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Abstract 

 Hedging under a parallel shift of the interest rate curve is well-known for a 

long date in finance literature. It is based on the use of a duration-convexity 

approximation essentially pioneered by Fisher-Weil [2]. However the situation is 

inaccurately formulated such that the obtained result is very questionable.  

Motivations and enhancement of such approximation have been performed 

in our recent working paper [5],"Enhancement of the Fisher-Weil bond technique 

immunization". So it is seen that the introduction of a term measuring the passage 

of time and high order sensitivities lead to very accurate approximation of the 

zero-coupon price change. As a result, the immunization of a portfolio made by 
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coupon-bearing bonds may be reduced to a non-linear and integer minimization 

problem. 

 In the present work, we show that actually a mixed-integer linear 

programming is needed to be considered. This last can be handled by making use 

of standard solvers as the CPLEX software. 

 

JEL classification numbers: G11, G12. 

Keywords: Yield Curve, Bond Portfolio, Immunization, Optimization, 

Linearization    

 

 

1  Introduction  
    Our main purpose in this paper is to provide an enhancement of the bond 

portfolio immunization pioneered by F. Macaulay [8], F. Redington [11], and also 

extended by L. Fisher & R. Weil [2]. Parts of the present results are drawn from 

our recent working paper [5].Here we provide a clarification about the non-linear 

and integer optimization problem left non-analyzed in full generality in this last 

work. Though it is well-known that all points of the interest rate curve do not 

really move in a parallel fashion, there are at least three reasons which motivate 

us to reconsider here the bond immunization problem. First this particular 

situation is (and continues to be) used by many people as a benchmark framework 

for the bond immunization. Moreover some empirical results [12] tend to state 

that using a stochastic model for the interest rate does not provide a remarkable 

immunization out-performance compared with the one obtained from the simple 

Fisher-Weil technique. Second, considering a parallel shift of the interest rate 

curve is among the standard mean to stress test the financial position. 

So having the behavior immunization in such an extreme case is helpful for the 

investor on a bond portfolio. Third, the accurate analysis, as we perform in this 
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particular case, may clarify well the situation under a stochastic model driven by a 

one-uncertainty factor as it is recently developed in [10]. 

 The immunization idea relies on matching the first (and probably the second) 

order sensitivities of the position to hedge and the hedging instrument with 

respect to a parallel shift of the yield curve. Therefore the task is essentially based 

on an approximation of the zero-coupon bond change. It means that to ensure a 

reliable immunization, rather than to question about the appropriateness of the 

interest rate curve parallel shift assumption (as done by various authors), we think 

there is also a room on the exploration of the validity of the approximation to use. 

In any case, the recourse to a given a model always spans an incorrect view of the 

reality. However when a model is chosen, it becomes crucial to analyze about the 

consistency and correctness of its use. As presented in our previous work [7] and 

[5], the classical Fisher-Weil immunization technique suffers from at least five 

drawbacks: 

the time-passage is neglected, contrarily as one can easily observed in reality; 

the shift is assumed to be infinitesimal, but the sense of this last is not clear; 

short positions are considered without taking into account the associated 

managing costs; 

the hedging allocation is given in term of bond proportions rather than in term of 

security numbers as is really required in trading; 

bounds for the hedging error are unknown and sometimes the variance 

information is used, however this last is not economically sounding for the 

investor's perspective. 

    In [5], the classical Fisher-Weil bond change approximation and the 

associated bond hedging technique are enhanced such that we are able to solve 

simultaneously all of these five issues. 

For the convenience, some of our main previous results are reported here. 

Essentially we have seen that the immunization problem is reduced to some 
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non-linear and integer optimization. Numerical examples, limited to a hedging 

portfolio made by one type of bonds in long positions and one type of bonds in 

short positions, are given in [5]. In this particular case, the optimization to 

perform may be solved by an enumerative method. The case of a portfolio 

hedging made by more types of bonds remains practically unsolved at this stage. 

So our new contribution in this paper is to show that really the problem may be 

solved by running a mixed-integer-linear-programming. The numerical examples, 

we consider in this paper, put in perspective that the use of various types of bonds 

lead to reduce considerably the possible maximum loss related to the hedging 

operation.  

 We emphasize that our main concern here is on the correctness and 

accurateness of the immunization approach as in [7] and [5]. This is performed by 

a technical consideration and does not lean on any particular financial data. The 

validity of a parallel shift assumption for the given interest rate curve is of few 

importance. In our illustrative examples, we have considered possible shift size 

values up to order 2.5 % to test the limit of our approach. 

 This paper is organized as follows. Our main results are stated in Section 2. 

After recalling primer notions on bonds and interest rate curve, we present in 

Proposition 2.1 of Subsection 2.1 the basic identity decomposition of portfolio 

change which is the main key for the immunization. The hedging formulation is 

performed in Subsection 2.2. Particularly in Theorem 2, we present the expression 

of the overall hedged portfolio change. This last enables us to state, in Theorem 3, 

that the considered bond portfolio immunization is reduced to a non-linear and 

integer optimization problem. In our working paper [5], we have seen that this last 

can be solved with an enumerative method whenever the hedging portfolio is 

made just by one type of bonds in long positions and one type of bonds on short 

positions. However this last paper remains silent about the approach to use facing 

such a non-linear and integer optimization problem, which is non-tractable in 

general. Therefore in Proposition3.4 of Subsection 2.3, we show that this problem 
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can be reduced to a mixed integer linear problem which may be handled by 

several solvers as the commercial solver CPLEX. This last is used in our 

numerical examples, displayed in Section 3. We conclude in Section 4. 

 

 

2  Main Results  

    Our result on hedging is based on the decomposition of a bond portfolio 

change which is presented in Subsection 2.1. Then we can apply this finding to 

formulate the hedging problem in Subsection 2.2. Finally in Subsection 2.3, the 

optimization problem linked to such a hedging operation is analyzed. 

 

2.1.  Portfolio change 

    A bond is a debt security such that the issuer owes to the holder a debt and, 

depending on the terms of the considered bond, is obliged to pay interest (often 

named coupon) and/or repay the principal at a later date, called maturity. In this 

work, we consider vanilla bonds and assume that the issuer may not default until 

the maturity. The time-t value of a coupon-bearing bond is defined by 

                      𝐵𝑡 = ∑ 𝐶𝑘𝑀
𝑘=1 𝑃�𝑡; 𝜏𝑘(𝑡)�                      (1) 

Where 

𝜏𝑘(𝑡) = 𝑡𝑘 − 𝑡 =  
number days between 𝑡𝑘 and 𝑡 

𝑏𝑎𝑠𝑒
 

𝐶𝑘 = 𝑁 × 𝑐 × 𝜏(𝑡𝑘−1, 𝑡𝑘)   𝑎𝑛𝑑   𝐶𝑀 = 𝑁{1 + 𝑐 × 𝜏(𝑡𝑀−1, 𝑡𝑀) } 

are the coupons paid respectively at time 𝑡𝑘 and 𝑡𝑀  . Here 𝑁 denotes the bond 

face value and 𝑐 is the annual coupon rate. The base is 360 or 365 or other 

number depending on the contract nature. The time-t-value of the zero-coupon 

bond  𝑃�𝑡; 𝜏𝑘(𝑡)� for a time-to-maturity 𝜏𝑘(𝑡) > 0 is 

               𝑃�𝑡; 𝜏𝑘(𝑡)� = exp�− 𝑦�𝑡; 𝜏𝑘(𝑡)�𝜏𝑘(𝑡)  �                  (2) 
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It is set that 𝑃�𝑡; 𝜏𝑘(𝑡)� ≡ 1. The quantity 𝑦�𝑡; 𝜏𝑘(𝑡)� is refereed as a yield and 

corresponds to the continuous interest rate which applies at time 𝑡  for the 

period [𝑡; 𝑡 + 𝜏𝑘(𝑡)]. The yield curve or time-t zero-coupon rates is defined by the 

map 

                  𝜏 𝜖 (0,∞) ⟶ 𝑦(𝑡; 𝜏)                                    (3) 

 In reality 𝑦(𝑡; 𝜏)  is not completely given for the whole points in the semi-real 

axis (0,∞) .We have only at our disposal some (discrete) yield-to- 

maturities  𝑦(𝑡; 𝜏̃1), … ,𝑦�𝑡; 𝜏̃𝑗�, … .𝑦(𝑡; 𝜏̃𝑚) . Facing to this lack of data, any 

yield-to-maturity 𝑦(𝑡; 𝜏) with 𝜏̃𝑗 < 𝑡 < 𝜏̃𝑗+1 is for instance defined via a linear 

interpolation. This linear interpolation represent an acceptable approximation of 

the function 𝑦(𝑡; 𝜏). 

