423] [0.402,0.422] [0.384,0.410] [0.415,0.427] 

X2 [0.379,0.416] [0.381,0.423] [0.385,0.425] [0.391,0.429] [0.416,0.438] [0.384,0.439] 

X3 [0.384,0.408] [0.367,0.376] [0.401,0.433] [0.397,0.434] [0.386,0.410] [0.398,0.434] 

X4 [0.381,0.401] [0.412,0.429] [0.377,0.433] [0.407,0.424] [0.395,0.425 [0.407,0.427] 

X5 [0.382,0.413] [0.412,0.413] [0.397,0.414] [0.401,0.413] [0.412,0.414] [0.380,0.397] 
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Step 2: Use the formula (8) to calculate the weight 

 0.1662,0.1691,0.1554,0.1582,0.1936,0.1579w  . 

Step 3: Use Algorithm 3.1.1 to solve. 

Step 1 Using the formula (2) to calculate the lower bound of x1 to x5, the 

comparison shows that x5 has the highest lower bound, 5x =0.393 , set worstA = x5, 

calculate 5x =0.409 . 

Step 2 Take 0.4falsep  and the loss of misjudgment is less than 0 0.03l  . Use type 

(13) and type (14) to calculate and compare the order relationship defined in 

Definition 3.3.7 with worstA , it will be found that x4 is in the alternative set. 

Step 3. Because there’s only one element in the alternative set and its expectation 

must be higher than worstA , so at the end, the optimal solution is x4. 

The optimal solution *A =x4 satisfies: the probability of getting a gain 0.399 is not 

less than 0.4; the minimum income would not be less than 0.379.Its expected 

income is 0.406. 

Without the stability problems, only from the perspective of the possible 

relationship among the sizes, then the sort relationship is given 

as: 2 4 5 3 10.5150 0.6072 0.5098 0.6120
x x x x x     

The optimal solution is x2. Although, the average rate of the comprehensive return 

is higher, and its stability is less than x4, so it could not be selected. 

 

 

4 Stable Solutions of Portfolios Containing Size-Variable 

Projects With Risk Preferences 

4.1 Modeling and Analysis  

 For convenience, we suppose that the alternative projects 1 to l  have 

non-fixed sizes, the symbols are defined as follows: 
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1{ , , }mX x x  : The vectors of m alternative projects that depend on the n 

parameter indexes; 

1{ , , }m l
DX x x   : The m l alternative projects with fixed sizes depended on 

the n parameter indexes; 

1{ , , }l
BX x x  : The l alternative projects; j

iv : The return score of alternative 

project jx with the indicator i, satisfying [0,1]j
iv  ; iw : the relative importance 

of evaluation parameter i; 

1( , , )T
nw w w  : Weight vector that satisfies 0

1

{ | 0, 1}
n

n
w i i

i

w S w R w w


     ; 

( , , )V p w v : The comprehensive income of portfolio p ; 

j
kc : The number of the k kinds of resources consumed by alternative projects 

jx , 0j
kc  ; 

1( ) [ , , ]j j j T
qC x c c  : The vector of resources consumed by alternative projects 

jx ; 

kB : The limit of the first k kinds of resources ( 1, ,k q  ); 

1[ , , ]T
qB B B  : The vector of limited resources, qB R ; 

DB : The vector of resources consumed by all the alternative projects; 

FP : The portfolio set satisfies the constraint condition { | ( ) }FP p P C p B   ; 

j
iv : The upper bound of j

iv ; j
iv : The lower bound of j

iv ; 

wS : The set of the weights of property indicators with incomplete information, 

0
w wS S ; 

vS : The set of practical value: 

Suppose the income is proportional to the size of projects, then the income of the 

j-th project with controllable-scale is 
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1 1

( )
n n

j j j j j
i i i i

i i

V x x w v x w v
 

                      

The income of the j-th project with the fixed size is: 
1

( , , )
j

n
j

i i
i x p

V p w v w v
 

  . 

Then the comprehensive income of the portfolio with a controllable-scale is: 

1 1

( , , ) ( ) ( )
j

n n
j j j j

t t i i
t ip x p

V p w v V x w v x w v
  

     
jx

. 

