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Abstract 
 

This paper develops a model for estimating Value-at-Risk (VaR) from the historical 

return series. The proposed method uses spline interpolation to represent the 

empirical probability distribution of the return series. The approach developed in 

this paper is easy to implement using available programming platforms, and it can 

be generalized to other applications that involve estimating empirical distribution. 

In order to check the validity of the model, we use established back-testing methods 

and show that the model is robust to the changes in sample size and significance 

levels used to estimate VaR. We test the model against some similar distribution-

based models using historical data from S&P500 index. We show that Value-at-

Risk estimation based on the proposed method can outperform common historical, 

parametric, and kernel-based methods. As a result, the method can be useful in the 

context of validation of market risk models. 
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1. Introduction  

Value-at-risk (VaR) is a widely used measure in risk management. It is defined as 

the highest possible loss over a certain period of time at a given significance level, 

which is typically chosen to be 1% or 5%. Establishment of VaR as a practical 

methodology in risk measurement got initiated back in 1994, when J.P. Morgan 

published RiskMetrics as their first systematically developed risk-measurement 

procedure. According to the Basle Committee on Banking Supervision, banks are 

allowed to calculate their risks based on a VaR concept (Basle (1995), Basle (1996)). 

VaR has been increasingly adopted in various contexts with significant 

improvements on its calculation techniques; (see Jorion (2007)). However, VaR 

models suffer from some inefficiencies in risk measurement. 

In order to satisfy the Basle requirements, banks and financial institutions were 

computing their VaR using either historical simulation, Variance-Covariance 

technique (Parametric) or Monte Carlo simulation (See more detailed VaR 

methodologies in Dowd (2002) and Alexander (2009)). With the emergence of the 

2008 financial crisis, modifying the VaR methodology has become an essential 

requirement. VaR has already received lots of attention in the literature (see Jorion 

(2007)) and the literature dealing with different modeling issues is large enough, 

but few studies have been specifically concentrated on quantifying the uncertainty: 

Jorion (1996), Christoffersen & Gonclaves (2005) and Chan et al. (2007). 

Inefficiency of the VaR estimates may have different reasons: The major one is due 

to data, such as lack of sufficient data; Further, uncertainty due to poorly 

characterized parameters in a specified mathematical model which are reflected in 

the VaR calculation (Dowd (1998)). A considerable amount of research has been 

devoted to exploring the VaR limitations (Krause (2003) and Danielsson (2002)) 

and producing more accurate VaR estimates, Khindanova et al. (2001), Sun et al. 

(2009), Lonnbark (2010), Huang (2010), Shaker-Akhtekhane and Mohammadi 

(2012), and Shaker-Akhtekhane et al. (2018) among others. 

In this paper, a non-parametric approach using historical data based on cubic spline 

smoothing (CSS) is proposed to calculate VaR. We will use three widely used tests 

to examine the validity of the proposed method; Binomial, unconditional coverage 

and conditional coverage tests. Additionally, we will compare the performance of 

the proposed method to that of some popular Value-at-Risk measurement methods. 

We will use models with characteristics similar to that of the proposed method. The 

models include parametric (Normal and student’s t), plain historical simulation and 

Epanechnikov kernel estimation method. Some other popular kernel estimators are: 

Epanechnikov, Biweight, Triweight, Triangular, Normal and Uniform kernels. It is 

noteworthy that unimodal densities have the same performance when used as a 

kernel. Also, uniform kernels are not very popular in practice since the 

corresponding density estimation is piecewise constant (Wand & Jones (1995)). 

Considering all aspects and the similarities between these kernels, the 

Epanechnikov kernel is chosen to be examined and compared in this paper. It should 

also be noted that, we have used all the kernels and obtained the results, but we have 
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decided not to report all kernel methods because they produce very similar results. 

The rest of the paper is organized as follows. Section 2 provides a brief explanation 

of cubic splines. In Section 3, cubic smoothing spline VaR estimation method is 

discussed, and Section 4 explains the statistical testing procedures and examines the 

reliability of the model. Finally, section 5 provides concluding remarks. 

