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Abstract

The Collatz conjecture (or 3n+1 problem) has been explored for about 86
years. In this article, we prove the Collatz conjecture. We will show that
this conjecture holds for all positive integers by applying the Collatz inverse
operation to the numbers that satisfy the rules of the Collatz conjecture. Fi-
nally, we will prove that there are no positive integers that do not satisfy this
conjecture.
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1 Introduction

The Collatz conjecture is one of the unsolved problems in mathematics. In-
troduced by German mathematician Lothar Collatz in 1937 [1], it is also
known as the 3n + 1 problem, 3x + 1 mapping, Ulam conjecture (Stanislaw
Ulam), Kakutani’s problem (Shizuo Kakutani), Thwaites conjecture (Sir Bryan
Thwaites), Hasse’s algorithm (Helmut Hasse), or Syracuse problem [2–4].

In this paper, N ={0, 1, 2, 3, 4, 5, . . .}, the symbol N represents the natural
numbers. N+ ={1, 2, 3, 4, 5, 6, . . .}, the symbol N+ represents the positive in-
tegers. Nodd ={1, 3, 5, 7, 9, 11, 13, . . .}, the symbol Nodd represents the positive
odd integers.

2 The Conjecture and Related Conversions

Definition 2.1 Let n, k ∈ N+ and a function f : N+→N+, Collatz defined the
following map:

f(n) =

{
n
2
, if n is even

3n+ 1, if n is odd

The Collatz conjecture states that the orbit formed by iterating the value of
each positive integer in the function f(n) will eventually reach 1. The orbit of
n under f is n; f(n), f(f(n)), f(f(f(n))), . . . fk(n) = 1 (k ∈ N+).

In the following sections, we will call these two arithmetic operations (n/2 and
3n + 1), which we apply to any positive integer n according to the rule of
assumption, Collatz operations (CO).

Remark 2.2 According to the definition of the Collatz conjecture, if the num-
ber we choose at the beginning is an even number, then by continuing to divide
all even numbers by 2, one of the odd numbers is achieved. So it is sufficient
to check whether all odd numbers reach 1 by the Collatz operations.

Therefore, if we prove that it reaches 1 when we apply the Collatz operations
to all the elements of the set Nodd ={1, 3, 5, 7, 9, 11, 13, 15, . . .}, we have proved
it for all positive integers.

Remark 2.3 If the Collatz operations are applied to the numbers 2n (n ∈ N+),
then eventually 1 is reached. If we can convert all the elements of the set Nodd

into 2n numbers by applying the Collatz operations, we get the result.
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2.1 Collatz Inverse Operation (CIO)

Let n ∈ N+and a ∈ Nodd ; for a to be converted to 2n by the Collatz operation
(CO), it must satisfy the following equation,

3.a+ 1 = 2n

then,

a =
2n − 1

3
(1)

Lemma 2.4 In (1) a = 2n−1
3

, a cannot be an integer if n is a positive odd
integer.

Proof. If n is a positive odd integer, we can take n = 2m + 1 (m ∈ N), then
substituting 2m+ 1 for n in (1) we get,

a =
22m+1 − 1

3
(2)

if we factor 22m+1 + 1,

22m+1 + 1 = (2 + 1)(22m − 22m−1 + 22m−2 − . . .+ 1) = 3.k (k ∈ Nodd).

Since (22m+1 + 1) is a multiple of 3, (22m+1 − 1) is not a multiple of 3. So in
(1) a is not an integer for any number n.

If we substitute 2n for n in (1), we get equation

a =
22n − 1

3
(3)

Lemma 2.5 In (3) a = 22n−1
3

, for each number n there is a different positive
odd integer a, (n ∈ N+).