 To understand the dynamic of the zero interest rate curve determined by  

𝑦(𝑡 + 𝑠; 𝜏)(∙) − 𝑦(𝑡; 𝜏) is a main issue in management of instruments linked to 

interest rates. For this purpose, sometimes it is reasonable to assume that 

                 𝑦(𝑡 + 𝑠; 𝜏)(∙) = 𝑦(𝑡; 𝜏) + 𝜀(∙ ; 𝑡, 𝑠)                    (4)    

for a future time 𝑡 + 𝑠 not too far from time 𝑡 in the sense that 𝑡 + 𝑠 < 𝑡1 <

. . < 𝑡𝑀. The point here is that the real number 𝜀(∙) does not depend on the 

time-to-maturity 𝜏. The assumption (4), referred as a parallel shift of the yield- 

curve, has been introduced and used in finance literature [2]. 

 Let us denote by 𝒱𝑡 the present time-t-value of a portfolio made by 

coupon-bearing bonds in long and/or short positions. So we assume that there are 

𝐼∗∗  types of bonds 𝐵.;𝑖∗∗ 
∗∗  in long positions and 𝐼∗ types of bonds 𝐵.;𝑖∗ 

∗  in short 

positions inside the considered portfolio. Of course 𝐼∗∗and 𝐼∗stand for positive 

integer numbers. Each bond  𝐵.;𝑖∗∗ 
∗∗ ,   𝑖∗∗ 𝜖 {1, … , 𝐼∗∗  } , is assumed to have a 

maturity 𝑇𝑀𝑖∗∗ 
∗∗

∗∗  and a first coupon paid at time 𝑡1;𝑖∗∗
∗∗ . Similarly each 

bond 𝐵.;𝑖∗ 
∗ ,   𝑖∗ 𝜖 {1, . . . , 𝐼∗ }  is characterized by a maturity 𝑇𝑀𝑖∗ 

∗
∗  and a first coupon 

paid at time 𝑡1;𝑖∗
∗ . 
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The time-t- value of such a portfolio may be written as 

                  𝒱𝑡 = ∑ 𝑛𝑖∗∗
∗∗𝐼∗∗

  𝑖∗∗=1 𝐵𝑡;𝑖∗∗ 
∗∗ − ∑ 𝑛𝑖∗

∗𝐼∗
  𝑖∗=1  𝐵𝑡;𝑖∗ 

∗                     (5) 

Therefore there are 𝑛  𝑖∗∗
∗∗ bonds of type   𝑖∗∗  each worth 𝐵.;𝑖∗∗ 

∗∗  and 𝑛𝑖∗
∗  bonds 

of type  𝑖∗ each worth  𝐵.;𝑖∗ 
∗ .  

The manager of such a portfolio has an issue to maintain a level value at least 

approximately to 𝒱𝑡 at the future time 𝑡 + 𝑠 where 𝑠 some nonnegative real 

number is. In practice 𝑠 corresponds to the horizon for which she has a more and 

less clear view about a possible movement of the market. To simplify the situation, 

in this paper we will just focus on the case where 𝑠 is sufficiently close to 𝑡 such 

that no coupon from all the bonds is paid during the time-period (𝑡, 𝑡 + 𝑠) that is 

          𝑡 < 𝑡 + 𝑠 <  min { 𝑡1;𝐵.;1∗∗ 
∗∗  , … 𝑡1;𝐵.;𝐼∗∗ 

∗∗ ;   𝑡1;𝐵.;1∗ 
∗  , … 𝑡1;𝐵.;𝐼∗ 

∗ }          (6) 

The future portfolio value 𝒱𝑡+𝑠 (∙) is not known at time 𝑡 and should depend on 

the structure taken by the interest rate curve at time +𝑠 . A full description of the 

portfolio value  𝒱𝑡+𝑠 (∙)− 𝒱𝑡 , in the case of a parallel shift of the interest rate 

curve, is given by the following. 

 

Proposition 2.1 Let us consider a time horizon 𝑠 not too large in the sense of (6). 

Assume that the interest rate curve has done any arbitrary parallel shift 𝜀(∙) not 

equal to zero and not too negative, satisfying 

                           − 𝜀° < 𝜀(∙) < 𝜀°°                          (7) 

for some 𝜀° and  𝜀°°with  0 < 𝜀° , 𝜀°° and  

𝜀° < min { �𝑦�𝑡 + 𝜏, 𝑡𝑘∗∗;𝑖∗∗
∗∗ ��

  𝑘∗∗ 𝜖 �1,… ,𝑀𝑖∗∗ 
∗∗  �;  𝑖∗∗ 𝜖 {1,… ,𝐼∗∗  }

 

 �𝑦�𝑡 + 𝜏, 𝑡𝑘∗;𝑖∗
∗ ��

  𝑘∗ 𝜖 �1,… ,𝑀𝑖∗ 
∗  �;  𝑖∗ 𝜖 {1,… ,𝐼∗  }

  }   

(8)   

and let 𝑝 be a nonnegative integer number. Then there is some real number 

𝜌(∙) = 𝜌(𝜀; 𝑝) with 0 < 𝜌(∙) < 𝜀(∙) or 𝜀(∙) < 𝜌(∙) < 0, such that we have the 
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following portfolio change decomposition 

                   𝒱𝑡+𝑠 (∙)− 𝒱𝑡 

= 𝐑𝐞𝐬(𝑡, 𝑠,𝒱)                                              

+ �
(−1)l

l!
𝐒𝐞𝐧𝐬(𝑙; 𝑡, 𝑠,𝒱)

p

l=1

𝜀𝑙(∙) 

            + (−1)p+1

(p+1)!
𝐒𝐞𝐧𝐬�𝑝 + 1; 𝑡, 𝑠,𝒱;𝜌(∙)�𝜀𝑝+1(∙)                             (9) 

where  

𝐑𝐞𝐬(𝑡, 𝑠,𝒱) = ∑ 𝑛𝑖∗∗
∗∗ 𝐑𝐞𝐬�𝑡, 𝑠,𝐵.;𝑖∗∗ 

∗∗ �𝐼∗∗
  𝑖∗∗ =1 − ∑ 𝑛𝑖∗

∗ 𝐑𝐞𝐬�𝑡, 𝑠,𝐵.;𝑖∗ 
∗ �𝐼∗

  𝑖∗ =1      (10) 

𝐒𝐞𝐧𝐬(𝑙; 𝑡, 𝑠,𝒱) = � 𝑛𝑖∗∗
∗∗ 𝐒𝐞𝐧𝐬�𝑙; 𝑡, 𝑠,𝐵.;𝑖∗∗ 

∗∗ �
𝐼∗∗

  𝑖∗∗ =1

− � 𝑛𝑖∗
∗ 𝐒𝐞𝐧𝐬�𝑙; 𝑡, 𝑠,𝐵.;𝑖∗ 

∗ �
𝐼∗

  𝑖∗ =1

  (11) 

𝐒𝐞𝐧𝐬�𝑝 + 1; 𝑡, 𝑠,𝒱;𝜌(∙)� = � 𝑛𝑖∗∗
∗∗ 𝐒𝐞𝐧𝐬 �𝑝 + 1; 𝑡, 𝑠,𝐵.;𝑖∗∗ 

∗∗ ;𝜌(∙)�
𝐼∗∗

  𝑖∗∗ =1

 