 

2. Cubic Splines 

Cubic splines are powerful mathematical tools for interpolating discrete data using 

a reasonably smooth curve. Given data points across two-dimensional space 

{(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} with 𝑥1 < ⋯ < 𝑥𝑛, a cubic spline for these data points is 

defined as the following piecewise function 

 

𝑆(𝑥) = 𝑠𝑖(𝑥)     if     𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1,     𝑖 ∈ {1, . . . , 𝑛 − 1} (1) 

   

where the 𝑠𝑖’s are cubic polynomials, i.e., polynomials of degree three, defined by 

 

𝑠𝑖(𝑥) = 𝑎𝑖(𝑥 − 𝑥𝑖)3 + 𝑏𝑖(𝑥 − 𝑥𝑖)2 + 𝑐𝑖(𝑥 − 𝑥𝑖) + 𝑑𝑖,   𝑖 ∈ {1, . . , 𝑛 − 1} (2) 

 

and where the following conditions hold: 

1. 𝑆(𝑥)  interpolates the data points 𝑠𝑖(𝑥𝑖) = 𝑦𝑖  and 𝑠𝑖(𝑥𝑖+1) = 𝑦𝑖+1  for 𝑖 ∈
{1, . . . , 𝑛 − 1}. 
 

2. 𝑆(𝑥) is twice continuously differentiable in the interval (𝑥1, 𝑥𝑛). 

 

The choice of degree three offers a compromise between simplicity and flexibility. 

In order to uniquely determine a cubic spline, one needs to introduce additional 

conditions. For example, one can demand that the limit of the second derivative is 

zero in both endpoints 𝑥1 and 𝑥𝑛. Cubic splines for which this condition holds are 

called natural. For detailed information on cubic splines the reader is referred to 

textbooks on numerical analysis, e.g. (Stoer et al. 2010). 

There is another type of cubic splines which is called “cubic smoothing spline” 

(CSS). The smoothing spline 𝑓 minimizes 

 

𝑝 ∑ 𝛾𝑗

𝑛

𝑗=1

|𝑦𝑗 − 𝑓(𝑥𝑗)|2 + (1 − 𝑝) ∫ 𝜆(𝑡)|𝐷2𝑓(𝑡)|
2

𝑑𝑡 (3) 

 

where, |𝑧|2 stands for the sum of the squares of all the entries of 𝑧. 𝑛 is the 

number of the points, and the integral is over the smallest interval containing all the 

entries of 𝑥 . Also, 𝛾  is the weight vector in the error measure, and 𝜆  is the 

piecewise constant weight function in the roughness measure. 𝐷2𝑓 denotes the 

second derivative of the function 𝑓, and 𝑝 is the smoothing parameter. For 𝑝 =
0, 𝑓 is the least-squares straight line fit to the data, while, at the other extreme, i.e., 
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for 𝑝 = 1, 𝑓 is the natural cubic spline interpolant. As 𝑝 moves from 0 to 1, the 

smoothing spline changes from one extreme to the other. In the following, cubic 

smoothing spline (CSS) with 𝑝 = 0.5 (to compromise between smoothness and 

interpolation) and equal weights (𝜆 = 1, 𝛾𝑖 = 1, for 𝑖 = 1, . . . , 𝑛())  will be 

employed. We do this to keep things simple as well as to provide proper insights on 

how this simple, non-optimized version of the model works compared to other 

popular counterparts. Then one can think of calibrating these parameters according 

to the case at hand. 

 

3. Value-at-Risk Model  

Th Let {𝑥𝑡} be a sequence of prices, then, corresponding returns sequence is 

 

𝑟𝑡 = 100 𝑙𝑜𝑔
𝑥𝑡

𝑥𝑡−1
  

 

The Value-at-Risk for 𝑑 days ahead at 𝛼 significance level, 𝑉𝑎𝑅𝑑,𝛼, is defined 

as 

 

𝐹(𝑉𝑎𝑅𝑑(𝛼)) = 𝑃(𝑟𝑡 < 𝑉𝑎𝑅(𝛼)) = 𝛼 (4) 

 

or 

 

𝑉𝑎𝑅𝑑(𝛼) = 𝑖𝑛𝑓{𝜈|𝑃(𝑟𝑡 < 𝜈) = 𝛼} = 𝐹−1(𝛼) (5) 

 

where 𝐹(𝑟𝑡) is the cumulative distribution function of the returns. This function 

can be estimated either parametrically and/or non-parametrically. In the next 

subsection, we describe the cubic smoothing spline (CSS VaR) method, which is of 

importance here. 