The portfolio model including the projects which have controllable-scales is as the 

follows 

1 1

    ( , , ) ( ) ( )
j

n n
j j j j

t t i i
t ip x p

Max V p w v V x w v x w v
  

     
jx

            

s.t.: 

( )                                   

[0,1]        1,

0                    1,
i

i

C p B

x N i m l

x i l


    
  




                  

where [ , ]
jjj
iiiv v v , 0

1

{ | 0, 1}
n

n
w w i i

i

w S S w R w w


      . 

    ( , , ) ( ) ( ) ( )
D B

j j j j

p p X p X

Max V p w v V x V x x V x
  

    
 j j jx x x

        

s.t.: 

( ) ( )              

[0,1]        1,

0                    j 1,

D B

i

j

B p B p B

x N i m l

x l

  
    
  




                        (24) 

The objective function consists of two parts; one is an 0-1 programming problem 

of interval parameters forms, the other is a linear programming problem of 

interval parameters forms. The two parts contact each other through the resource 

constraints in formula (24). 

For the 0-1 programming problem, the most common approach is the brute-force. 

Section 3 has presented how to get the optimal solution with a given risk 

preference of decision makers. That is to say, the project selection with fixed scale 

has been made, and hence we have only to solve the linear programming problem 
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of interval parameters forms. 

If it has been solved, one can take the solution back to original problem, and set it 

as the element in alternative set. 

Clearly, there is a solution as 1 2 1{ , , , , , , | {0,1}, 1, }l l m ix x x x x x i l m      , 

then all the solutions are the elements in the set | |2 m . Then, the residue work is to 

find the maximum from these elements. 

We now solve the following problems step by step: 

1. For the portfolio with fixed scale, one can solve the linear 

programming problem, can we further narrow their scopes? 

2. For a fixed asset project, how to solve the optimal solution of the linear 

programming problem? 

3. After solving the project with variable scale, we can give the whole 

process of solving the optimal solution. 

 

 

4.2 The determine of primary set of parts of the fixed size 

 Let now consider the ratio of the benefit on the cost, and define the original 

interest rate below. 

Definition 4.2.1. Denote by 1

n
j

i i
i

j
i

w v

c



the original interest rate of jx with the 

resource ic . 

Definition 4.2.2. We say that i j
cx x , if 1 1

n n
j i

k k k k
k k

j i
k k

w v w v

c c
 
 

, ic C  , 

1 1{ , , }, { , , }.j l i m l
B Dx X x x x X x x       
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It is easy to see that if i j
cx x , the income with any resource ix  is less than jx . 

Then the same resource jx consumed implies the more benefits. The final set of 

the optimal solution must not contain ix . So, the primary item set can be denoted 

by { |c i iX x x  , ; }j j B i Dx x X x X   . 

 

 

4.3  Stable solution of risk-free portfolio problem with interval 

form 

 For a fixed portfolio 0Dp , the objective function becomes: 

0

   ( , , ) ( ) ( )
D B

j j j

p p X

Max V p w v V x x V x
 

  
j jx x

 

The constraints become the following forms: ( )  - ( ) B DB p B B p  

1

1

the objective function :     ( , , ) ( )

( )  - ( ) 
constraint conditions:

0                    1,

l
j j

i

l
j j

D
j

j

Max V p w v x V x

x C x B B p

x j l








      






     

( )jV x is actually an interval number. Considering the stability of solutions, the 

decision-makers will have their own risk preferences which are actually a kind of 

strong constrain condition. 

Similar to Section 3.3, the optimal solution worstx based on the pessimistic criteria is 

solved, then in this setting the probability of the misjudgment on comprehensive 

income ( )V x  is less than false worstp P  and the loss of the misjudgment is less 

than 0 worstl L . Then we keep these solutions in the alternative solution set. 

1. The optimal solution based on the pessimistic criteria 

When the decision makers think the result is not too bad with the worst case, it’s 
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clearly the pessimistic criteria (max-min criteria). The interval number linear 

programming problem mentioned above is transformed as follows: 

1

0

the objective function:     ( , ) ( )         

( )  - ( )      
constraint conditions:

0                    1,

j

l
j j

i

j j
D D

x p

i

Max V x v x V x

x C x B B p

x i l





 

       






 

This problem can be solved with the ordinary linear programming simplex 

method. 