 − � 𝑛𝑖∗
∗ 𝐒𝐞𝐧𝐬 �𝑝 + 1; 𝑡, 𝑠,𝐵.;𝑖∗ 

∗ ;𝜌(∙)�
𝐼∗

  𝑖∗ =1

   (12) 

 

𝐑𝐞𝐬(𝑡, 𝑠, B) = �𝐶𝑘 
𝑀

𝑘=1

 �exp �− 𝑦�𝑡; 𝜏𝑘(𝑡, 𝑠)�𝜏𝑘(𝑡, 𝑠)� − exp �− 𝑦�𝑡; 𝜏𝑘(𝑡)�𝜏𝑘(𝑡)��  

(13) 

𝐒𝐞𝐧𝐬(𝑙; 𝑡, 𝑠, B) = ∑ {𝜏𝑘(𝑡, 𝑠)}𝑙𝐶𝑘 exp�− 𝑦�𝑡; 𝜏𝑘(𝑡, 𝑠)�𝜏𝑘(𝑡, 𝑠)�           𝑀
𝑘=1     (14) 

𝐒𝐞𝐧𝐬�𝑝 + 1; 𝑡, 𝑠, B;𝜌(∙)�

= �{𝜏𝑘(𝑡, 𝑠)}𝑝+1𝐶𝑘 exp �− �𝑦�𝑡; 𝜏𝑘(𝑡, 𝑠)� + 𝜌(∙)� 𝜏𝑘(𝑡, 𝑠)� 
𝑀

𝑘=1

 

(15) 

For 𝜀(∙) = 0  then it is clear that 

 𝒱𝑡+𝑠 (∙) − 𝒱𝑡 =  𝐑𝐞𝐬(𝑡, 𝑠,𝒱) 

This case corresponds to the situation where the interest rate curve at the 
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horizon   𝑡 + 𝑠  remains the same as in time 𝑡 , which corresponds to the 

case𝑦(𝑡; 𝜏)(∙) = 𝑦(𝑡; 𝜏) . It means that the term residual 𝐑𝐞𝐬(𝑡, 𝑠,𝒱) in (9), 

corresponds to the time-passage effect on the bond portfolio when the interest rate 

curve remains unchanged. 

The term 𝐒𝐞𝐧𝐬(𝑙; 𝑡, 𝑠,𝒱), with  l   ϵ {1,2, … . p} should be viewed as the bond 

portfolio l-th order sensitivity with respect to the parallel shift of the interest rate 

curve. By extension, for l = 0 ,we can set 

𝐒𝐞𝐧𝐬(0; 𝑡, 𝑠,𝒱) = 𝒱𝐭+𝐬|𝛆=𝟎 

This corresponds to the (deterministic) bond portfolio price at time t + s if the 

interest rate curve remains unchanged. 

 In the direction of identity (9) and for any arbitrary shift 𝜀(∙) consistent with 

the view (7), we can recast the portfolio change into 

{ 𝒱t+s (∙) − 𝒱t } − �𝐑𝐞𝐬(t, s,𝒱) + �
(−1)l

l!
𝐒𝐞𝐧𝐬(l; t, s,𝒱)

𝐩

𝐥=𝟏

εl(∙)� 

= 𝐑𝐞𝐦𝐚𝐢𝐧𝐝𝐞𝐫�p + 1; t, s,𝒱; ρ(∙)�   

(16) 

If the remainder term defined by  

𝐑𝐞𝐦𝐚𝐢𝐧𝐝𝐞𝐫�𝑝 + 1; 𝑡, 𝑠,𝒱;𝜌(∙)� =
(−1)p+1

(p + 1)!
𝐒𝐞𝐧𝐬�𝑝 + 1; 𝑡, 𝑠, B;𝜌(∙)�𝜀𝑝+1(∙)  

(17) 

 

may be neglected following the perspective of the investor in this portfolio bond 

𝒱𝑡  , then the bond portfolio relative change during the time-period (𝑡, 𝑡 + 𝑠) is 

approximated by the sum of two terms as 

{𝒱𝑡+𝑠 (∙) −𝒱𝑡 } ≈ �𝐑𝐞𝐬(𝑡, 𝑠,𝒱) + ∑ (−𝟏)𝐥

𝐥!
𝐒𝐞𝐧𝐬(𝑙; 𝑡, 𝑠,𝒱)𝐩

𝐥=𝟏 𝜀𝑙(∙)�      (18) 

The first deterministic term (i.e. well-known at time t ) 𝐑𝐞𝐬(𝑡, 𝑠,𝒱) corresponds 

to the passage of time. Such a term, introduced in [7], has never been considered 
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in literature dealing with bond change approximations. As depending on the future 

shift 𝜀(∙) of the interest rate curve, the second term in the right side of (18) is 

stochastic and appears to be a sum of various sensitivities of the bond portfolio 

weighted by power values of −𝜀(∙). It should be noted that the classical duration 

and convexity are given respectively by 

𝐃𝐮𝐫(t,𝒱) =
1
𝒱t
𝐒𝐞𝐧𝐬(1; 𝑡, 0,𝒱)     and    𝐂𝐨𝐧𝐯(t,𝒱) =

1
𝒱t
𝐒𝐞𝐧𝐬(2; 𝑡, 0,𝒱)  

such that instead of (18) with 𝑝 = 2 and for any arbitrary 𝑠 satisfying (6) the 

classical Fisher-Weil (1971) bond relative change approximation is 

     { 𝒱𝑡+s(∙) − 𝒱𝑡 } ≈ 𝒱𝑡 ×  {𝐃𝐮𝐫(t,𝒱)ε(∙) + 𝐂𝐨𝐧𝐯(t,𝒱)ε(∙)}                        (19) 

The superiority of our approximation (18) in comparison with (19) is largely 

analyzed and illustrated in our working paper [5]. 

 

 

2.2. Hedging formulation 

     From now let us denote by V𝑡  the present time t value of the portfolio 

made by long and short positions  

              𝑉𝑡 = ∑ 𝑛�𝑖∗∗
∗∗𝐼∗∗

  𝑖∗∗=1 𝐵�𝑡;𝑖∗∗ 
∗∗ − ∑ 𝑛�𝑖∗

∗𝐼∗
  𝑖∗=1  𝐵�𝑡;𝑖∗ 

∗                        (20) 

we would like to immunize against the parallel shift of the interest rate. To try to 

maintain the value 𝑉𝑡  at the future time horizon 𝑡 + 𝑠, where  𝑠>0 is some 

nonnegative real number, the portfolio manager has to put in place a given 

hedging technique. Various approaches are known in theory and used in 

practice(see for instance [1] and the references therein). Here we slightly differ 

with the standard asset-liability management for which the liability and asset are 

taken to have the same value at the starting time immunization. The hedging idea 

relies on using another bond portfolio, referred here as the hedging instrument. 

This last would lead to a profit compensating the portfolio loss in case of adverse 

shift of the interest rate curve. As a consequence, instead of the absolute change 
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 V𝑡+𝑠 (∙) − V𝑡  associated with the naked portfolio, at the horizon 𝑡 + 𝑠  the 

change for the covered portfolio is given by 

     W𝑡;𝑡+𝑠 (∙) = { V𝑡+𝑠 (∙) − V𝑡 } + P&𝐿_𝐻𝑒𝑑𝑔𝑖𝑛𝑔_𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠   t,t+s (∙)   (21) 

The hedging instrument has a similar formula as the portfolio given in (5) that is 

𝐏&𝐿_𝐻𝑒𝑑𝑔𝑖𝑛𝑔_𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠  t ≡ Ht = ∑ 𝑛𝑖∗∗
∗∗𝐼∗∗

  𝑖∗∗=1 𝐵𝑡;𝑖∗∗
∗∗ − ∑ 𝑛𝑖∗

∗𝐼∗
  𝑖∗=1 𝐵𝑡;𝑖∗

∗    (22) 

For convenience, we consider the same notations as (5) where the 𝑛𝑖∗∗
∗∗  bonds 

𝐵𝑡;𝑖∗∗
∗∗  are in long position and the 𝑛𝑖∗

∗  bonds 𝐵𝑡;𝑖∗
∗ are in short position 4

(23) 