 

3.1 Estimating Value-at-Risk using CSS 

Suppose that we want to calculate 1-day ahead VaR at 𝛼 significant level, i.e., 

𝑉𝑎𝑅1,𝛼. Let 𝒙 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} be the return series, (where 𝑁 is the sample size). 

In an algorithmic manner, we perform the following steps to obtain the empirical 

cumulative distribution of the data: 

1. Assign the weights of {𝑤0, 𝑤1, 𝑤2, . . . , 𝑤𝑁 , 𝑤𝑁+1}  to each data-point 

{𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑁 , 𝑥𝑁+1}. 

Where, 𝑥0 = 𝑚𝑖𝑛( 𝑥𝑖) − 𝜎  and 𝑥𝑁+1 = 𝑚𝑎𝑥( 𝑥𝑖) + 𝜎,    𝑖 = 1,2, . . . , 𝑁 . 𝜎  is 

the standard deviation of 𝒙. 

2. The assigned weights can be either equal, (
1

𝑁+1
) or exponentially declining or 

any other desired weights which can vary depending on the data and our 

estimation goals. Here, we use equal weights, and set 𝑤0 = 0,   𝑤𝑗 =
1

𝑁+1
,   𝑗 =

1,2, . . . , 𝑁 + 1. 
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3. Next, sort the data from the lowest to the highest to obtain ordered data, 

{𝑥0
′ , 𝑥1

′ , 𝑥2
′ , . . . , 𝑥𝑁

′ , 𝑥𝑁+1
′ }. 

4. Assign the cumulative weights to the ordered data such that the weights 

𝑤0
′ , 𝑤1

′ , 𝑤2
′ , . . . , 𝑤𝑁

′ , 𝑤𝑁+1
′  are assigned to 𝑥0

′ , 𝑥1
′ , 𝑥2

′ , . . . , 𝑥𝑁
′ , 𝑥𝑁+1

′ , respectively, 

where 

𝑤𝑖
′ = ∑ 𝑤𝑘

𝑖

𝑘=0

   𝑖 = 0,1, . . . , 𝑁 + 1 

For example, in our case (equal weights), the cumulative weight corresponding to 

𝑖𝑡ℎ ordered return is (𝑤𝑖 =
𝑖

𝑁+1
). 

By implementing these steps and making use of the assigned weights and data series 

at hand, one can obtain the empirical cumulative distribution shown in Figure1-(a). 

Now, we smoothly interpolate the cumulative distribution function 𝐹 using CSS 

(See Figure1-(b)). Then, the empirical density function can be derived as the first 

derivative of 𝐹, i.e., 𝑓 = 𝐹′. Finally, 𝑉𝑎𝑅𝛼  is calculated using 𝑓, or it can be 

calculated directly using 𝐹, see Figure1-(c) and Figure1-(d). The results are not 

affected by two extra points, 𝑥0 and 𝑥𝑁+1. These points are added to make the end 

slopes of the smoothed curve zero. This is clear in Figure 1. 

  

  

Figure 1:  VaR measurement Procedure using CSS.3 

 
3 Panel (a) illustrates the cumulative distribution of the data; panel (b) shows the interpolated and 

smoothed cumulative distribution function; panels (c) and (d) display the VaR calculation using 

density function and cumulative distribution function, respectively. 
 

(d) 

 

(a) 

 

(b) 

 

(c) 
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The main strength of the proposed method is that it provides the empirical 

cumulative distribution function and density function without imposing 

distributional assumptions on the data. As a result, it can be considered as a non-

parametric attempt to estimate the distributional shape of the data. In order to check 

the validity of the proposed approach in the context of VaR measurement, we have 

selected some benchmark VaR estimation models to compare against my model. As 

the proposed spline smoothing method estimates the empirical distribution of the 

data, it would be appropriate to select other distribution-fitting methods (parametric 

normal and t, and kernel fitting). Also, since the proposed method just uses 

historical data to estimate the empirical distribution, we have included the historical 

simulation method which basically uses quantiles of the data in the left tail. 