Assume the solution is T
wwworst l

xxx ),,(
1
 , denote the comprehensive income 

corresponding to worstx  by ( )worstV x . 

2. The limit of the misjudgment probability 

It is not hard to see that the probability of a b  is the centre ( )m b  of b on 

the interval a , when the interval is completely contained and the information is 

unknown. 

Theorem 4.3.1 If the two internal numbers  [ , ]a a a and [ , ]b b b  meet 

 a b b a   , then   ( )
( ) ( ( ))

a m b
p a b p a m b

a a


   


 . 

Proof. As shown in Figure 8,   1
( )2( )

a b b a m b
p a b

a a a a

  
  

 
  

 

             

           Figure 8:  The figure of Theorem 4.3.1 

 

As the probability of misjudgment on comprehensive income ( )V x relative 
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to worstx  is less than false worstp P ,  then  

1

1 1

1
( ) ( )

2
1

( ) ( )

l
j j

worst
i

worstl l
j j j j

i i

x V x V x
P

x V x x V x
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
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



 
. 

Then, the following formulae are obtained: 
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l l
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      

 


          

 

3. The loss of the misjudgment 

When the loss of misjudgments is less than 0 worstl L , and one can add a 

constraint condition: 

1

( ) ( )
l

j j
worst worst

i

V x x V x L


   

By a direct computation, one arrives at: 

1 1

( ) ( ) ( ) ( )    
l l

j j j j
worst worst worst worst

i i

V x x V x L V x x V x L
 

            (25)           

It is easy to see that the solutions meeting only the above conditions are stable. 

Now we select the one with the highest expectation among them. As the 

information in intervals is unknown, the expectation is exactly the median of 

interval numbers. Hence, the objective function is: 
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 
1

1
    ( , ) ( ) ( )    

2

l
j j j

i

Max V x v V x V x x


              

With the two constraint conditions above, the solution is actually the maximum 

expectation that meets the probability of misjudgments and the loss of 

misjudgments. The linear programming problem is transformed as follows: 

 

 

1

0

1

1
    ( , ) ( ) ( )                          

2

( )  - ( )                              

0                    1,

1
( ) (1 ) ( ) ( ) 

2

( )

j

l
j j j

i

j j
D D

x p

i

l
j j j

worst worst worst
i

j j

i

Max V x v V x V x x

x C x B B p

x i l

P V x P V x x V x

V x x







 



 

     









1

( )
l

worst worstV x L










  


            (26) 

This is a simple linear programming problem and it can be easily solved.  

 

 

4.4  Decision making process of portfolios with the variable scale 

 By integrating 0-1 interval parametric programming and the interval 

parameter linear programming, we can present the decision making processes in 

the following algorithm form. 

Algorithm 4.4.1 

Step1 Use Formula (9) to calculate weight; 

Step2 Solve the original interest rate according to Definition 4.2.1. Remove the 

inferior alternative projects according to Definition 4.2.2. Denote the residue set 

rejected the inferior alternative projects by cX , and denote the set meeting 

resource constraints in cX by ( )CP S . 

Step3 Make Cycles. While ( )CP S    
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a) Take ( )Cp P S , solve the linear programming problem (25), and 

denote the solution by px . 

b) Add px into the empty set 0 ( )P S . 

c) ( ) ( ) \C CP S P S p  

Step 4 Use Algorithm 3.3.1 to get the stable optimal solution of 0 ( )P S . 

 

 

4.5  Application Analysis 

 The indicators investigated by projects are: the cash flows 1u , the number 

2u  of new customers, the duty-free amount 3u , the long-term development 4u , 

the corporate image 5u , the good response 6u  of employees. The fund used by 

the companies is limited to 500,000, HR is limited to 500,000. 

 A set of alternative projects is { x1, x2, x3, x4, x5, x6, x7}, where x1, x2,  x3,  x4,  

x5 are projects with the fixed scale, x6, x7 are projects with the variable scale. 

The comprehensive scores of each project are shown in Table 3 (x6 and x7 indicate 

the values corresponding to the capital investment of 10000). 