.The 

associated profit and loss during the time-period (𝑡, 𝑡 + 𝑠) is given by 

𝐏&𝐿_𝐻𝑒𝑑𝑔𝑖𝑛𝑔_𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠t,t+s (∙) = 

� �𝐵𝑡+𝑠;𝑖∗∗
∗∗ (∙) − 𝐵𝑡;𝑖∗∗

∗∗ �
𝐼∗∗

  𝑖∗∗=1

𝑛𝑖∗∗
∗∗ − � �𝐵𝑡+𝑠;𝑖∗

∗ (∙) − 𝐵𝑡;𝑖∗
∗ �

𝐼∗

  𝑖∗=1

𝑛𝑖∗
∗  

− �
1

𝑃(𝑡, 𝑠) − 1� � � 𝑛𝑖∗∗
∗∗

𝐼∗∗

  𝑖∗∗=1

𝐵𝑡+𝑠;𝑖∗∗
∗∗ + �𝜆 +

𝜂𝑠
1 − 𝑃(𝑡, 𝑠)� � 𝑛𝑖∗

∗
𝐼∗

  𝑖∗=1

𝐵𝑡;𝑖∗
∗ � 

where 0 < 𝜂, 𝜆 <1 as 𝜂 = 0.1%  𝑎𝑛𝑑 𝜆 = 25%  for example. In one hand 𝜂 

represents the interest rate associated with borrowing of bond securities in order to 

perform the short sell operation. Indeed to partially prevent counter-party risk, it is 

required an amount of deposits 𝜆�∑ 𝑛𝑖∗
∗𝐼∗

  𝑖∗=1 𝐵𝑡;𝑖∗
∗ � .  It should be emphasized that 

in this article we do not take into consideration the transaction costs. The amount 

borrowed and required to realize the hedge is 

� � 𝑛𝑖∗∗
∗∗

𝐼∗∗

  𝑖∗∗=1

𝐵𝑡;𝑖∗∗
∗∗ + �𝜆 +

𝜂𝑠
1 − 𝑃(𝑡, 𝑠)� � 𝑛𝑖∗

∗
𝐼∗

  𝑖∗=1

𝐵𝑡;𝑖∗
∗ � 

                                                 

4 Observe that they are different from those forming the portfolio in (5). 
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which corresponds, at time 𝑡 + 𝑠 a payment of the interest with the deterministic 

level  

�
1

𝑃(𝑡, 𝑠) − 1� � � 𝑛𝑖∗∗
∗∗

𝐼∗∗

  𝑖∗∗=1

𝐵𝑡;𝑖∗∗
∗∗ + �𝜆 +

𝜂𝑠
1 − 𝑃(𝑡, 𝑠)� � 𝑛𝑖∗

∗
𝐼∗

  𝑖∗=1

𝐵𝑡;𝑖∗
∗ � 

 

Technically the offsetting effect resulting from the consideration of the hedged 

portfolio, as characterized by the profit and loss 𝑊𝑡,𝑡+𝑠(. ) defined in (21), is 

performed by matching the various sensitivities associated to the portfolio to 

hedge and the hedging instrument.  

 When considering the portfolio and the hedging instrument, as respectively 

defined in (20) and (22), the time-horizon 𝑠 is said to be not too large whenever 

𝑡 < 𝑡 + 𝑠

< 𝑚𝑖𝑛 � 𝑡1;𝐵.;1∗∗ 
∗∗  , … 𝑡1;𝐵.;𝐼∗∗ 

∗∗ ;   𝑡1;𝐵.;1∗ 
∗  , … 𝑡1;𝐵.;𝐼∗ 

∗ ;  𝑡1;𝐵.;1∗∗ 
∗∗  , … 𝑡1;𝐵.;𝐼∗∗ 

∗∗ ;   𝑡1;𝐵.;1∗ 
∗  , … 𝑡1;𝐵.;𝐼∗ 

∗ �   

                                       (24) 

We also consider admissible parallel shift ε(∙) in the sense that  

−ε(∙)  < min 

⎩
⎪
⎪
⎨

⎪
⎪
⎧  �𝑦�𝑡 + 𝜏, 𝑡̃𝑘∗∗;𝑖∗∗

∗∗ ��
  𝑘∗∗ 𝜖 �1,… ,𝑀�𝑖∗∗

∗∗   �;  𝑖∗∗ 𝜖 {1,… ,𝐼∗∗  }
;

�𝑦�𝑡 + 𝜏, 𝑡̃𝑘∗;𝑖∗
∗ ��

  𝑘∗ 𝜖 �1,… ,𝑀�𝑖∗
∗   �;  𝑖∗ 𝜖 {1,… ,𝐼∗  }

;

�𝑦�𝑡 + 𝜏, 𝑡𝑘∗;𝑖∗
∗ ��

  𝑘∗ 𝜖 �1,… ,𝑀𝑖∗
∗  �;  𝑖∗ 𝜖 {1,… ,𝐼∗  }

;

    �𝑦�𝑡 + 𝜏, 𝑡𝑘∗∗;𝑖∗∗
∗∗ ��

  𝑘∗∗ 𝜖 �1,… ,𝑀𝑖∗∗
∗∗  �;  𝑖∗∗ 𝜖 {1,… ,𝐼∗∗  }⎭

⎪
⎪
⎬

⎪
⎪
⎫

  

Here 𝑡̃𝑘∗∗; 𝑖∗∗ 
∗∗  denotes the time where the 𝑘∗∗-th coupon of the   𝑖∗∗  bond 𝐵�𝑡;𝑖∗∗

∗∗  

(in long position) maturing at 𝑡𝑀�∗∗𝑖∗∗ is paid. The quantities  𝑡̃𝑘∗;𝑖∗
∗ , 𝑡𝑘∗∗;𝑖∗∗

∗∗ , 𝑡𝑘∗;𝑖∗
∗  

may be defined similarly as 𝑡̃𝑘∗∗;𝑖∗∗
∗∗  . 

 All of these considerations lead us now to write the full expression of the 

covered portfolio P &L level in (23) by putting in evidence the possible 

compensation between the various values of the involved coupon-bearing bonds. 
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Theorem 2.2 Consider a bond portfolio as in (20) and a hedging instrument as in 

(22). Assume that 𝑠  is not large as in (24) and the parallel shift admissible in the 

sense of  (25). Let 𝑝 be a nonnegative integer number. Then real numbers 

ρV(∙),ρ∗∗(∙),ρ∗(∙) (depending on 𝜀(∙) and 𝑝) exist such that the profit and loss 

 W𝑡;𝑡+𝑠 (∙)  for the overall portfolio is given by the following expansion: 

 W𝑡;𝑡+𝑠 (∙) = � Θ0V + � Θ0;i∗∗
∗∗ 𝑛𝑖∗∗

∗∗ − � Θ0;i∗
∗ 𝑛𝑖∗∗

∗∗
𝐼∗

  𝑖∗=1

𝐼∗∗

  𝑖∗∗=1

� 

+�
(−1)l

l!

p

l=1

� ΘlV + � Θl;i∗∗
∗∗ 𝑛𝑖∗∗

∗∗ − � Θl;i∗
∗ 𝑛𝑖∗

∗
𝐼∗

  𝑖∗=1

𝐼∗∗

  𝑖∗∗=1

� 𝜀𝑙(∙)                  

+
(−1)(p+1)

(p + 1)! �
 Θp+1V (ρV) + � Θp+1;i∗∗

∗∗ (ρ∗∗)𝑛𝑖∗∗
∗∗ − � Θp+1;i∗

∗ (ρ∗)𝑛𝑖∗
∗

𝐼∗

  𝑖∗=1

𝐼∗∗

  𝑖∗∗=1

� 𝜀p+1(∙) 

(26) 

where  

                            Θ0V = 𝐑𝐞𝐬(𝑡, 𝑠, V)                                 (27) 

Θ0;i∗∗
∗∗ = 𝐑𝐞𝐬�𝑡, 𝑠,𝐵.;𝑖∗∗

∗∗ �  −  � 1
𝑃(𝑡,𝑠)− 1� 𝐵.;𝑖∗∗

∗∗                                     (28)   

