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Abstract

The Collatz Conjecture (or 3n+1 problem) has been explored for about 86
years. In this article, we prove the Collatz Conjecture. We will show that
this conjecture holds for all positive integers by applying the Collatz inverse
operation to the numbers that satisfy the rules of the Collatz Conjecture.
Finally, we will prove that there are no positive integers that do not satisfy
this conjecture.
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1 Introduction

The Collatz Conjecture is one of the unsolved problems in mathematics. In-
troduced by German mathematician Lothar Collatz in 1937 [1], it is also
known as the 3n + 1 problem, 3x + 1 mapping, Ulam Conjecture (Stanis-
law Ulam), Kakutani’s problem (Shizuo Kakutani), Thwaites Conjecture (Sir
Bryan Thwaites), Hasse’s algorithm (Helmut Hasse), or Syracuse problem
[2-4].

In this paper, N ={0,1,2,3,4,5,...}, the symbol N represents the natural
numbers. Nt ={1,2,3,4, 5,6,...}, the symbol N represents the positive in-
tegers. Nogq ={1,3,5,7,9, 11,13, ...}, the symbol N,y represents the positive
odd integers.

2 The Conjecture and Related Conversions

Definition 2.1 Let n, k € NT and a function f : NT—N*, Collatz defined the

following map:
2. if n is even
fn) = {2

3n+1, ifnisodd

The Collatz Conjecture states that the orbit formed by iterating the value of
each positive integer in the function f(n) will eventually reach 1. The orbit of
nunder f is n; f(n), f(f(n)), f(f(f(n))),... f¥(n) =1 (k € NT).

In the following sections, we will call these two arithmetic operations (n/2 and
3n + 1), which we apply to any positive integer n according to the rule of
assumption, Collatz operations (CO).

Remark 2.2 According to the definition of the Collatz Conjecture, if the
number we choose at the beginning is an even number, then by continuing
to divide all even numbers by 2, one of the odd numbers is achieved. So it
is sufficient to check whether all odd numbers reach 1 by the Collatz operations.

Therefore, if we prove that it reaches 1 when we apply the Collatz operations
to all the elements of the set Nogq ={1,3,5,7,9,11,13,15,...}, we have proved
it for all positive integers.

Remark 2.3 If the Collatz operations are applied to the numbers 2" (n € NT),
then eventually 1 is reached. If we can convert all the elements of the set N,y
into 2" numbers by applying the Collatz operations, we get the result.
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2.1 Collatz Inverse Operation (CIO)

Let n € NTand a € N,yq ; for a to be converted to 2" by the Collatz operation
(CO), it must satisfy the following equation,

3.a+1=2"
then,
2" —1
= 1
0= 1)
Lemma 2.4 In (1) a = QHT’I, a cannot be an integer if n is a positive odd
integer.

Proof. If n is a positive odd integer, we can take n = 2m + 1 (m € N), then
substituting 2m + 1 for n in (1) we get,

22m+1 -1
e —— 2
a=2" )
if we factor 22"+l 41,
22l 1 = (24 1)(22m —22m b 4 222 — 4 1) = 3.k (k € Nogq).
Since (22™*1 4 1) is a multiple of 3, (22! — 1) is not a multiple of 3. So in
(1) a is not an integer for any number n.

If we substitute 2n for n in (1), we get equation

2% 1
=" (3)

Lemma 2.5 In (3) a = 227;_1, for each number n there is a different positive
odd integer a, (n € NT).

Proof. When we factorize 2?* — 1 for Vn € N7,

(220 — 1) = (29 — 1)(2% + 1)(2%2 + 1)(2%% + 1)....(2%~1 + 1)(2% + 1) or
(22" — 1) = (2%t — 1)(2** + 1) in these equations, z; is a positive odd integer

and x9, x3, T4 ... x, are positive even integers. Since x; is a positive odd
number,
2 +1)=2+ 1 —2m72 420173 — 4+ 1)=23.(...) so,

(220 — 1) =3.(...)

Since each of these numbers has a multiplier of 3, we can find positive odd
integers a for all n, and when we apply Collatz operations to these a numbers,
we always get 1. 22" + 1 is not a multiple of 3, since 22" — 1 is a multiple of 3,
for Vn € N*. In (3), If we replace n with positive integers, we get the set A.
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-

a

A= { 1,5,21,85,341,1365,5461,21845,87381,... } (Collatz Numbers)

If we can generalize the elements of the set A = {1, 5,21, 85,341, 1365, 5461, 21845,
87381, ...} to all positive odd numbers, we have proved the Collatz Conjecture.