Proof. When we factorize 22n − 1 for ∀n ∈ N+,

(22n − 1) = (2x1 − 1)(2x1 + 1)(2x2 + 1)(2x3 + 1). . ..(2xn−1 + 1)(2xn + 1) or

(22n − 1) = (2x1 − 1)(2x1 + 1) in these equations, x1 is a positive odd integer
and x2, x3, x4 . . . xn are positive even integers. Since x1 is a positive odd
number,

(2x1 + 1) = (2 + 1)(2x1−1 − 2x1−2 + 2x1−3 − . . .+ 1) = 3.(. . .) so,

(22n − 1) = 3.(. . .)

Since each of these numbers has a multiplier of 3, we can find positive odd
integers a for all n, and when we apply Collatz operations to these a numbers,
we always get 1. 22n + 1 is not a multiple of 3, since 22n− 1 is a multiple of 3,
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for ∀n ∈ N+. In (3), If we replace n with positive integers, we get the set A.

a =
22n − 1

3
;

A= { 1,5,21,85,341,1365,5461,21845,87381,. . . } (Collatz Numbers)

If we can generalize the elements of the setA = {1, 5, 21, 85, 341, 1365, 5461, 21845,
87381, . . .} to all positive odd numbers, we have proved the Collatz conjecture.

2.2 Transformations in the Set A with Infinite Elements

Let the elements of the set A = {1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, . . .}
be {a0, a1, a2, a3, a4, a5, a6, a7, . . .} respectively.

Lemma 2.6 In the set A\{a0}, if an ≡ 1 (mod 3)

bn =
22m.an − 1

3
(4)

m ∈ N+, if we value m from 1 to infinity, we get Bn set with infinite bn ele-
ments (Collatz numbers) from each an.These numbers satisfy the conjecture.

Proof. If an≡1 (mod 3), we can take an as 3.p+ 1, (p ∈ N)
an = 3.p+ 1 substituting in (4),

bn =
22m.(3.p+ 1)− 1

3
=

22m3p+ 22m − 1

3
= 22mp+

22m − 1

3

22m−1 is divisible by 3 (Lemma 2.5). So we get an infinite number of different
bn elements, which can be converted to an, i.e. 1, by the Collatz operation. The
numbers bn are Collatz numbers and are a sequence of the form bn+1 = 4.bn+1.

Example 2.7 Let a1 = 85, then a1≡1 (mod 3),in (4),

B = {113, 453, 1813, 7253, 29013, 116053, . . .}

Lemma 2.8 In the set A\{a0}, if an ≡2 (mod 3),

bn =
22m−1.an − 1

3
(5)

m ∈ N+, if we value m from 1 to infinity, we get Bn set with infinite bn elements
(Collatz numbers) from each an. These numbers satisfy the conjecture.
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Proof. If an ≡2 (mod 3), we can take an as 3.p+ 2 (p ∈ N)
an = 3.p+ 2 substituting in (5),

bn =
22m−1.(3p+ 2)− 1

3
=

22m−1.3p+ 22m − 1

3
= 22m−1p+

22m − 1

3

22m−1 is divisible by 3 (Lemma 2.5). So we get an infinite number of different
bn elements, which can be converted to an, i.e. 1, by the Collatz operation. The
numbers bn are Collatz numbers and are a sequence of the form bn+1 = 4.bn+1.

Example 2.9 Let a1 = 5, then a1 ≡ 2 (mod 3) ;

B = {3, 13, 53, 213, 853, 3413, 13653, 54613, . . .}

Lemma 2.10 In the set A\{a0}, if an ≡0 (mod 3),

bn =
2m.an − 1

3
(6)

m ∈ N+, there is no such integer bn.

Proof . If an≡ 0 (mod 3), we can take an as 3.p (p ∈ N)

an = 3.p substituting in (6),

bn =
2m(3.p)− 1

3
=

2m3.p− 1

3
= 2m.p− 1

3
,

is not integer.

In the following sections, we will call the operations of deriving new Collatz
numbers from Collatz numbers by equations (3), (4) or (5) as Collatz inverse
operations (CIO).