Θ0;i∗
∗ = 𝐑𝐞𝐬�𝑡, 𝑠,𝐵.;𝑖∗

∗ �  −  � 1
𝑃(𝑡,𝑠)− 1� (𝜆+ 𝜂𝑠

1−𝑃(𝑡,𝑠)) 𝐵.;𝑖∗
∗                (29)                                                                       

           ΘlV = 𝐒𝐞𝐧𝐬(𝑙; 𝑡, 𝑠,𝒱) ;   Θl;i∗∗∗∗ = 𝐒𝐞𝐧𝐬�𝑙; 𝑡, 𝑠,𝐵.;𝑖∗∗
∗∗ �                        (30) 

Θl;i∗
∗ = 𝐒𝐞𝐧𝐬�𝑙; 𝑡, 𝑠,𝐵.;𝑖∗

∗ �                                         

                  Θp+1V �ρV� = 𝐒𝐞𝐧𝐬�𝑝+ 1; 𝑡, 𝑠, V;ρV� ;                 (31) 

                 Θp+1;i∗∗
∗∗ (ρ∗∗) = 𝐒𝐞𝐧𝐬�𝑝+ 1; 𝑡, 𝑠,𝐵.;𝑖∗∗

∗∗ ;ρ∗∗� ;           (32) 

Θp+1;i∗
∗ (ρ∗) =  𝐒𝐞𝐧𝐬�𝑝+ 1; 𝑡, 𝑠,𝐵.;𝑖∗

∗ ;ρ∗� 

Here Θ0V,ΘlV  and  Θp+1V  are similarly defined as in (10), (11) and (12) as functions 

of  𝐵�𝑡;𝑖∗∗
∗∗ ,𝐵�𝑡;𝑖∗

∗  ,𝑛�𝑖∗∗
∗∗ ,𝑛�𝑖∗

∗  , 𝐼∗∗ 𝑎𝑛𝑑 𝐼∗.   

   This result clearly explicits the offsetting effect which arises between the 

portfolio  

𝑉𝑡 to hedge and the hedging portfolio 𝐻𝑡. At the present time  𝑡  the value 
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of  𝑊𝑡;𝑡+𝑠  (∙)  remains unknown, but we hope that it should be a small quantity 

when its value is revealed at the horizon 𝑡 + 𝑠. It means that the issue for the 

hedging is to be able to suitably choose the bond security numbers 𝑛𝑖∗∗
∗∗ and 𝑛𝑖∗

∗ in 

order to satisfy this requirement. 

 We need to introduce more restriction on the parallel shift satisfying 

𝜀 = 𝜀(∙) , satisfying (7) for some nonnegative  𝜀° 𝑎𝑛𝑑 𝜀°° such that 

𝜀° <  min  

⎩
⎪
⎪
⎨

⎪
⎪
⎧�𝑦�𝑡 + 𝜏, 𝑡̃𝑘∗∗;𝑖∗∗

∗∗ ��
  𝑘∗∗ 𝜖 �1,… ,𝑀�𝑖∗∗ 

∗∗   �;  𝑖∗∗ 𝜖 {1,… ,𝐼∗∗  }
;

 �𝑦�𝑡 + 𝜏, 𝑡̃𝑘∗;𝑖∗
∗ ��

  𝑘∗∗ 𝜖 �1,… ,𝑀�𝑖∗ 
∗  �;  𝑖∗∗ 𝜖 {1,… ,𝐼∗  }

;

�𝑦�𝑡 + 𝜏, 𝑡𝑘∗∗;𝑖∗∗
∗∗ ��

  𝑘∗∗ 𝜖 �1,… ,𝑀𝑖∗∗ 
∗∗  �;  𝑖∗∗ 𝜖 {1,… ,𝐼∗∗  }

;

�𝑦�𝑡 + 𝜏, 𝑡𝑘∗;𝑖∗
∗ ��

  𝑘∗ 𝜖 �1,… ,𝑀𝑖∗ 
∗  �;  𝑖∗ 𝜖 {1,… ,𝐼∗  } ⎭

⎪
⎪
⎬

⎪
⎪
⎫

 

Then referring to (7), (24) and (32) , we have  

Θp+1;  𝑖∗∗
∗∗ ≤ exp �ε° �T𝑀�𝑖∗∗ 

∗∗ − s�� 𝐒𝐞𝐧𝐬�𝑝 + 1; 𝑡, 𝑠,𝐵∗∗.;𝑖∗∗; ρ∗∗� ≡ Υp+1;𝑖∗∗
∗∗     (33) 

and similarly 

Θp+1;  𝑖∗
∗ ≤ exp �ε° �T𝑀𝑖∗ 

∗ − s�� 𝐒𝐞𝐧𝐬�𝑝 + 1; 𝑡, 𝑠,𝐵∗.;𝑖∗; ρ∗� ≡ Υp+1;𝑖∗
∗                     (34) 

Similarly |Θp+1 
V | may be estimated as follows 

|Θp+1 
V | ≤ max { � exp �ε° �T𝑀�𝑖∗∗ 

∗∗ − s�� 𝐒𝐞𝐧𝐬�𝑝 + 1; 𝑡, 𝑠,𝐵∗∗.;𝑖∗∗; ρV�𝑛�𝑖∗∗
∗∗ ; 

𝐼∗∗

𝑖∗∗=1

 

� exp �ε° �T𝑀�𝑖∗ 
∗ − s�� 𝐒𝐞𝐧𝐬�𝑝 + 1; 𝑡, 𝑠,𝐵∗.;𝑖∗; ρV�𝑛�𝑖∗

∗ } ≡ Υp+1V     
𝐼∗

𝑖∗=1

 

(35) 

For the convenience we introduce the following 𝐼∗∗-dimensional vectors 

𝑛∗∗ = (𝑛1∗∗
∗∗ , … ,𝑛𝐼∗∗

∗∗ )′, 𝐵𝑡∗∗ = �𝐵𝑡;1∗∗
∗∗ , … ,𝐵𝑡;𝐼∗∗

∗∗ �
′
, 

                               Θ0∗∗ = �Θ0;1
∗∗ , … ,Θ0;𝐼∗∗

∗∗ �′,Θl∗∗ = �Θl;1
∗∗ , … ,Θl;𝐼∗∗

∗∗ �′            (36) 

Θp+1∗∗ = �Θp+1;1
∗∗ , … ,Θp+1;𝐼∗∗

∗∗ �
′
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Analogously we can introduce and define the 𝐼∗ -dimensional vectors 𝑛∗,

𝐵𝑡∗,Θ0∗  ,Θl∗and Θp+1∗ . With all of these notations, we are now in position to state 

the suitable (robust) allocation problem to determine the vectors  𝑛∗∗,𝑛∗ 

corresponding to the various numbers of bonds used in the hedging instrument. 

 

Theorem 2.3 Consider a bond portfolio as in (20) and a hedging instrument as in 

(22). Assume that s  is a time-horizon not large as in (24) and the yield curve has 

done an admissible parallel shift in the sense of (25). Let 𝑝 be a nonnegative 

integer number. Then the (vector) numbers 𝑛∗∗𝑎𝑛𝑑 𝑛∗ of bond defining the 

hedging instrument as in (36) may be found as a solution to the integer 

optimization problem: 

(P0)                 (𝑛∗∗,𝑛∗) = 𝑎𝑟𝑔𝑚𝑖𝑛 {𝐹(𝑛∗∗,𝑛∗)|  (𝑛∗∗,𝑛∗)  𝜖𝐷0}                         (37) 

where the constraint 𝐷0 is defined as the set of couples (𝑛∗∗,𝑛∗) satisfying 

a∗∗𝑛∗∗ + a∗𝑛∗ ≤ 𝐷 

for all 𝑛∗∗𝜖 ℕI∗∗, 𝑛∗𝜖 ℕ𝐼∗,with 

                       a∗∗ = � 1
𝑃(𝑡,𝑠) − 1� 𝐵𝑡∗∗   

                        a∗ = � 1
𝑃(𝑡,𝑠) − 1� �𝜆 + 𝜂𝑠

1−𝑃(𝑡,𝑠)�𝐵𝑡
∗                         (38) 

Here 𝐷 is the amount allowed by the investor not to be exceeded in the hedging 

operation. The objective function 𝐹(𝑛∗∗,𝑛∗) is defined by 

𝐹(𝑛∗∗,𝑛∗) =  �
1
l!

p

l=0

 �Θl
V + � Θl;i∗∗

∗∗ 𝑛𝑖∗∗
∗∗ − � Θl;i∗

∗ 𝑛𝑖∗
∗

𝐼∗

  𝑖∗=1

𝐼∗∗

  𝑖∗∗=1

�   𝝐𝒍    

                + 1
(p+1)!