As described above, we estimate the cumulative distribution instead of density 

function, and as a result, we don’t impose restrictive distributional assumptions on 

the data, e.g., histograms and bins which are needed if we try to estimate the density 

function directly using splines. Our technique just uses the data at hand and all the 

available data are involved in creating the cumulative function and the density 

function. Next section is devoted to back-testing and examining the model’s validity 

and comparing it with four other simple but popular methods. 

 

4. Validity of the CCS VaR Model 

This section discusses reliability of the proposed model using three back-testing 

approaches. We also apply the same tests to other competing methods in order to 

get an understanding of how well the CSS VaR model works compared to the other 

similar, widely used models. Here, we introduce the back-testing methods briefly 

followed by implementation of the back-testings on the VaR models in the next 

subsections. 

Back-testing is based on a rolling window for sub-samples data selection. The 

estimation sample is held constant, and it is rolled over the entire sample starting at 

the first data point. The length of the risk horizon is kept constant (here we take it 

equal to 1 day), and the test sample starts at the end of the estimation sample. We 

roll the estimation and test periods forward 1 day and keep rolling the estimation 

and test samples over the entire sample until we reach the last observation. Then we 

record the calculated VaR and the realized value for the entire period of window 

movement. The result of this procedure will provide two time series covering all the 

consecutive rolling test periods. One series contains the 1-day VaR estimates and 

the other contains the 1-day realized returns. The Back-test is performed based on 

these two series. Note that this rolling window approach is standard in risk literature 

which can easily be found in any VaR related textbook, e.g. see Alexander (2009). 
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4.1 Binomial back-testing 

Most Back-tests on daily VaR are based on the assumption that the daily returns are 

generated by an i.i.d. Bernoulli process. A Bernoulli variable may take only two 

values, i.e., 1 and 0, or ’success’ and ’failure’. Here, we will call ’success’ an 

exceedance of the VaR on the return. That is, the calculated VaR exceeds the 

corresponding realized return value. The exceedances are assigned value of 1. We 

can define an indicator function 𝐼𝛼,𝑡 over the time series of daily returns relative to 

the 100𝛼% daily VaR by: 

 

𝐼𝛼,𝑡+1 = {
1,   if   𝑌𝑡+1 < −𝑉𝑎𝑅1,𝛼,𝑡,

0,               otherwise.
 (6) 

 

Where 𝑌𝑡+1 is the ’realized’ daily return on the portfolio from the time t, when the 

VaR is estimated, to the time (t+1). If the VaR model is accurate and 𝐼𝛼,𝑡 follows 

an i.i.d. Bernoulli process, the probability of ’success’ at any time t is α. Thus, the 

expected number of successes in a test sample with n observations is 𝑛𝛼. Let’s 

denote the number of successes by the random variable 𝑋𝑛,𝛼. These assumptions 

imply that 𝑋𝑛,𝛼 follows a binomial distribution with parameters n and α. Therefore, 

we have the following: 

 

𝐸(𝑋𝑛,𝛼) = 𝑛𝛼 (7) 

 

𝑉(𝑋𝑛,𝛼) = 𝑛𝛼(1 − 𝛼) (8) 

 

It is obvious that if the number of exceedances is closer to the mean, nα, then the 

model can be regarded as more accurate. We can also use confidence intervals 

instead of exact values to assess the validity of the model. When n is very large the 

distribution of 𝑋𝑛,𝛼  is approximately normal, so a two-sided 1 − 𝜌 confidence 

interval for 𝑋𝑛,𝛼 under the null hypothesis that the VaR model is accurate is given 

by the following: 

 

(𝑛𝛼 − 𝑧
1−

𝜌
2

√𝑛𝛼(1 − 𝛼), 𝑛𝛼 + 𝑧
1−

𝜌
2

√𝑛𝛼(1 − 𝛼)) (9) 
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4.2 Unconditional and conditional coverage Back-testing 

In addition to the basic binomial test, we use unconditional coverage (UCC) and 

conditional coverage (CC) tests introduced by Kupiec (1995) and Christoffersen 

(1998) to further examine the validity of the VaR models. The unconditional 

coverage test is a likelihood ratio statistic which is given by 

 