2.2 Transformations in the Set A with Infinite Elements

Let the elements of the set A = {1,5,21, 85,341, 1365, 5461, 21845,87381, ...}
be {ao, a1, as, as, ay, as, ag, ar, ...} respectively.

Lemma 2.6 In the set A\{ao}, if a,, =1 (mod 3)

22m g — 1
by = —— (4)

m € NT if we value m from 1 to infinity, we get B,, set with infinite b, ele-
ments (Collatz numbers) from each a,.These numbers satisfy the conjecture.

Proof. If a,=1 (mod 3), we can take a, as 3.p+ 1, (p € N)
a, = 3.p + 1 substituting in (4),

B 22m (3p+1)—1 B 22m3p + 22m — 1 22m — 1

bn :22m
3 3 Pt —3

22m —1 is divisible by 3 (Lemma 2.5). So we get an infinite number of different
b,, elements, which can be converted to a,, i.e. 1, by the Collatz operation. The
numbers b,, are Collatz numbers and are a sequence of the form b, .1 = 4.b,+1.

Example 2.7 Let a; = 85, then ¢;=1 (mod 3),in (4),
B = {113,453,1813, 7253, 29013, 116053, .. .}

Lemma 2.8 In the set A\{ap}, if a, =2 (mod 3),

22m=1 4 1
=y ®)

m € NT, if we value m from 1 to infinity, we get B,, set with infinite b, el-
ements (Collatz numbers) from each a,,. These numbers satisfy the conjecture.
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Proof. If a, =2 (mod 3), we can take a, as 3.p+ 2 (p € N)
a, = 3.p + 2 substituting in (5),
22m=1 (3 2)—1 2?2m713 22m 1 22m 1
— (p+ ) — D + :22m—1p+
3 3 3
2?m —1 is divisible by 3 (Lemma 2.5). So we get an infinite number of different

b,, elements, which can be converted to a,, i.e. 1, by the Collatz operation. The
numbers b,, are Collatz numbers and are a sequence of the form b,,,; = 4.b,,+1.

bn

Example 2.9 Let a; = 5, then a; =2 (mod 3) ;
B ={3, 13, 53, 213, 853, 3413, 13653, 54613, ...}

Lemma 2.10 In the set A\{ao}, if a,, =0 (mod 3),

2".a, —1
b, = ———— 6
: (6)

m € N, there is no such integer b,.
Proof . If a,= 0 (mod 3), we can take a, as 3.p (p € N)

a, = 3.p substituting in (6),

2m3p)—1 2m3p-—-1 1

b 3 3 3

is not integer.

In the following sections, we will call the operations of deriving new Collatz
numbers from Collatz numbers by Equations (3), (4) or (5) as Collatz inverse
operations (CIO).

2.3 Conversion of all Positive Odd Integers to Collatz
Numbers

In the previous sections, when we applied the Collatz operations, we called
the numbers that reached 1 as Collatz numbers. Now let’s see how all positive
integers can be converted to these Collatz numbers.

A= { 1,5,21,85,341,1365,5461,21845,87381 ... } (Collatz Numbers)

If we apply the Collatz inverse operations [Equations (4) or (5)] continuously
to each Collatz number, we get infinitely many new Collatz numbers.
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Noga — Set of A — 2*" — 1 (Direction of conversion of numbers with CO).
Nygq + Set of A <+ 1 (Direction of conversion of numbers with CIO).

All positive numbers are obtained by repeatedly applying the Collatz inverse
operations to each element of the set A and the Collatz numbers generated
from these numbers.

Lemma 2.11 If we apply the Collatz inverse operations (2=%=1) (m € NT)
to the different Collatz numbers, we obtain new Collatz numbers that are all

different from each other.

Proof. Let a; and as be arbitrary Collatz numbers and a; # as, when we
apply the Collatz inverse operations to each of them, the resulting numbers
are by and by. If by = by then,

b = 2m§1_1 = Qt'“?f_l = by then 2™.a; = 2'.a, for odd positive integers (ay
and ay), must be a; = ap and m = t (contradiction), so if a; # ay then by # bs.