 �Υp+1V + ∑ Υp+1;𝑖∗∗
∗∗ 𝑛𝑖∗∗

∗∗ − ∑ Υp+1;𝑖∗
∗  𝑛𝑖∗

∗𝐼∗
  𝑖∗=1

𝐼∗∗
  𝑖∗∗=1 �𝝐𝒑+𝟏                (39) 

Here  𝝐=max{ ε°, ε°°} and the quantities Θ0 
V ,Θ0 

∗∗,Θ0 
∗ ,Θl V,Θl ∗∗,Θl ∗ ,Υp+1V ,Υp+1,

∗∗  Υp+1V  

𝐵𝑡∗∗ ,𝐵𝑡∗ are given respectively above in (28),(29),(30),(31),(33),(34),(35) and (36). 

In the standard immunization framework, the idea remains to match the portfolio 

sensitivities with those of the corresponding hedging instrument which, 
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By (39) can be performed by taking 

                         ΘlV + Θl∗∗ ∙ 𝑛∗∗ − Θl∗ ∙ 𝑛∗ = 0   𝑓𝑜𝑟   𝑎𝑙𝑙     𝑙 𝜖 {0,1 … , 𝑝}        (40) 

Here (40) may be seen as a linear system of 𝑝 + 1 -equations with I∗∗ + I∗ 

unknowns. Typically we are in the situation where 𝑝 + 1 ≤ I∗∗ + I∗. 

Even for the particular case 𝑝 + 1 = I∗∗ + I∗ and if the system admits a solution, 

a difficult arises since the variables defined by 𝑛∗∗ and 𝑛∗ are restricted to the 

integer numbers. 

There is also the usual approach used by people by considering all 𝑛∗∗ and 𝑛∗ 

which minimize the square sum 

� �ΘlV + Θl∗∗ ∙ 𝑛∗∗ − Θl∗ ∙ 𝑛∗�
2𝑝

𝑙=0
    

However this should not the right way to follow, since not only we lose both the 

control of the size of the maximum hedging loss, and the attenuator effect brought 

by the term 1
𝑙!
𝜖𝑙. Therefore we have to afford the minimization problem raised in 

this Theorem. This is our object in the next Subsection 2.3. 

 

2.3. Optimization problem 

    According to Theorem 2.3, the bond portfolio hedging is reduced to the 

minimization  problem  (𝑃0)  defined by integer linear constraints, such that we 

are face with  an integer optimization problem.  Observe that the objective 

function is both non-linear, non-convex and non-differentiable at the origin. To 

overcome these difficulties we make use of a known linearization technique as in 

[2],[6],[9] which consists to replace the initial problem (𝑃0)  by an equivalent 

linear problem (𝑃1). 

 Recall that a Linear Programming (LP) problem has the form 

(𝐿𝑃):𝒙 = 𝒂𝒓𝒈𝒎𝒊𝒏 {𝐶𝑡𝑥  |     𝐴𝑥 ≤ 𝑏 , 𝑥 ≥ 0}                                   (41) 

where 𝐶 𝜖 ℝ𝑛 , 𝑏 𝜖 ℝ𝑚 ,𝐴𝜖 ℝ𝑚×𝑛 are given and 𝑥 𝑖𝑠 𝑎 ℝ𝑛  unknown vector .  
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Here 𝑚 and 𝑛 are integer numbers which represent respectively the number of 

constraints and the number of variables. LP is well-known and may be solved 

either by an exact methods, referred as the simplex method as pioneered by 

Dantzig 1974, or interior point methods  as introduced by Dinkin 1967 and also 

by the Karmarkar algorithm 1984, [6] . 

 Coming back to our problem (𝑃0)  and assuming that 𝜀(∙) is a fixed given 

constant, then we are lead to introduce the following function 

𝐺(𝑥,𝑛∗∗,𝑛∗) =  � 𝑥𝑙
𝑝

𝑙=0
+

1
(𝑝 + 1)!�

Υp+1V + � Υp+1;𝑖∗∗
∗∗ 𝑛𝑖∗∗

∗∗ − � Υp+1;𝑖∗
∗  𝑛𝑖∗

∗
𝐼∗

  𝑖∗=1

𝐼∗∗

  𝑖∗∗=1

� 𝝐𝒑+𝟏 

(42) 

where the components 𝑥𝑙′𝑠 of 𝑥 are real variables. Actually, our motivation here 

is to remove the non-linearity by setting 

𝑥𝑙 = 1
𝑙!
�Θl

V + ∑ Θl;i∗∗
∗∗ 𝑛𝑖∗∗

∗∗ − ∑ Θl;i∗
∗ 𝑛𝑖∗

∗𝐼∗
  𝑖∗=1

𝐼∗∗
  𝑖∗∗=1 �𝜖𝑙  for  all  l ϵ {0,1 … p}          (43) 

Therefore we obtain the following result. 

 

Proposition 3.4 .The problem (𝑃0)  is equivalent to the following minimization 

Problem 

(𝑃1) ∶ 𝒙 = 𝒂𝒓𝒈𝒎𝒊𝒏 {𝐺(𝑥,𝑛∗∗, 𝑛∗) |  (𝑥,𝑛∗∗,𝑛∗) 𝜖 𝐷1 }            (44) 

where 𝐷1 is defined as the set of triplets (𝑥,𝑛∗∗,𝑛∗) satisfying the constraints 

a∗∗𝑛∗∗ + a∗𝑛∗ ≤ 𝐷 

0 ≤ 𝑥𝑙 +
1
𝑙!
�Θl

V + � Θl;i∗∗
∗∗ 𝑛𝑖∗∗

∗∗ − � Θl;i∗
∗ 𝑛𝑖∗

∗
𝐼∗

  𝑖∗=1

𝐼∗∗

  𝑖∗∗=1

� 𝜖𝑙  for  all  l ϵ {0,1 … p} 

(45) 

0 ≤ 𝑥𝑙 −
1
𝑙!
�Θl

V + � Θl;i∗∗
∗∗ 𝑛𝑖∗∗

∗∗ − � Θl;i∗
∗ 𝑛𝑖∗

∗
𝐼∗

  𝑖∗=1

𝐼∗∗

  𝑖∗∗=1

� 𝜖𝑙  for  all  l ϵ {0,1 … p}  

(46) 
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with the restrictions that 𝑥 = (𝑥𝑙)𝑙 , 𝑛∗∗ 𝜖 ℕ𝐼∗∗   𝑎𝑛𝑑 𝑛∗ 𝜖 ℕ𝐼∗. The objective 

function 𝐺 is defined in (42). 

 In this Proposition, by the equivalence between (𝑃0)   𝑎𝑛𝑑 (𝑃1)  we mean 

that if an optimal solution (𝑛∗∗, 𝑛∗) to (𝑃0)   does exist, then (𝑃1)   admits an 

optimal solution (𝑥,𝑛∗∗, 𝑛∗)4F

5  , and conversely if (𝑥,𝑛∗∗,𝑛∗)  is an optimal 

solution to (𝑃1)  then (𝑃0)   admits (𝑛∗∗,𝑛∗) as an optimal solution. 

Therefore, with the above result, we are lead to solve problem (𝑃1)  instead 

of  (𝑃0)   . 

 Observe that both the objective function and constraints associated with 

(𝑃1)  are given by linear transformations, with mixed integer and real 

coefficients.Such a problem (𝑃1)  is commonly referred as a Mixed Integer Linear 

Problem (MILP). 

