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Abstract 

This paper develops integral equation methods to the pricing problems of 

perpetual Bermudan options. By mathematical derivation, the optimal exercise 

boundary of perpetual Bermudan options can be determined by an integral-form 

nonlinear equation which can be solved by a root-finding algorithm. With the 

computational value of optimal exercise, the price of perpetual Bermudan options 

is written by a Fredholm integral equation. A collocation method is proposed to 

solve the Fredholm integral equation and the price of the options is thus computed. 

Numerical examples are provided to show the reliability of the method, verify the 

validity of replacing the early exercise policies with perpetual American options, 

and explore a simplified computational process using the formulas for perpetual 

American options. 

                                                 

* The work was supported in part by a grant from the “project 985” and “project 211” of   
  Southwestern University of Finance and Economics. 
1 School of Economic Mathematics, Southwestern University of Finance and Economics,  

  Chengdu (Wenjiang), 611130, China, e-mail: mjt@swufe.edu.cn 
2 School of Economic Mathematics, Southwestern University of Finance and Economics,   
  Chengdu (Wenjiang), 611130, China, e-mail: yisonlp@163.com 
 
Article Info: Received : February 24, 2012. Revised : April 5, 2012 
          Published online : June 15, 2012 
 



52                                     Pricing perpetual Bermudan options 

JEL classification numbers: G12, C02 

Keywords: Perpetual Bermudan options, perpetual American options, optimal 

exercise boundary, collocation methods, integral equation methods 

 

 

1 Introduction 

Perpetual American options are American options without expiry date, which 

means that the options can be exercised at any time in the lifetime. Perpetual 

Bermudan options are perpetual American options that can be exercised only on 

the predetermined dates. Perpetual American options and the early exercise 

boundaries have closed-form formulas (see e.g., Wilmott (1998), Kwok (1998) 

and Jiang (2005)). While there are no closed-form formulas for value and early 

exercise boundaries for Perpetual Bermudan options. In the history several papers 

developed numerical methods to price perpetual Bermudan options and determine 

the early exercise policies. Boyarchenko and Levendorski (2002) developed a 

Wiener-Hopf factorization method to price e perpetual Bermudan options. Fatthi 

(2002) proposed iterated integral methods to price perpetual Bermudan options. 

Muroi and Yamada (2006) studied finite difference methods for pricing perpetual 

Bermudan options. Lin and Liang (2007) investigated the binomial tree methods 

for pricing perpetual American and Bermudan options. Lin (2008) formulated 

perpetual Bermudan option pricing as a solution of a periodic Black-Scholes 

partial differential equation and obtained an integral formula for the valuation 

using contraction mapping theorem. Kay et al. (2009) investigated the early 

exercise region of perpetual Bermudan options with two underlying assets using 

iterated integral methods. 

In this paper we propose an integral equation method for pricing perpetual 

Bermudan options. The value of perpetual Bermudan options satisfies a Fredholm 

integral equation with the early exercise boundary as the parameter. The early 
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exercise boundary can be computed by solving an integral form nonlinear 

equation. Since perpetual Bermudan options approach to perpetual American 

options as the exercise time step goes to zero and perpetual American options 

have explicit valuation and closed-form early exercise policies, one may think if it 

is possible to replace the early exercise policies for perpetual Bermudan options 

by those for perpetual American options. We develop collocation methods for 

solving the Fredholm integral equations. We implement the algorithm and provide 

a table to verify the validity of replacement for the early exercise policies and 

investigate a simplified computational process using formulas for perpetual 

American options. 

In the history for integral equation methods for solving American-style 

options, Kim (1990), Huang et al. (1996), Ju (1998), Detemple and Tian (2002) 

have studied the implementations of the integral equation methods for pricing 

American put options. However their approaches for solving the integral equations 

are based on low-order approximations and the numerical quadratures are used to 

evaluate the EEP (Early Exercise Premium) representation of the option price (see 

e.g., Detemple and Tian (2002)). Recently Ma et al. (2010, 2011) developed a 

high-order collocation method for solving the nonstandard integral equations 

satisfied by the early exercise boundary. 