2.3 Conversion of all Positive Odd Integers to Collatz
Numbers

In the previous sections, when we applied the Collatz operations, we called
the numbers that reached 1 as Collatz numbers. Now let’s see how all positive
integers can be converted to these Collatz numbers.

A= { 1,5,21,85,341,1365,5461,21845,87381 . . . } (Collatz Numbers)

If we apply the Collatz inverse operations [equations (4) or (5)] continuously
to each Collatz number, we get infinitely many new Collatz numbers.
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Nodd → Set of A → 22n → 1 (Direction of conversion of numbers with CO).

Nodd ← Set of A ← 1 (Direction of conversion of numbers with CIO).

All positive numbers are obtained by repeatedly applying the Collatz inverse
operations to each element of the set A and the Collatz numbers generated
from these numbers.

Lemma 2.11 If we apply the Collatz inverse operations (2
m.an−1

3
) (m ∈ N+)

to the different Collatz numbers, we obtain new Collatz numbers that are all
different from each other.

Proof. Let a1 and a2 be arbitrary Collatz numbers and a1 ̸= a2, when we
apply the Collatz inverse operations to each of them, the resulting numbers
are b1 and b2. If b1 = b2 then,

b1 =
2m.a1−1

3
= 2t.a2−1

3
= b2 then 2m.a1 = 2t.a2 for odd positive integers (a1

and a2), must be a1 = a2 and m = t (contradiction), so if a1 ̸= a2 then b1 ̸= b2.

Corollary 2.12 In set theory, the cardinality of a set S represents the number
of elements in the set, and is denoted by |S|. The aleph numbers (ℵ) indicate
the cardinality (size) of well-ordered infinite element sets. ℵ0 is the notation
for the cardinality of the set of natural numbers, the next larger cardinality
is ℵ1, then ℵ2 and so on. The cardinality of a set is ℵ0 if and only if there
is a one-to-one correspondence (bijection) between all elements of the set and
all natural numbers. Since there is a one-to-one correspondence between the
infinite sets in Figure 1 and the set of natural numbers, the cardinality of each
set is ℵ0 [6].

The cardinality of the continuum is 2ℵ0 = ℵ1. The order and operations be-
tween the cardinality of the sets are as follows: |N|=ℵ0, ℵ1= cardinality of the
”smallest” uncountably infinite sets;

ℵ0<ℵ1<ℵ2<. . .

ℵ0+ℵ0+ℵ0+. . . = ℵ0.ℵ0=ℵ0
ℵ0.ℵ0.ℵ0=ℵ0
ℵ0.ℵ0.ℵ0. . . ℵ0.ℵ0 = ℵk0 = ℵ0 (k is a finite positive integer)

ℵ0.ℵ0.ℵ0. . . = ℵℵ0
0

The elements of the set A (Lemma 2.5) are the Collatz numbers. We get new
Collatz numbers by applying Collatz inverse operations [equation (4) or (5)] to
each element of this set A. From these new infinite Collatz numbers, infinitely
many new Collatz numbers are formed by applying the Collatz inverse opera-
tions (CIO) again and again, and this goes on endlessly.
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As a result, Collatz numbers fill the Hilbert’s Hotel (David Hilbert) until there
is no empty room left. The Hilbert Hotel is a thought experiment that has a
countable infinity of rooms with room numbers 1, 2, 3, etc., and demonstrates
the properties of infinite sets. In this hotel with an infinite number of guests,
an infinite number of new guests (even finite layers of infinite) can be accom-
modated, provided that only one guest stays in each room [5]. When we fill
the odd-numbered rooms of the Hilbert Hotel with Collatz numbers, we also
fill the entire hotel with Collatz numbers. Let n ∈ N+ and x, y ∈ Nodd, and let
the odd-numbered rooms of the Hilbert Hotel be 1, 3, 5, 7, . . . , i.e. elements
of the set Nodd. The result of the Collatz inverse operation is the following
equation,