MILP is recognized as an NP-hard problem because of the non-convexity of the 

domain and the number of possible combinations of the variables. For small 

dimensions, MILP can be solved by exact methods that provide an exact optimal 

solutions. In this case the most of available exact methods are Branch and Bound, 

Branch and Cut, Branch and Price [5]. 

 However the complexity of MILP exponentially increases with the number of 

variables and the above quoted methods can fail. To overcome this inconvenience, 

meta-heuristics methods (as Genetic Algorithm and Ant Colony Optimization [3]). 

 Usually there are various solvers which may be used to derive exact solution 

to the MILP. One modern commercial solver we make use here is the CPLEX 

solver 9.0.Details and references related to such an application are freely available 

on the web as for instance : 

http://www.iro.umontreal.ca/~gendron/IFT6551/CPLEX/HTML/ 

 

                                                 

5 With 𝑥 = (𝑥𝑙)𝑙 and 𝑥𝑙 defined from  𝑛∗∗ 𝑎𝑛𝑑  𝑛∗ 
 

http://www.iro.umontreal.ca/~gendron/IFT6551/CPLEX/HTML/�
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Proof of Proposition 3.4  

 Let us prove the equivalence between the two problems (𝑃0)   and (𝑃1) In 

the one-hand, assume that (𝑃1) admits (𝒙,𝒏∗∗,𝒏∗) as an optimal solution. It 

means that 

𝐺(𝒙,𝒏∗∗,𝒏∗) ≤ 𝐺(𝑥,𝑛∗∗,𝑛∗)  𝑓𝑜𝑟 𝑎𝑙𝑙   (𝑥,𝑛∗∗,𝑛∗) 𝜖 𝐷1           (48) 

Then we get that (𝒏∗∗,𝒏∗)  is an optimal solution to problem (𝑃0)   since for any 

(𝑛∗∗,𝑛∗) 𝜖 𝐷0. 

𝐹(𝒏∗∗,𝒏∗) = 𝐺(𝑥,𝒏∗∗,𝒏∗)  for 𝑥 = (𝑥𝑙)𝑙 and with 𝑥𝑙  defined from in (43). 

                      ≤ 𝐺(𝑥,𝑛∗∗,𝑛∗)  for any (𝑥,𝑛∗∗,𝑛∗)𝜖 𝐷1   due to (48). 

                     = 𝐹(𝑛∗∗,𝑛∗)  by taking  𝑥 = (𝑥𝑙)𝑙  with 𝑥𝑙  defined from 

𝑛∗∗ 𝑎𝑛𝑑 𝑛∗ as in (43). 

 Conversely in the other-hand, assume that 𝑃0  admits (𝑛∗∗,𝑛∗)  as an 

optimal solution, which means that 

𝐹(𝒏∗∗,𝒏∗) ≤ 𝐹(𝑛∗∗,𝑛∗)  𝑓𝑜𝑟 𝑎𝑙𝑙   (𝑛∗∗,𝑛∗) 𝜖 𝐷0           (49) 

Let us define 𝒙 = (𝒙𝒍)𝒍 with 𝒙𝒍  defined from 𝒏∗∗ 𝑎𝑛𝑑 𝒏∗ as in (43). Then we 

get that (𝒙,𝒏∗∗,𝒏∗)  is an optimal solution to problem (𝑃1)  since for any 

(𝑥,𝑛∗∗,𝑛∗) 𝜖 𝐷1.  

𝐺(𝑥,𝒏∗∗,𝒏∗)  = 𝐹(𝒏∗∗,𝒏∗) 

                      ≤ 𝐹(𝑛∗∗,𝑛∗)  for any (𝑛∗∗,𝑛∗)𝜖 𝐷0    due to (49). 

                     = 𝐺(𝑥,𝑛∗∗,𝑛∗) since 1
𝑙!
�ΘlV + ∑ Θl;i∗∗

∗∗ 𝑛𝑖∗∗
∗∗ − ∑ Θl;i∗

∗ 𝑛𝑖∗
∗𝐼∗

  𝑖∗=1
𝐼∗∗
  𝑖∗∗=1 �𝜖𝑙  ≤ 𝑥𝑙    

due to (46) and (47). 

 

 

3  Numerical illustrations 

    To illustrate our results, we consider the following yield curve (Table 1). 

    Since here only the yields for the 1,2,…11 year maturities are given, then we 

make use of a linear interpolation to get the yields for the other maturities. A plot 
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of this curve is displayed in Figure 1. 

 

Table 1 : Annual yield curve 

Maturity 𝜏  1 2 3 4 5 6 7 8 9 10 11 

y(t; 𝜏) 4.35 4.79 6.07 6.4 6.66 6.88 7.02 7.13 7.23 7.30 7.53 

 

   The characteristics of the bonds inside the portfolio to hedge are as Table 2. 

Therefore the portfolio to hedge has the value 96 911.2050  Euro, and we are in 

the case of the portfolio 𝑉𝑡, as defined in (5), such that 𝐼∗∗ = 4, 𝐼∗ = 3,  

𝑛�1∗∗ = 1 000,𝑛�2∗∗ = 1 500,𝑛�3∗∗ = 500,𝑛�4∗∗ = 750,𝑛�5∗∗ = 500,𝑛�1∗ = 1 000,  

𝑛�2∗ = 900  𝑎𝑛𝑑 𝑛�3∗ = 1 000.  For simplicity, all of these bonds are supposed to 

have the same coupon payment dates. 

 

 

Figure 1: Annual yield curve 

   

 We work under the situation as Table 3.  
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The hedging operation is assumed to be done with the constraint of a maximal 

allowed amount 𝐷 = 9 468.1  𝐸𝑢𝑟𝑜 (which is roughly equal to 10% of the initial 

portfolio value 𝑉𝑡). The deposit and security borrowing rates are respectively 

 𝜆 = 25% and 𝜂 = 0.1% The hedging horizon is 90days which corresponds 

to 𝑠 = 0.25.   To simplify we take 𝜀∘∘ = 𝜀∘ = 25% which corresponds to a 

large shift of the curve interest rate. For the sensitivities computations, we will 

restrict to the maximum order of p = 5. The hedging portfolio we will make use is 

built on various bonds whose the characteristics are summarized by the Table 4. 

 

 

Table 2 : Portfolio Characteristics 

Bond type number Coupon rate (%) Maturity (years) Price (Euro) 

𝐵�1∗∗ 1000 3 3 91.4506 

𝐵�2∗∗ 1500 5 4 94.7829 

𝐵�3∗∗ 500 7 5 101.0106 

𝐵�4∗∗ 750 4 10 76.3227 

𝐵�5∗∗ 500 5 12 78.5785 

𝐵�1∗ 1000 4 2 98.3289 

𝐵�2∗ 900 5 3 96.8498 

𝐵�3∗ 1000 6 4 98.256 
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Table 3: Situation under consideration 

s 90 days 

𝑃(𝑡, 𝑠) = 𝑒−𝑦(𝑡,𝑠)∗𝑠 0.9973 

�
1

𝑃(𝑡, 𝑠) − 1� 0.0027 

𝜆 25% 

𝜂 0.1% 

�𝜆 +
𝜂𝑠

𝑃(𝑡, 𝑠)� 0.342 

𝜏(𝑡𝑘−1,𝑡𝑘 ) 1 year  

𝜀∘ 2.5% 

𝜀∘∘ 2.5% 

𝜖 = max (𝜀∘∘, 𝜀∘) 2.5% 

 

 

Table 4 : Characteristics of the bonds used for the hedging 

Bond type 𝐵1∗∗ 𝐵2∗∗ 𝐵1∗ 𝐵2∗ 𝐵3∗ 𝐵4∗ 

Number bond 𝒏𝟏∗∗ 𝒏𝟐∗∗ 𝒏𝟏∗  𝒏𝟐∗  𝒏𝟑∗  𝒏𝟒∗  

Coupon rate 

(%) 
6.5 4.75 3.5 7 6.25 5 

Maturity 

(years) 
5 8 2 4 5 10 

Price (Euro) 98.9153 85.1694 97.3958 101.7304 97.8677 83.3557 

 

 

The sensitivities for all of these bonds may be summarized by the following: 
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Table 5 : Sensitivities of the bond used to hedging 

l 0 1 2 3 4 5 

Θl;1∗∗  1.6830 419.5557 1 892.6648 8 764.8048 41 024.5417 193 041.0256 

Θl;2∗∗  1.4674 559.4606 4 047.1645 303 204.363 230 368.7089 1 762 505.555 

Θl;1∗  1.2900 169.4436 293.9647 512.5172 835.4642 1 565.9817 

Θl;2∗  1.8614 349.4567 1 256.0857 4 614.0959 17 100.7973 63 658.7391 

Θl;3∗  1.8410 416.7741 1 883.3104 8 723.0387 40878.0480 192 418.39408 

Θl;4∗  1.5850 645.0346 5 725.0584 53 287.2283 505 591.3337 4842855.4011 

 

It should be observed here that for each bond  𝐵 more the order considered is high,  

more the corresponding sensitivity has a high value. In contrast, the normalized 

term as  1
𝑙!