 

 

2  Problem statement 

Assume that the underlying asset price follows a diffusion process 

t
t

t

dS
rdt dW

S
  . 

where r  denotes the interest rate,   volatility, tW  Brownian motion. Let V  

be the value of Bermudan put options and   be the optimal exercise boundary. 

Then the Bermudan put option pricing problem can be formulated by (see [4]) 
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where G  is Black-Scholes European Green’s function 
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K  is the strike price, and T  is Bermudan exercise time-step. Let 

0

0
( ) ( , , ) ( , , )( )V S S T G S T K d


         . 

Then we construct a sequence 1{ ( )}k
kV S  , such that 

       1( ) ( , , ) ( , , ) ( )k kV S S T G S T V d


    
     , 1, 2,....k         (2) 

As derived by Lin (2008), ( )kV S  can be represented as 

         
1
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where the sequence 1{ ( , , )}n
nG S T   satisfies 

1( , , ) ( , , )G S T G S T    .                      (4) 
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    
     , 2,3,....n         (5) 

Lin (2008) also proved that the sequence 0{ ( )}k
kV S   uniformly converges to 

( )V S  on the set S  , i.e., 

       
1
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Taking S   into the above equation and using the second equation in (1), we 

obtain a nonlinear equation for the optimal exercise boundary  : 
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Equation (7) will be solved by a root-finding algorithm – secant method (see Press 

(1992)). Equation (1), which is a Fredholm integral equation with the computed 

 , will be solved by collocation methods (see Brunner (2004)). 

 

 

3 Numerical methods 

We first solve equation (7). Since equation (7) contains an infinite series in the 

integral, we need to truncate it into a finite sum. Denote 

  
1
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M
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   . 

When M  , it is known that MH H . Therefore solution of equation (7) 

can be approximated by solving 

( , , ) ( , , ) ( , , )MK T H T T d


         


      . 

This equation is solved by secant method (a root-finding algorithm, see e.g., Press 

(1992)). 

Denote the numerical solution of equation (7) by  , i.e.,   . Then the 

option value can be obtained by solving 

          
0
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with x    and ( )V K    . A collocation method will be proposed to solve 

equation (8). The method is described as follows. Define a mesh: 

                 { , 0,1, , 1}h iI x ih i N     , 

where h  is predetermined mesh size, N  is the number of mesh points, and 

denote 1: ( , ]n n nx x  . Define a piecewise polynomial space: 

( 1)
1 1{ : , 1, 2, , 1}

nm mV v v n N 
     , 

where 1m   denotes 1m  th order polynomial. Collocation method for solving 



56                                     Pricing perpetual Bermudan options 

(8) is defined by 
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where ( 1)
1h mV V 
  is the computational solution, i.e., 

hV V ,   1{ :  0 1;  0,1,2, , 1}h n i n mx X x c h c c n N          . 

Equation (9) is referred as collocation equation. Now we rewrite collocation 

equation (9) into a matrix form. For ease of exposition and actual computation, we 

take 4m  . Define collocation points 

, 1( )
4i j i i i

j
x x x x   ,  1, 2,3,4j  , 0,1,... 1i N  . 

On the global mesh i , polynomial hV  can be represented by 
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where ( )i
jl x  are the Lagrange basis functions at points ,i jx , 1, 2,3,4j  , i.e., 

,

, ,
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j
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x x
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
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Putting (10) into (9) gives that 
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Taking ,i jx x , 1, 2,3,4j   , 1, 2, , 1i N  , equation (11) can be rewritten 

into the form 

         
1

1 4

, ,
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This can be further simplified by 

 AV = F ,                          (13) 

where 
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4 Numerical examples 

In this section, two examples are implemented using the method in this paper. 

Numerical tests are carried out to investigate the validity of replacing the early 

exercise policy for perpetual Bermudan options by that for perpetual American 

options and explore a simplified computational process using formulas for 

perpetual American options. In the presentation of the numerical results, we use 

the following notations: 

• ( )AV S : Value of perpetual American options at underlying price S ; 

• ( )BV S : Value of perpetual Bermudan options at underlying price S ; 

• ( )BaV S : Value of perpetual Bermudan options with the early exercise policy of 

perpetual American options at underlying price S; 

• A : Early exercise boundary of perpetual American options; 

• B : Early exercise boundary of Perpetual Bermudan options. 