Corollary 2.12 In set theory, the cardinality of a set S represents the number
of elements in the set, and is denoted by |S|. The aleph numbers (X) indicate
the cardinality (size) of well-ordered infinite element sets. N is the notation
for the cardinality of the set of natural numbers, the next larger cardinality
is Ny, then Ny and so on. The cardinality of a set is Ny if and only if there
is a one-to-one correspondence (bijection) between all elements of the set and
all natural numbers. Since there is a one-to-one correspondence between the
infinite sets in Figure 1 and the set of natural numbers, the cardinality of each
set is Ny [6].

The cardinality of the continuum is 2% = X;. The order and operations be-
tween the cardinality of the sets are as follows: |N|=X(, R;= cardinality of the
"smallest” uncountably infinite sets;

N0<N1<N2<. ..

Ro+Ro+Ro+. .. = Ro.Re=Ry

No.No.NQZNO

Ng.Rg.Rg. .. Ro.Rg = NE = Ny (k is a finite positive integer)
Ro.Ro.Rg. .. = N

The elements of the set A (Lemma 2.5) are the Collatz numbers. We get new
Collatz numbers by applying Collatz inverse operations [Equations (4) or (5)]
to each element of this set A. From these new infinite Collatz numbers, in-
finitely many new Collatz numbers are formed by applying the Collatz inverse
operations (CIO) again and again, and this goes on endlessly.

As a result, Collatz numbers fill the Hilbert’s Hotel (David Hilbert) until there
is no empty room left. The Hilbert Hotel is a thought experiment that has a
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countable infinity of rooms with room numbers 1, 2, 3, etc., and demonstrates
the properties of infinite sets. In this hotel with an infinite number of guests,
an infinite number of new guests (even finite layers of infinite) can be accom-
modated, provided that only one guest stays in each room [5]. When we fill
the odd-numbered rooms of the Hilbert Hotel with Collatz numbers, we also
fill the entire hotel with Collatz numbers. Let n € N* and x,y € N 44, and let
the odd-numbered rooms of the Hilbert Hotel be 1, 3, 5, 7, ..., i.e. elements
of the set Nygs. The result of the Collatz inverse operation is the following

equation,
2" x —1
. 7
3 y (7)

In Equation (7), n depends on the values of z. If z = 1 (mod 3) we replace
n with all even numbers n ={2,4,6,8,...}, and if x = 2 (mod 3) we replace n
with all odd numbers n ={1,3,5,7,...} respectively (Lemma 2.6 and Lemma
2.8). In (7) we obtain an infinite number of y values as Collatz numbers
starting from z = 1 (Lemma 2.5). Then, by substituting y values for z in
(7), we obtain the Collatz number sets with infinite elements for each y that
is not a multiple of 3. [Although we cannot replace  with numbers that are
multiples of 3, we get infinite numbers that are multiples of 3 in each Collatz
number sets (Figure 1). Because, the numbers in each set give the remainder
of 0,1,2 respectively according to (mod 3), as in the Nygq set]. If the same
process is repeated and the generated numbers are placed according to the
room numbers, there will be no empty rooms left in the Hilbert Hotel. This
is because infinite layers of disjoint Collatz number sets? are formed without
limit by Equation (7), and these sets fill all odd-numbered rooms, i.e. all
positive odd integers are obtained (Figure 1). By multiplying these numbers
by 2™ (m € N*1), we find that all even numbers are Collatz numbers (Remark
2.2). Therefore, Collatz numbers fill the Hilbert Hotel and the set of Collatz
numbers is equal to the set N*. Starting with = 1 in (7) and continuing the
process to infinity, infinite layers of disjoint Collatz number sets are obtained

(Figure 1).
{1}
Yo =1*=[{1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, ...}] |Y,| =1
Y= %= [5*: (3,13,53,... } 85%={113,453,1813,...} 341%¥={227,909,3637,...}
5461%={7281,20125,116501,...} ... } Y1) = Ry

Vo= 1%= [5*:{13*:{17,69,. .} 53*={35,141,...}...} 85%= { 113*={75,301. ..
1813%={2417,9669...} ... } ... ] Yol = RoRo+ N ... =Ro.Rp= N2