2n.x− 1

3
= y (7)

In equation (7), n depends on the values of x. If x ≡ 1 (mod 3) we replace n
with all even numbers n ={2,4,6,8,. . . }, and if x ≡ 2 (mod 3) we replace n with
all odd numbers n ={1,3,5,7,. . . } respectively (Lemma 2.6 and Lemma 2.8). In
(7) we obtain an infinite number of y values as Collatz numbers starting from
x = 1 (Lemma 2.5). Then, by substituting y values for x in (7), we obtain the
Collatz number sets with infinite elements for each y that is not a multiple of
3. [Although we cannot replace x with numbers that are multiples of 3, we get
infinite numbers that are multiples of 3 in each Collatz number sets (Figure
1). Because, the numbers in each set give the remainder of 0,1,2 respectively
according to (mod 3), as in the Nodd set]. If the same process is repeated and
the generated numbers are placed according to the room numbers, there will
be no empty rooms left in the Hilbert Hotel. This is because infinite layers of
disjoint Collatz number sets (Collatz number set is a countably infinite set of
positive odd integers) are formed without limit by equation (7), and these sets
fill all odd-numbered rooms, i.e. we get all positive odd integers (Figure 1).
By multiplying these numbers by 2m (m ∈ N+), we find that all even numbers
are Collatz numbers (Remark 2.2). Therefore, Collatz numbers fill the Hilbert
Hotel and the set of Collatz numbers is equal to the set N+. Starting with
x = 1 in (7) and continuing the process to infinity, we get infinite layers of
disjoint Collatz number sets (Figure 1).

{1}
Y0 =1*=[{1, 5, 21, 85, 341, 1365, 5461, 21845, 87381, . . . }] |Y0| =1

Y1= 1*=
[
5*= {3,13,53,. . . } 85*={113,453,1813,. . . } 341*={227,909,3637,. . . }

5461*={7281,29125,116501,. . . } . . .
]

|Y1| = ℵ0

Y2= 1*=
[
5*={13*={17,69,. . . } 53*={35,141,. . . }. . . } 85*= { 113*={75,301. . . }

1813*={2417,9669. . . } . . . } . . .
]

|Y2| = ℵ0+ℵ0+ ℵ0 . . . =ℵ0.ℵ0
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Y3= 1*=
[
5*={ 13*= {17*={11,45,. . . } . . . } 53*= {35*={23,93,. . . } . . . }

. . . } 85*={113*={301*={401,1605, . . . }. . . } 1813*={2417*={1611,6445,. . . }. . . }

. . . } . . .
]

|Y3| = ℵ0.ℵ0.ℵ0

...
...

...
...

...
...

...
...

... |Y| = ℵ0.ℵ0.ℵ0 . . .

The set of disjoint Collatz number sets:

Y=
[
{1,5,21,. . . }{3,13,53,. . . } {113,453,1813,. . . }{227,909,3637,. . . } {7281,29125,

116501,. . . } {17,69,277,. . . } {35,141,565,. . . } . . .
]

|Y| = ℵ0.ℵ0.ℵ0 . . .

Figure 1: Collatz number sets. | | represents the cardinality of the set of
Collatz number sets, and * represents conversions of numbers that are not
multiples of 3 using equation (7).
In Figure 1, the infinite layers of Collatz number sets continue until they
fill Hilbert’s hotel, because they form continuously without any restriction;
the restriction occurs only when the hotel is completely filled, i.e., when all
positive odd numbers are obtained. Suppose buses with an infinite number of
people on each arrive at the Hilbert Hotel. The following buses fill the Hilbert
Hotel.