Perpetual American options have the following closed-form formulas (see 
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e.g., Wilmott (1998) and Jiang (2005)) 
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Example 4.1 Consider perpetual Bermudan options with interest rate 10%r  , 

strike price K=100 , exercise time-step T=0.25 , 0.5 ,1,1.5 , volatility =20% .

 Figure 1 shows that fact that perpetual Bermudan options converge to 

perpetual American options as the exercise time-step 0T  . Table 1 

investigates the validity of simplifying the computation of perpetual Bermudan 

options using the formulas for perpetual American options. Since perpetual 

American options have explicit formulas for early exercise boundary and 

valuation, it will be important in practice to investigate if either the computation of 

early exercise boundary or the valuation of perpetual Bermudan options can be 

realized by the formulas for perpetual American options. From Table 1, if the 

early exercise boundary for Bermudan B  is replaced by that for American A , 

then the computation of equations (7) can be avoided and the value function of 

Bermudan ( )BaV S  can be obtained by computing equation (1). In this case and 

=0.25T  (see the 2nd column of Table 1), the value of ( )BaV S  at AS   is 

( ) 15.0758Ba AV   , while the true value of Bermudan at AS   is 

( ) 15.3397B AV   . This means that such a replacement is acceptable. In the other 

case, if the early exercise policy for Bermudan is determined by solving equation 

(7) and the valuation of Bermudan is computed by formula for American (14), 

then the value of Bermudan at BS   by formula (14) is ( ) 12.8394A BV   and 

the true value of Bermudan is ( ) 12.1108B BV    (see the 2nd column of Table 1). 

This indicates that such replacement is also acceptable. However Table 1 tells us 

that it is not acceptable to use all the formulas for American (14) to compute both 

the early exercise boundary and value of Bermudan. 
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Table 1: Numerical results for Example 4.1 

T  0.25 0.5 1 1.5 

A  83.333333333333 83.333333333333 83.333333333333 83.33333333333 

B  87.796918308567 89.409109274514 91.448909175584 92.825417152075 

( )Ba AV   15.0758 13.8163 11.7972 10.2025 

( )B AV   15.3397 14.1936 12.2617 10.6795 

( )B BV   12.1108 10.5660 8.5262 7.1514 

( )A BV   12.8394 11.7230 10.4726 9.7188 

( )A AV   16.6667 16.6667 16.6667 16.6667 
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Figure 1: Value of perpetual Bermudan options for Example 4.1 
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Example 4.2 Consider perpetual Bermudan options with interest rate 1%r  , 

strike price K=100 , exercise time-step T=1 , 5 ,10 , 20 , volatility =20% . 

Compared to Example 4.1, this example considers a significantly lower 

interest rate. From the numerics in the 2nd column of Table 2, the values of 

( ) 66.0095Ba AV   , ( ) 65.6931B AV    and ( ) 66.6667A AV    are close. Hence 

besides the observations made in Example 4.1, it is also concluded that formulas 

for American (14) can be used to compute both early exercise boundary and 

valuation of Bermudan in this example. 

 

Table 2: Numerical results for Example 4.2 

T  1 5 10 20 

A  33.333333333333 33.333333333333 33.333333333333 33.333333333333 

B  37.899230264854 43.167372946224 47.320491107509 53.401831505158 

( )Ba AV 
 

66.0095 63.4754 60.4555 59.8509 

( )B AV 
 

65.6931 62.9028 59.7904 54.1741 

( )B BV 
 

61.3160 55.4275 51.0110 44.7779 

( )A BV 
 

62.5220 58.5828 55.9530 52.6708 

( )A AV 
 

66.6667 66.6667 66.6667 66.6667 
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Figure 2: Value of perpetual Bermudan options for Example 4.2 

 

 

 

5 Conclusion 

In this paper we studied the integral equation methods for valuing perpetual 

Bermudan options, which are significantly different from the iterated integral 

methods developed by Fattahi (2002) and Kay et al. (2009). We developed 

collocation methods to solve the Fredholm integral equations which characterize 

the value of perpetual Bermudan options. By implementing two examples, we 

provided numerical tables to investigate a simplified computational process using 

formulas for perpetual American options and verify the validity of replacing 

Bermudan with American. 
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