2Collatz number sets are countably infinite element subsets of the set of positive odd
integers.
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Yy= 1¥= [5*:{ 13%= {17*={1145,...} ...} 53*= {35*={23,93,...} ...}
L)} 85*={113*={301*={401,1605, ... }...} 1813*={2417*={1611,6445,... }...}
e ] 13| = Ro.Ro.Ro= N

|Y’ - NO.N().NO B ng<w (k c N) 3

The set of disjoint Collatz number sets:
Y= [{1,5,21,. - H3,13,53,. .. } {113,453,1813,. .. }{227,909,3637,. .. } {7281,29125,

116501,... } {17,69,277,...} {35,141,565,... } ... | |Y| =Ro.Rg.Rg ... = RE<¥

Figure 1: Collatz number sets. | | represents the cardinality of the set of
Collatz number sets, and * represents conversions of numbers that are not
multiples of 3 using Equation (7).

In Figure 1, the infinite layers of Collatz number sets continue to form without
restriction until they fill Hilbert’s hotel. The restriction occurs only when the
hotel is completely filled, that is, when all positive odd numbers are obtained.
Imagine buses arriving at Hilbert’s Hotel, each carrying an infinite number of
passengers. The buses represent disjoint sets, and the passengers represent the
elements of these sets. The following buses eventually fill Hilbert’s Hotel.

e Yo =1{1,5,21,85,341,...} (0.layer: infinite people, card. of buses: 1)
e Y; =8, (1. layer: cardinality of buses: ¥ )

- {(5,3),(5,13),(5,53),...,
(85,113), (85,453), .. .,
(341, 227), (341,909), . ..
...} (infinite buses each with infinite people)
e Yy, =N;-8g (2. layer: cardinality of buses: Rg.Ng= N2)

~ {(5,13,17), (5,13,69), . ..,
(85,113, 75), (85, 113,301), . ..
: }  (infinite ferries, each containing infinite buses, infinite
people on each bus)

o Y3 =N -R-8g (3. layer: cardinality of buses:Rg.Rg.Ro= N3 )

— {(5,13,17,11),(5,13,17,45), .. .,
(85,113,301,401), (85,113,301, 1605), . ..
} (infinite oceans with infinite ferries on each, infinite buses
on each ferry, infinite people on each bus)

3w is the ordinal number and represents the first infinite ordinal. The ordinal number w

is the smallest element greater than any natural number.



Proof of the Collatz Conjecture 9

e Y =Ng.Ng.Ng ... = X< (k.layer:card. of buses: No.Rg.Ng... = RE<«)

Since there are different people on the buses, the buses represent disjoint Col-
latz number sets. As we move from each layer to the next layer as the number
of layers increases, the cardinality of the set of disjoint Collatz number sets
increases by a factor of Ny, s0 Ng.Ng.Ng... = NE< (k € N) is the cardinality
of the set of all disjoint Collatz sets.

Where k£ € N and k£ < w, i.e., k can be any natural number. w is the ordinal
number and represents the first infinite ordinal. The ordinal number w is the
smallest element greater than any natural number. Each disjoint Collatz set
forming the layers forms a sequence like the set Y, such that a, =4 -a,_1 +
1. The elements of these sequences form a loop with the remainders 0, 1, 2
according to (mod 3). New sets, i.e. new layers, are formed from the elements
with the remainders 1 and 2 according to (mod 3). We saw above that there
are 0. 1. and 2. layers. Therefore, if there is an n-th layer, there is also an
(n+1)th layer. Since all layers are generated inductively, all natural number
layers can be generated up to the first infinite ordinal number, w, i.e.

0.1.2.3.4. ... k.<w (k€eN)

Since the elements of the disjoint Collatz sets are positive odd numbers, layers
can be constructed corresponding to the number of elements in the N,y set.
As the layers (k) are determined by induction, it does not matter whether k
is defined as a natural number or a positive odd integer; the number of layers
is the same regardless of the set used in the inductive definition. The same
number of layers are indexed differently.* The room numbers at the Hilbert
hotel are 1. 3. 5.... k. < w (k € Nygy). Since RF<¥ is the cardinality of the
set of disjoint Collatz sets, from the union of these disjoint sets we get the
set of positive odd integers with cardinality N§+2<w. k + 2 is the first number
after k in the ordered set of positive odd integers, and since k42 < w as many
numbers are generated as there are elements in the set of positive odd integers.
The cardinality X< means that a disjoint Collatz set of cardinality X, can
be created for each room in the hotel. Thus, the cardinality RE<%, (k € Nyqq)
contains all layers, all disjoint sets and all numbers that can be contained in
the set of positive odd numbers. In this way, the Hilbert hotel is filled by
creating countably infinite layers (layers can be generated as many as there
are rooms in the hotel). This means that as many guests are sent as there are
rooms in the hotel, i.e. one guest for each available room.