• Y0 = {1, 5, 21, 85, 341, . . .} (infinite people, cardinality of buses: 1)

• Y1 = ℵ0 (1st layer, cardinality of buses: ℵ0 )

– {(5, 3), (5, 13), (5, 53), . . . ,
(85, 113), (85, 453), . . . ,
(341, 227), (341, 909), . . .
. . . } (infinite buses each with infinite people)

• Y2 = ℵ0 · ℵ0 (2nd layer, cardinality of buses: ℵ0.ℵ0)

– {(5, 13, 17), (5, 13, 69), . . . ,
(85, 113, 75), (85, 113, 301), . . .
. . . } (infinite ferries, each containing infinite buses, infinite
people on each bus)

• Y3 = ℵ0 · ℵ0 · ℵ0 (3rd layer, cardinality of buses:ℵ0.ℵ0.ℵ0 )

– {(5, 13, 17, 11), (5, 13, 17, 45), . . . ,
(85, 113, 301, 401), (85, 113, 301, 1605), . . .
. . . } (infinite oceans with infinite ferries on each, infinite buses
on each ferry, infinite people on each bus)

• Y = ℵ0.ℵ0.ℵ0 . . . (infinite layer, cardinality of buses: ℵ0.ℵ0.ℵ0. . . )
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Since there are different people on the buses, the buses represent disjoint Col-
latz number sets. The expression ℵ0.ℵ0.ℵ0. . . is the cardinality of the set of
disjoint Collatz number sets, it can also be thought of as the cardinality of
sequences of disjoint Collatz number sets.As we move from each layer to the
next layer, the cardinality of the set of disjoint Collatz number sets increases
by a factor of ℵ0, so ℵ0.ℵ0.ℵ0. . . is the cardinality of the set of all disjoint
Collatz sets.

The elements of each Collatz number set in Figure 1, obtained by converting
each Collatz number, form a sequence such that the next term is 4 times the
previous term plus 1. Thus, the elements of each Collatz number set form a
loop with remainders 0,1,2 according to (mod 3). New Collatz number sets
are formed continuously to infinity from numbers with remainders 1 and 2 ac-
cording to (mod 3). Therefore, ℵ10, ℵ20, ℵ30 exist (Figure 1), and for ∀k ∈ N+,
if ℵk0 exists, then ℵk+1

0 also exists. Thus, the cardinality of the set of disjoint
Collatz number sets in Figure 1 is ℵ0.ℵ0.ℵ0. . . ˙ Since all the elements of Collatz
number sets form a cycle with remainders 0,1,2 with respect to (mod 3), we
get all positive odd numbers that are multiples of 3 from remainders 0 with
respect to (mod 3).

The elements of Collatz number sets obtained by equation 7 form a sequence
in which each term is one more than four times the previous term. The same
method is used to cover the set of positive odd integers. In the Nodd set, we
create sets from each odd integer such that the next term is 1 more than 4
times the previous term.

p1 = {1, 5, 21, 85, . . .}
p2 = {3, 13, 53, 213, . . .}

{5, 21, 85, 341, . . .}
p3 = {7, 29, 117, 469, . . .}
p4 = {9, 37, 149, 597, . . .}

...

The union of sets that are disjoint from sets of the form is equal to the set of
positive odd integers. Since the other sets are subsets of the disjoint sets, we
can ignore them.

Nodd =[p1={1,5,21,85,. . . }p2={3,13,53,213,. . . }p3={7,29,117,469,. . . }p4={9,37,
149,597,. . . } . . . ]= {p1, p2, p3, p4, p5,. . . }
Nodd=

⋃∞
i=1 pi

Let P = {p1, p2, p3, p4 . . . }, where P is an infinite subset of the set of natural
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numbers, and P ̸= N. Suppose we list the disjoint sets in the Nodd set with
the elements of the set P , assign an element of the set P to each disjoint set,
i.e., equate each disjoint set with an element of the set P , and complete the
list so that no elements in the Nodd and P sets are empty. Thus, the set of
disjoint sets is equal to the set of P . The union of disjoint Collatz number sets
obtained in Figure 1 is equal to the set Nodd. This is because the cardinality
of the set of disjoint Collatz number sets, by the inductive method described
above, it was shown that ℵ10, ℵ20, ℵ30 exist in Figure 1 and ∀k ∈ N+, if ℵk0 exists,
then ℵk+1