 

𝐿𝑅𝑢𝑐 =
𝜋

𝑒𝑥𝑝𝑛1𝑛0𝑒𝑥𝑝

𝜋
obs

𝑛1(1−𝜋obs)𝑛0

,
 

(10) 

 

where 𝜋𝑒𝑥𝑝  is the expected proportion of exceedances, 𝜋obs  is the observed 

proportion of exceedances from VaR, 𝑛1 is the observed number of exceedances 

from VaR and 𝑛0 = 𝑛 − 𝑛1 is total cases which the indicator function of returns is 

zero, where 𝑛  stands for total sample size. The asymptotic distribution of 

−2 𝑙𝑛 𝐿 𝑅𝑢𝑐 is chi-square with one degree of freedom, and the null hypothesis is 

that the VaR estimation method is accurate in the sense that the total number of 

exceedances is close to the expected number. The hypothesis is rejected if computed 

−2 𝑙𝑛 𝐿 𝑅𝑢𝑐 is greater than the corresponding critical value. 

In a similar way the conditional coverage test statistic is given by 

 

𝐿𝑅𝑐𝑐 =
𝜋

𝑒𝑥𝑝𝑛1𝑛0𝑒𝑥𝑝

𝜋
01

𝑛01(1−𝜋01)𝑛00𝜋11
𝑛11(1−𝜋11)𝑛10

,
 

(11) 

 

where 𝜋𝑒𝑥𝑝 is the expected proportion of exceedances, 𝑛1 is the observed number 

of exceedances from VaR and 𝑛0 = 𝑛 − 𝑛1 in which 𝑛 stands for total sample 

size, therefore 𝑛0 is total cases which the indicator function of returns equals zero 

and 𝑛𝑖𝑗  is the number of returns with indicator value 𝑖  followed by indicator 

value 𝑗. Also 

 

𝜋01 =
𝑛01

𝑛00 + 𝑛10
        and        𝜋11 =

𝑛11

𝑛10 + 𝑛11
.  

 

The asymptotic distribution of −2 𝑙𝑛 𝐿 𝑅𝑐𝑐  is chi-square with two degrees of 

freedom. 
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4.3 Back-testing Results 

For back-testing, we use S&P500 index’s daily observations from Jun 1990 to Dec 

2006. We have not included the period leading to 2008’s financial crisis as that 

period represents a different market regime which would not be appropriate for 

testing simple parametric and non-parametric approaches. It can be noted that, the 

proposed method can be coupled with different weighting schemes or with some 

modern volatility models in order to capture varying market regimes, which would 

be beyond the scope of this paper. The whole sample size is 4287 which is enough 

to have several sizes for the estimation sample as well as enough estimated VaR’s 

and realized return values to perform reliable tests on the models. We run the back-

testing at two significance levels (0.05 and 0.01) and four Rolling Window Sizes, 

denoted by RWSs, (1, 2, 3 and 4 years of length, respectively 250, 500, 750 and 

1000 daily observations). Table 1 contains the binomial back-testing results of the 

methods. According to Table 1, assuming a 5% rejection rate for the accuracy of 

the methods, (i.e., reject the null hypothesis of the model being accurate if the p-

value is less than 0.05), the proposed model passes the binomial test under all 

significance levels and sample sizes (all 8 cases) while all other models fail at least 

once. 

 

Table 2 reports the test results for the unconditional and conditional coverage back-

testing methods. According to Table 2, again assuming 5% rejection rate for our 

hypothesis testing, the proposed model passes the unconditional coverage test for 

all eight cases. For this test historical simulation and epanechnikov kernel methods 

also pass the test for all cases while parametric t fails two and parametric normal 

fails four out of eight cases. For conditional coverage test also our model 

outperforms the others. Although this time our model fails the test in two out of 

eight cases, the second best model is the epanechnikov kernel which fails in four 

out of eight cases. Table 3 summarizes the failures of the models under 1% and 5% 

rejection rates for the null hypothesis that the model is accurate. If we take a look 

at the overall performance of the models in all three back-tests, i.e. add the failures 

under the 5% rejection rate, we can rank the models as4: 1. Cubic smoothing spline, 

2. Epanechnikov kernel, 3. Plain historical simulation, 4. Parametric t, and 5. 

Parametric normal. 