4Since Collatz number sets are positive odd numbers, k obtained by induction can be
defined as a positive odd number. The value k defined for natural numbers is found by
induction in the same way for positive odd integers. Thus, layers can be defined as positive
odd numbers: 1. 3. 5.... k. < w (k € Nygq)
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In Figure 1, sets of disjoint Collatz sets represent the layers. The numbers in
the layers form the sets in the upper layers with CIO, while the sets in the
upper layers become the numbers in the lower layers with CO.

CIO—
1+ YO Y: Y, Yg. .. -Yk<w
+~CO

Yo = [{1,5,21,85,341,1365,5461,...}] |Yo|=1 (0. layer)

Y, = [5* = {3,13,53,...},85" = {113,453,1813, ...}, 341* = {227,909, 3637, ...},
5461* = {7281,29125,116501,...},...]  [Yi| =N, (1. layer)

Y, = [p* = {13* = {17,69,...},53* = {35,141,...},...} 85" = {113* =
{75,301, ...},1813" = {2417,9669,... },... },...] [Yo| =RZ (2. layer)

Yy =[5 = {13 = {17" = {11,45,... },...} 53* ={35"=1{23,93,...},...},...}
85* = {113* = {301 = {401,1605,...},...},1813* = {2417* = {1611,6445,...},...},
o] Y =3 (3. layer)

Vel =85 (ke N)

The reason that the number of layers can be defined as k < w, k € N is that
since the set of positive odd integers is bounded from below, the initial layers
are available and the other layers are obtained as in the inductive method with
Equation 7.

2" . x —1 3-x+1

CIO = T and CO = 2—n (I € Nodd)
CIO—
Layers: 0.1.2.3.4.5.6....k.<w (k€eN)
+~CO

Collatz inverse operations (CIO) create sets in the next higher layer from
numbers in the lower layer. Collatz operations (Collatz function) convert the
sets in the upper layer to the numbers in the previous lower layer. In other
words, with the Collatz function, the sets (numbers in sets) in each layer
are transformed to the previous layer and then to other layers and finally
to layer 0 (set Yy) and reach 1. Therefore, the sequences of positive odd
integers generated by the Collatz function have no initial term and, like the
set of positive odd integers, are unbounded from above and bounded by 1 from
below. Thus, the positive odd numbers in the k-th layer are transformed by
the Collatz function into the numbers in the previous (k—1)th layer and so on,
until they finally become an element of the set Yy (0-th layer) and then become
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1. All sequences of positive odd numbers generated by the Collatz function
(CO) behave similarly. Every number that is a multiple of 3 in the sets in
the layers is connected (transformed) to an element of these sequences and
follows the same path as the sequence. Any number that is a multiple of 3 is
transformed into the number in the previous layer in the same way as the entire
set of which it is an element. Therefore, all sequences of positive odd integers
generated by the Collatz function are convergent, i.e., the smallest element of
the set of positive odd integers converges to 1. In the next section, we will see
that there is no divergent sequence generated by the Collatz function. Let’s
take a number from the 3rd layer, say 11, and the sequence obtained from this
number with the Collatz function is as follows, where the parentheses indicate
the number of layers.

CO —
11(3,) — 17(2.) — 13(1.) — 5(0,) —1

The starting number of this sequence is not 11(3) in layer 3, the starting
numbers of all sequences are the numbers in the k-th layer generated with
CIO, i.e. positive odd integers in the k-th layer k¥ < w,( k € N). When
the Collatz inverse operations (CIO) are applied to the numbers forming the
sequences, they are sequentially transformed into the numbers of the next
higher layer. In this way, divergent sequences are formed with CIO.