 𝐒𝐞𝐧𝐬(𝑙, 𝑡, 𝑠;𝐵)𝜖𝑙, tends to have small values for large orders 𝑙. A 

similar observation may be made for the remainder terms introduced in 

Theorem2.2 . Indeed for 𝑝 = 5 and 𝜖 = 2.5% then we get the following 

 

Table 6: Remainder term of the bonds used for the hedging 

 Υp+1i  Υp+1i ∗ ϵp+1

(𝑝 + 1)!
 

Υp+1;1
∗∗  1 025 973.3781 3.5e−007 

Υp+1;2
∗∗  1 431 858.0459 5.62e−006 

Υp+1;1
∗  2 862.1783 9.7e−010 

Υp+1;2
∗  260 912.7687 8.8e−008 

Υp+1;3
∗  1 022 880.2930 3.5e−007 

Υp+1;4
∗  59 509 913.8555 2.0e−005 
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The sensitivities and remainder term corresponding to the portfolio to hedge are 

summarized by the following: 

 

Table 7 : Sensitivities of the portfolio to hedge 

l 0 1 2 3 4 5 

ΘlV 2 653.97 1 020 499.06 9 011 651.04 84 643 

343.53 

847 635 181.58 8 842 848 568.71 

 

and  

 

Table 8 : Remainder term of the portfolio to hedge 

Υp+1V  1
(p + 1)!

Υp+1V ∗ ϵp+1 

124 775 708 343.03 4.23𝑒−002 

 

 

Three hedging situations are now considered for comparisons. 

First, we examine the hedging situation using with two types of bonds: 'one in 

long and one in short position' made respectively by bonds 𝐵1∗∗𝑎𝑛𝑑  𝐵1∗ as 

described in Table 4. The numbers 𝒏𝟏∗∗ 𝑎𝑛𝑑 𝒏𝟏∗  of bonds 𝐵1∗∗𝑎𝑛𝑑  𝐵1∗ 

respectively required for the hedging, as described in the above Theorem 2.2 and 

Proposition3. 4, may be determined by using the IBM ILOG CPLEX' solver. After 

0.08 second running time (in our computer processor :AMD Sempron(tm) M120 

2.10 GHz)), we get the following result: 
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Table 9 : Result hedging instruments with two bonds 

𝒏𝟏∗∗ 𝒏𝟏∗  𝐹(𝒏∗∗,𝒏∗) 

0 6 023 Loss=7 607.09 Euro 

 

 

Here the number 7 607.087  𝐸𝑢𝑟𝑜  represents the (possible) maximum loss 

corresponding to the shift 𝜖 = 2.5%.  Of course the loss should be less than this 

value for any shift  𝜀 𝜖 (−2.5%, 2.5%). It may be observed that this maximum 

loss represents around 7.85% of the portfolio initial value  𝑉𝑡. 

Second, we consider the hedging situation when using four bonds made by 

𝐵1∗∗,𝐵2∗∗ in long position and 𝐵1∗,𝐵2∗ in short position. After a running time of 

0.09 second we get the values of  𝒏𝟏∗∗,𝒏𝟐∗∗,𝒏𝟏∗  𝑎𝑛𝑑 𝒏𝟐∗   as follows: 

 

Table 10 : Result hedging instruments four bonds 

𝒏𝟏∗∗ 𝒏𝟐∗∗ 𝒏𝟏∗  𝒏𝟐∗  𝐹(𝒏∗∗,𝒏∗)     

1 0 1 2 921 Loss=4 652.36 Euro 

 

 

It appears that the possible maximum loss value is 4.8% of the portfolio value. 

This loss is less than the one which possibly arises in the case where just two types 

of bonds are used for the hedging.  

Finally we assume the hedging situation under six types of bonds made by 𝐵1∗∗, 

𝐵2∗∗ in long position and 𝐵1∗,𝐵2∗,𝐵3∗,𝐵4∗ in short position. The values of 𝒏𝟏∗∗,𝒏𝟐∗∗, 

𝒏𝟏∗ ,𝒏𝟐∗ ,𝒏𝟑∗  𝑎𝑛𝑑 𝒏𝟒∗  obtained after a running time of 0.08 second are summarized 

by 
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Table 11: Result hedging instrument bond with six bonds 

𝒏𝟏∗∗ 𝒏𝟐∗∗ 𝒏𝟏∗  𝒏𝟐∗  𝒏𝟑∗  𝒏𝟒∗  𝑭(𝒏∗∗,𝒏∗) 

97 336 3 2 289 1748 Loss=0.68  

 

 

It appears clearly here that the possible maximum loss is strongly reduced and 

takes the insignificant value of 0.6760 𝐸𝑢𝑟𝑜. Therefore the hedging operation 

seems to be theoretically and practically perfect. However we should be aware 

that for the considered example the transaction costs are not considered. Moreover 

in many interest rate markets, we can have just very few available (risk-free) 

bonds for the trading and hedging perspectives. 

 

 

4  Conclusion 
     The present paper is devoted to the hedging of a bond portfolio under a 

parallel shift of the interest rate curve, as pioneered by various authors as F. 

Macaulay (1938), F. Redington (1952) and L. Fisher & R. Weil [2]. Their 

approach is enhanced here, in the sense that we take into account the passage of 

time and deal with non-infinitesimal yield shift. As presented in the above 

development, and proved in our previous working paper [5], from our approach it 

becomes possible to accurately monitor the hedging error. Actually for this last 

quantity, a deterministic and pointwise estimate may be obtained when using the 

hedger's view about the curve shift.  Moreover in this work, we have taken into 

account some facts that are less considered in literature related to hedging of bond 

portfolios. For instance it is common to consider short positions without taking 

care of the associated transaction fees. Moreover the hedging allocation is solved 

in term of bond proportions rather than in term of security numbers. Taking these 



Jaffal Hanan, Yassine Adnan and Rakotondratsimba Yves                      247 

 

 

 

issues into account, it is displayed here that a non-linear and integer optimization 

problem has to be considered. Then we have proved that  this last is equivalent to 

a Mixed-Integer-Linear Problem, which can be solved by making use of various 

solvers as the CPLEX-software. With the illustrative examples introduced above, 

it appears that the hedge quality may be improved when the hedging portfolio is 

made by a large number of bonds in long and short positions. 

 The main assumption, about the parallel shift of the interest rate curve, 

underlying the results of this paper is too restrictive and has a few probabilities to 

happen in real market. However with the fact that our approach allows a shift of 

arbitrary size, then the result obtained here may be of interest in the perspective of 

obtaining useful indication for a stressed and/or extreme situation. 

The particular situation of a parallel shift of the curve remains also to be a 

practical and theoretical benchmark for any comparison of a bond portfolio 

immunization under a more realistic term structure of the interest rate. 

 Finally, the approach and idea introduced in this paper appear to be useful 

when tackling the bond portfolio immunization under an assumption of an interest 

rate curve moving in a non-parallel fashion. As an example, the case of a term 

structure driven by a one-uncertainty factor is recently performed by the third 

author in [10]. 
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