 

 

 

 

 

 

 

 

 
4 Note that this method is not a conventional ranking approach and is merely used to provide a 

better understanding of which models fails in fewer/more tests compared to others. 



70                                   Shaker-Akhtekhane and Poorabbas 

Table 1: Binomial back-testing results of the VaR models, (ρ=0.05). 

VaR model α RWS 
Expected 

value 

Number of 

exceedances 
Difference p-value 

Cubic 

smoothing 

spline 

0.05 

250 202 190 12 0.3921 

500 189 182 7 0.5837 

750 177 181 4 0.7488 

1000 164 188 24 0.0584 

0.01 

250 40 33 7 0.2437 

500 38 36 2 0.7601 

750 35 39 4 0.5396 

1000 33 38 5 0.3685 

Epanechnikov 

kernel 

0.05 

250 202 179 23 0.0989 

500 189 179 10 0.4403 

750 177 182 5 0.6911 

1000 164 189 25 0.0485 

0.01 

250 40 38 2 0.7077 

500 38 40 2 0.7279 

750 35 42 7 0.2625 

1000 33 41 8 0.1541 

Parametric 

normal 

0.05 

250 202 183 19 0.1734 

500 189 169 20 0.1292 

750 177 173 4 0.7664 

1000 164 172 8 0.5404 

0.01 

250 40 62 22 0.0006 

500 38 60 22 0.0003 

750 35 68 33 0.0000 

1000 33 66 33 0.0000 

Parametric 

student’s t 

0.05 

250 202 170 32 0.0214 

500 189 162 27 0.0414 

750 177 168 9 0.4947 

1000 164 170 6 0.6511 

0.01 

250 40 41 1 0.9206 

500 38 41 3 0.6092 

750 35 34 1 0.8169 

1000 33 36 3 0.5832 

Plain HS 

0.05 

250 202 196 6 0.6727 

500 189 183 6 0.6359 

750 177 183 6 0.6352 

1000 164 182 18 0.1578 

0.01 

250 40 50 10 0.1277 

500 38 48 10 0.0980 

750 35 46 12 0.0724 

1000 33 45 12 0.0335 
Note: RWS stands for rolling window size, and α is the significance level of VaR, (VaRα). 
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Table 2: Coverage back-testing results of the VaR models. 

VaR model α RWS -2lnLRuc p-value (UCC) -2lnLRcc p-value (CC) 