CO —
9(5,) — 7(4,) — 11(3.) — 17(2.) — 13(1) — 5(0.) —1

When a number in the sequence that is a multiple of 3, such as 9(s), is reached,
it can be continued with a number that is not a multiple of 3 from the set {
9, 37, 149, 597, 2389, ... } generated by 7(4) using CIO, e.g. 37. All numbers
in this set are converted to 7 with CO and reach 1 by the same path in
the sequence. Continuing with 37, if a multiple of 3 occurs again, the same
procedure is repeated and the first term of the sequence becomes a number in
the k-th layer. This is true for all sequences generated by the Collatz function.

CO —
el 65(7,) — 49(6.) — 37(5.) — 7(4,) — 11(3.) — 17(2,) — 13(1,) — 5(0,) —1

375,

c.— 650y — 496 — (
(7)) (6.) 95,

— 7(4_) — 11(3.) — 17(2_) — 13(1.) — 5(0.) —1

Since the sequences generated by the Collatz inverse function are divergent, all
sequences generated by the Collatz function have no initial terms; they have as
many elements as the number of layers, i.e., k < w, (k € N). All sequences of
positive odd numbers generated by the Collatz function reach 1 starting from
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the numbers in the k-th layer, so all sequences are convergent.

As can be seen in Figure 1, the cardinality of the set of disjoint sets gener-
ated by the CIO from a number that is not a multiple of 3 at any layer is
Ng - Ng - Ng---. To define this expression, it is necessary to have an initial N.
This is possible only if the sequences generated by the Collatz function are
convergent. For example, the cardinality of the set of disjoint sets generated
by the CIO from 11 in layer 3 is as follows. As the number of layers increases,
the cardinality of the sets increases by a factor of Xy (Figure 1).

|11Y’:N0'N0‘N0...

17Y] = 3y - 11Y]
9] =y - 17Y]
Y] =R, - Y]
Y] =R - Y] = Ro-Rg - Rg--- = RES® (k€ N)

The elements of each Collatz number set in Figure 1, obtained by transform-
ing each Collatz number, form a sequence such that each term is 4 times the
previous term plus 1. Thus, the elements of each Collatz number set form a
loop with remainders 0,1,2 according to (mod 3). New Collatz number sets
are generated continuously to infinity from numbers with remainders 1 and 2
according to (mod 3). Therefore, N, N}, N2 exist (Figure 1), and for Vn € NT,
if N exists, then Ri*! also exists. Thus, the cardinality of the set of disjoint
Collatz number sets in Figure 1 is Rg.Rg.Rg... = NE<* (k€ N). Since all
elements of the Collatz number sets form a cycle with the remainders 0,1,2
with respect to (mod 3), all positive odd numbers that are multiples of 3 are
obtained from the remainders 0 according to (mod 3).

The elements of the Collatz number sets obtained by Equation 7 form a se-
quence in which each term is 1 more than 4 times the previous term. The
same method is used to cover the set of positive odd integers. From each odd
integer in the N,44 set, sets are formed such that the next term is 1 more than
4 times the previous term.

p= {1,5,21,85,...}
po= {3,13,53,213,...}
{5,21,85,341,.. .}
ps= {7,29,117,469,...}
pa= {9,37,149,597,..}



Proof of the Collatz Conjecture 13

The union of sets that are disjoint from sets of the form is equal to the set of
positive odd integers | J;°, pi = Noaa. Since other sets are subsets of disjoint
sets, they can be ignored.

Noaa =[{1,5,21,85,... }{3,13,53,213,... }{7,29,117,469,. .. }{9,37,149,597,. .. }
{11,45,181,725,... } ... ]

The union of disjoint Collatz number sets obtained in Figure 1 is equal to the
set Nogq. This is because the cardinality of the set of disjoint Collatz number

sets, by the inductive method described above, it was shown in Figure 1 that
N9, N, N2 exist and Vk € NT, if R exists, then Ri*! also exists.

Set of disjoint Collatz Number Sets (Figure 1):
Y= [ {1,5,21,...}{3,13,53,... }{113,453,1813,... } {227,909,3637,...} {7281,
20125, 116501,... } {17, 69, 277,...} {35, 141, 565,...} ... ]

The set Y is equal to the set Nyygg. The sets Y and N,4q are composed of
the same disjoint sets and are equal in number, i.e., they are equal sets. The
number of disjoint Collatz sets cannot be less than the number of sets in the
set Nogq because, as shown by induction, set formation is continuous, and the
number of sets cannot be greater because the Collatz numbers are elements of
the set Nygq.