 

                     Table 3:  The comprehensive scores 

 U1(10000) U2 U3(10000) U4 U5 U6 

x1 [85, 90] [90,92] [0.91,0.94] [0.92,0.95] [0.89,0.91] [0.92,0.97] 

x2 [91, 94] [81,96] [0.83,0.99] [0.87,0.96] [0.86,0.98] [0.86,0.97] 

x3 [88, 91] [82,85] [0.90,0.93] [0.90,0.93] [0.85,0.89] [0.90,0.92] 

x4 [92, 96] [91,94] [0.85,0.88] [0.85,0.89] [0.84,0.90] [0.91,0.94] 

x5 [86, 89] [89,92] [0.91,0.95] [0.92,0.93] [0.91,0.93] [0.85,0.88] 

x6 [29, 33] [29,34] [0.24,0.27] [0.27,0.28] [0.27,0.32] [0.29,0.33] 

x7 [29, 31] [27,31] [0.29,0.32] [0.31,0.34] [0.30,0.33] [0.27,0.29] 
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The resource constraints of each project are shown in Table 4 (x6 and x7 indicate 

the values corresponding to the capital investment of 10000). 

 

Table 4:  The resource consumptions 

 C1（10000） C2（number of people） 

X1 35 30 
X2 27 26 
X3 32 32 
X4 28 29 
X5 34 32 
X6 1.0 1 
X7 1.0 1.2 

 

Solve the optimal program according to Algorithm 4.4.1 described in Section 4.4. 

Step1: First normalize it: 

 

Table 5: Normalized decision matrix 

 U1 U2 U3 U4 U5 U6 

X1 [0.377,0.401] [0.344,0.411] [0.387,0.423] [0.402,0.422]  [0.384,0.410] [0.415,0.427] 

X2 [0.379,0.416] [0.381,0.423] [0.385,0.425] [0.391,0.429] [0.416,0.438] [0.384,0.439] 

X3 [0.384,0.408] [0.367,0.376] [0.401,0.433] [0.397,0.434] [0.386,0.410] [0.398,0.434] 

X4 [0.381,0.401] [0.412,0.429] [0.377,0.433] [0.407,0.424] [0.395,0.425 [0.407,0.427] 

X5 [0.382,0.413] [0.412,0.413] [0.397,0.414] [0.401,0.413] [0.412,0.414] [0.380,0.397] 

 

Then by using formula (9), we can calculate the weight as follows: 

 0.1662,0.1691,0.1554,0.1582,0.1936,0.1579w   

Step 2: According to Definition 4.2.1 and Definition 4.2.2, we calculate the 
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original interest rate of each project and compare them, and obtain the results as 

follows: 

After screening, the projects x1, x3, x5 with fixed scales are screened out, x2, x4 are 

left. So the primary project set is },,,{ 7642 xxxxX c  . Then we can consider the 

resource constraints and get }},,{},,,{},,{{)( 76476276 xxxxxxxxSPC  , which 

shows that each portfolio is contained, and the coefficients of 6x , 7x can be 

adjusted. 

Step 3: Use formula (26) to solve the three portfolios in the set one by one. The 

number is normalized and satisfies the additivity. Here, the authors only describe 

},,{ 764 xxx  and list the results of others. 

Taking 0.4falsep  , the loss of misjudgments is less than 0 0.03l  , by using 

formula (26) and the normalized matrix, we get the following problem: 

6 7

6 7

6 7

6

7

6 7

6 7

objective function     ( , ) 0.386 +0.416 0.410 

28 + 50                              

29 +1.2 50

0
constraint conditions

0

0.092 +0.104 1.872

0.112 +0.118 0.422

Max V x v x x

x x

x x

x

x

x x

x x

 
  

  
  
 
 




：

：




 

We can solve this problem and arrive at  6

7

9.16

9.89

x

x


 

, and for the project x4, 

the whole solution set is given as 4 6 7{ 1, 9.16, 9.89}x x x   . 

Similarly, the authors can arrive at  

}50.10,74.9,1{ 762  xxx , }50.23,81.21{ 76  xx . 

Step 4: According to Algorithm 3.3.1, and comparing three portfolios, then we 

have the optimal solution as 4 6 7{ 9.158, 9.89}x x x   . 
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