Cubic 

smoothing 

spline 

0.05 

250 0.7463 0.3877 5.7366 0.0568 

500 0.3041 0.5813 7.1087 0.0286 

750 0.1018 0.7497 5.9034 0.0523 

1000 3.7201 0.0538 12.2097 0.0023 

0.01 

250 1.4493 0.2286 2.5977 0.2728 

500 0.0948 0.7581 0.9116 0.6339 

750 0.3642 0.5462 3.4201 0.1809 

1000 0.7701 0.3802 3.7594 0.1526 

Epanechnikov 

kernel 

0.05 

250 2.8261 0.0927 8.3132 0.0157 

500 0.6061 0.4363 11.4991 0.0032 

750 0.1564 0.6925 5.7675 0.0559 

1000 3.7201 0.0538 12.2097 0.0022 

0.01 

250 0.1433 0.7050 0.9030 0.6367 

500 0.1188 0.7303 6.9359 0.0312 

750 1.1842 0.2765 3.7743 0.1515 

1000 1.8833 0.1700 4.3979 0.1109 

Parametric 

normal 

0.05 

250 1.9103 0.1669 8.1333 0.0171 

500 2.3848 0.1225 7.2399 0.0268 

750 0.0888 0.7657 4.6426 0.0981 

1000 0.3694 0.5433 9.9169 0.0070 

0.01 

250 10.0592 0.0015 15.6548 0.0004 

500 11.0931 0.0009 20.0254 0.0000 

750 23.9406 0.0000 30.2755 0.0000 

1000 26.0949 0.0000 29.7245 0.0000 

Parametric 

student’s t 

0.05 

250 5.5768 0.0182 16.4111 0.0003 

500 4.3631 0.0367 12.1515 0.0023 

750 0.4737 0.4913 5.9148 0.0520 

1000 0.2023 0.6529 6.9682 0.0307 

0.01 

250 0.0099 0.9208 11.4134 0.0033 

500 0.2545 0.6140 6.8083 0.0332 

750 0.0534 0.8157 4.0226 0.1338 

1000 0.2920 0.5889 3.6321 0.1627 

Plain HS 

0.05 

250 0.1801 0.6713 5.4790 0.0646 

500 0.2266 0.6341 5.4109 0.0668 

750 0.2227 0.6370 7.0570 0.0293 

1000 1.9310 0.1647 10.5802 0.0050 

0.01 

250 2.1568 0.1419 6.9983 0.0302 

500 2.5234 0.1122 11.1581 0.0038 

750 2.9478 0.0860 7.9703 0.0186 

1000 3.9415 0.0636 8.5478 0.0139 
Note: RWS stands for rolling window size, and α is the significance level of VaR, (VaRα). UCC: unconditional 

coverage, CC: conditional coverage. 
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Table 3: Summary of accuracy hypothesis rejection 

Back-test 

 

VaR model 

BB UCC CC 

ρ=0.01 ρ=0.05 ρ=0.01 ρ=0.05 ρ=0.01 ρ=0.05 

Cubic smoothing spline 0 0 0 0 1 2 

Parametric normal 4 4 4 4 5 7 

Parametric student’s t 0 2 0 2 3 5 

Plain historical 0 1 0 0 2 6 

Epanechnikov kernel 0 1 0 0 2 4 

Note: BB: binomial back-testing. UCC: unconditional coverage. CC: conditional coverage. In the table header, 

the values 0.01 and 0.05 stand for rejection rate of hypothesis testing, ρ. 

 

5. Conclusion 

In this paper, we have proposed a cubic smoothing spline procedure to approximate 

the empirical distribution of a given series and have applied this approach to 

estimate Value-at-Risk. The approach presented in this paper provides an 

innovative way of estimating PDF and CDF functions without relying on kernels or 

histogram-based methods. The proposed method uses historical data to approximate 

the distribution of the data and calculates the VaR using the density function or 

cumulative function estimation using cubic splines. Conventional approaches of 

estimating Value-at-Risk rely heavily on accurate estimation of the probability 

distribution of returns and that’s why we have used the cubic smoothing splice 

approach to estimate Value-at-Risk. We compared the accuracy of several VaR 

approaches with similar characteristics to that of the proposed method. We have 

used the following models as benchmarks for comparison against the Cubic 

smoothing spline: (1) Parametric normal with unconditional mean and variance, (2) 

Parametric student’s t with unconditional mean and variance, (3) Plain historical 

simulation, and (4) Epanechnikov kernel method. 

I have used three different back-testing methods to test the validity of the proposed 

model. The back-testing methods used in this paper are: binomial, unconditional 

coverage and conditional coverage tests. Also, in order to perform a better 

evaluation of the models, we have used back-tests for different sample sizes and 

VaR significance levels, making a total of eight different cases for each model. The 

proposed model passes binomial test and unconditional coverage test for all eight 

cases under a 5% rejection rate. It fails the conditional coverage test only twice for 

the same rejection rate. Despite failing the conditional coverage test twice, our 

proposed method still outperforms the other competing models in all three tests. If 

we rank the models used in this paper in terms of their performance in back-tests 

across all eight cases, we find that the proposed method performs the best whereas 

the parametric normal model performs the worst amongst the models used in this 



VaR Estimation Using an Interpolated Distribution of Financial Returns Series 73  

paper. Epanechnikov kernel method as well as other kernel methods in general 

(because all kernel methods produce very similar results) show a satisfactory degree 

of accuracy compared to other models and ranks second. 

As discussed earlier in the paper, we have used a very simple version of the cubic 

smoothing splines in order to evaluate the model in its simplest form. One can obtain 

optimal parameter values for the model such as weights and the smoothing 

parameter depending on the data, to improve on our results. 
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