The cardinality of the set of disjoint sets in the N4, set is Rg. It was found that
the cardinality of the set of disjoint Collatz number sets is Rg.Rg.Rg. .. = RE<
(k € Nygq) (Figure 1). Y is the set of all disjoint Collatz sets and N,q4 is the
set of all disjoint sets.

Ro - Ro Ry =R =8y and k€ Nygg = Y 2 Nygq

Thus the set of Collatz numbers certainly covers its universal set N,4q, but
cannot exceed it, since the positive odd integer k£ obtained by induction cannot
be equal to w and Collatz numbers are positive odd numbers. The cardinality
NE<“ (k€ N,qq) means that as many disjoint Collatz sets can be generated as
there are disjoint sets in the set Nodd. This is because k < w means that as
many disjoint Collatz sets can be generated as there are positive odd numbers.
> The Collatz number set covers the N,g4q set, and since the N,4q set covers
the Collatz number set, they are equal. Thus, we find that the set of Collatz
numbers is equal to the set N* (Remark 2.2), and and we prove the Collatz
Conjecture for the set N*.

5The expression Rf<“ (k € N,q4), the cardinality of the set of disjoint Collatz number
sets, implies that as many as k disjoint sets can be generated, and since k can be all positive
odd numbers, it covers all disjoint sets that can exist in the set N,4q generated by the given
rule.
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3 The Absence of any Positive Integer other
than Collatz Numbers

In this section, we prove that there are no positive integers that do not satisfy
the conjecture.

Let s; be a number that is not a Collatz number and (s; € N,44), then when
Collatz operations are applied to s7, until odd numbers are found.

3.51 +1
n

S1— D)

, Sg —> 83 —>8S4 —+> S5 —> Sg —»S7 —> S8 —»S9g — S10 .-

S= {s1, S2, 3, S4, S5, S¢, S7, S8, S9, S10, - - -} and the elements of the set S are not
Collatz numbers (s, € Nygq).

Lemma 3.1 The elements of the set S do not any loop.
Proof. Suppose such a loop exists.

S1—> S92 —» S3—> S4 — S5 —> S¢ —> S7 — S8 — S9—rS10

T {
o] 511 L CO
T !
Sy S e — ... — <— S13 < S12
Figure 4

For such a loop to be exist in positive odd integers (Figure 4), all the el-
ements of the loop must be equal, because the infinite set of numbers ob-
tained by applying the CIO to each element of the loop is the same, that
iS, {81, S11, 512, ... S2, 521,522, ... 83,531,S531,-.- Sn, Snl,Sn2,y - - } In the positive
odd integers, only the number 1 can form a loop with itself, so all elements of
the loop are 1.

Lets take s; in the loop, s; 2 0 (mod 3) and ( n,m € N* ), then if s;—¢10 =
81%00,

Lozl — 3atl gndm g — 2™ =951 + 3, §1 = goros
s1 cannot be any positive odd integer other than 1 in this equation. Therefore,
there is no loop other than 1 in the sequences of positive odd integers formed
by Collatz operations.

For any positive odd number (s1) that is not a Collatz number to exist, at
least one of the following conditions must be satisfied.
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I. When Collatz operations (CO) are applied to s;, there must be a loop other
than 1.

II. When Collatz operations (CO) are applied to s, the resulting sequence
must be divergent.

It has been shown that case I does not exist, i.e. there are no loops other than
1. Now let us consider case II. If CO is applied to s1, the resulting sequence of
positive odd numbers S= {s, $o, S3, S4, S5, S¢, S7, S8, S9, S10, - - - }. As shown in
Figure 1, applying continuous Collatz inverse operations (CIO) to the element
s1 of the set S (s instead of s if s is a multiple of 3) yields infinite layers of
sets without Collatz numbers.

{s1}

150 = [ 51 ={811, 512, 513, 514, S15, 516, 517, S18- - - | ] °1Sg| =1
15 = [ST:{Sflz{Sln, 8112, S113- - - | 819=15121, 5122, $123- - - } S13=15131, 5132, S133- - - }
Yy ] 18] = Ry
15y = [ST12{3T112{81111, 81112, S1113- - - } $119= 151121, 51122, 51123 - - }+ -+ } S13=18701=

{81211, 51212, S1213- - - } ST22={=5‘1221, 51222, 51223- - - } .- } e |SIS2| =Ny +

Ny + Ro ... = Ng.Rg
18] = Ro.Rg.Ny . ..

The set of disjoint sets that are not Collatz number sets formed by s;:

1 5= {8117 512, 513,- - - } {8111, 5112, $1135- - - }{8121, 5122, 5123, - - } {8131, 5132, 51335« - - }

{51111, S11125- - - } {51121; 51122, - - } cee |Sls‘ = Np.No.Np ...

Figure 5: Sets that are not Collatz number sets.| | represents cardinality of
the set of sets, and * represents conversions of numbers that are not multiples
of 3 using Equation (7).

The elements of each set in Figure 5, obtained by converting each number that
is not a Collatz number, form a sequence such that the next term is 4 times
the previous term plus 1. Thus, the elements of each set form a loop with
remainders 0,1,2 according to (mod 3). New sets are formed continuously to
infinity from numbers with remainders 1 and 2 according to (mod 3). There-
fore, the cardinality of the set of disjoint sets that are not Collatz number sets
formed by s; in Figure 5 is |1S| = Ng.R. Ny . ..

When Collatz operations (CO) are applied to s;, the resulting sequence of
positive odd integers is,

S1—>82—>83—>84—>S5 —>S¢ —>S7—>S83—~>S9 —+S10-.--
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Each term of the sequences generated by Collatz operations (CO) represents
different layers, as seen in Corollary 2.12. Therefore, when the layers change
in this way from s; to sy or from s, to s3 and so on, the cardinality of the
resulting disjoint sets increases by a factor of Ny respectively:

25| = Vg - 1S
35| = Vg - |*S[ = Ng - Ry - [*'S]
|54S| =Ny Ng - Ny - |518|

:NONONO|518’:NQN0N0:|S|

This result implies that the cardinality of the set of disjoint sets cannot be de-
fined as Nj=“ (n € N). The cardinality of the set of disjoint sets formed by the
set Sis ... N N R0T2 - (n € N). The set of natural numbers is a bounded
set from below, so an unbounded set of the form {...,n,n+1,n+2,...} cannot
be generated in the set of natural numbers. Therefore, positive odd number
sequences generated by the Collatz function (CO) cannot be divergent, they
must be convergent. If we apply Collatz operations (CO) to any positive odd
integer, the resulting sequence is convergent. This is because the set of positive
odd integers is a bounded set from below.

As shown in Corollary 2.12, when the Collatz function (CO) is applied to
any positive odd integer, the resulting sequence has no initial term, since all
sequences can be extended to divergent sequences by applying Collatz inverse
operations (CIO). For example, let s; be a positive odd integer. If s; is not a
multiple of 3 (if s; is a multiple of 3, start with s, instead of s;), a divergent
sequence is constructed from s; by the Collatz inverse operations (CIO), i.e.,
from s; to sq1, from s17 to s111, ete. (if s11 is a multiple of 3, replace by s19, if
s111 is a multiple of 3, replace by $112, etc.). When the Collatz function (CO)
is applied to si, the result is sq, s9, 53, 54, . . .

(+ CIO)
-+ -, 811111, S1111, S111, S11, S1, 52, 83, S4, S5, - - -

(CO —)
If the sequence of positive odd integers obtained with the Collatz function
(CO) is first a convergent sequence, i.e. {...,S11111, 1111, S111, S11, S1}, then
the same sequence {si, sa, S3, S4, S5, ...} cannot be divergent. A sequence of
positive odd integers generated by the same function (same rule) cannot form
two different states (both convergent and divergent). Thus, if the Collatz
operations are applied to any positive odd integer, the resulting sequence must
be convergent, and it converges to 1. Therefore, there cannot be any positive
odd integer that is not a Collatz number; all positive odd integers are Collatz
numbers. All positive integers are also Collatz numbers (Remark 2.2).
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4 Conclusion

The Collatz Conjecture was proved using the Collatz inverse operation method.
It was shown that all positive integers reach 1 as stated in the Collatz Con-
jecture. With the methods described in this study for 3n + 1, it can be found
whether numbers such as bn + 1, Tn + 1, 9n + 1, ... also reach 1.
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