0 also exists. This result implies that we can list the disjoint Collatz
number sets in the same way as in the set Nodd, ensuring that no disjoint Col-
latz set or element of the P set is left out by assigning a unique element of the
set P to each set. Therefore, we get exactly the same listing in the Collatz set
as in the Nodd set.
Disjoint Collatz Number Sets (Figure 1):
Y= [p1 = {1,5,21,. . . } p2={3,13,53,. . . } p3={113,453,1813,. . . } p4={227,909,
3637,. . . } p5={7281, 29125, 116501,. . . } p6={17, 69, 277,. . . } p7={35, 141,
565,. . . } . . . ] = {p1, p2, p3, p4, p5,. . . }
Y =

⋃∞
i=1 pi

The set Y is equal to the set of P , i.e., the Nodd set. The sets Y and Nodd are
composed of the same disjoint sets and equal in numbers, i.e., they are equal
sets. The number of disjoint Collatz sets cannot be less than the number of sets
in the Nodd set because, as shown by induction, set formation is continuous and
the number of sets cannot be greater because the Collatz numbers are elements
of the Nodd set.
The cardinality of the set of disjoint sets in the Nodd set is ℵ0. We had found
that the cardinality of the set of disjoint Collatz number sets is ℵ0.ℵ0.ℵ0. . . (Figure
1).

ℵ0 · ℵ0 · ℵ0 · · · ≥ ℵ0
therefore, the set of Collatz numbers definitely covers the set of Nodd numbers,
which is its universal set, but it cannot exceed it, because Collatz numbers are
positive odd numbers. The Collatz number set covers the Nodd set, and since
the Nodd set covers the Collatz number set, they are equal. Thus we find that
the set of Collatz numbers is equal to the set N+ (Remark 2.2) and and we
prove the Collatz conjecture for the set N+.

3 The Absence of any Positive Integer other

than Collatz Numbers

In this section, we prove that there are no positive integers that do not satisfy
the conjecture.
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Let s1 be a number that is not a Collatz number and (s1 ∈ Nodd), then when
we apply Collatz operations to s1, until we find odd numbers;

s1→ 3.s1 +1
2n

, s2 → s3 → s4 → s5 → s6 → s7 → s8 → s9 → s10 . . .

we get S = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, . . .} and the elements of the set S
are not Collatz numbers (sn ∈ Nodd).

Lemma 3.1 The elements of the set S do not any loop.

Proof. We assume that such a loop exists.

s1→ s2 → s3 → s4 → s5 → s6 → s7 → s8 → s9→s10
↑ ↓

CIO ↓ ... s11 ↓ CO
↑ ↓
sn← . . . . . . . . . . . . ← . . . . . . ← . . . . . . . . . . . . ← s13← s12

Figure 4

For such a loop to be exist in positive odd integers (Figure 4), all the el-
ements of the loop must be equal, because the infinite set of numbers ob-
tained by applying the CIO to each element of the loop is the same, that
is, {s1, s11, s12, . . . s2, s21, s22, . . . s3, s31, s31, . . . sn, sn1, sn2, . . .}. In the positive
odd integers, only the number 1 can form a loop with itself, so all elements of
the loop are 1.

Lets take s1 in the loop, s1 ̸≡ 0 (mod 3) and ( n,m ∈ N+ ), then if s1→CIO =
s1→CO,

2ns1−1
3

= 3s1+1
2m

2n+m.s1 − 2m = 9s1 + 3, s1 =
2m+3

2n+m−9

s1 cannot be any positive odd integer other than 1 in this equation.

Similar to the operations in Corollary 2.12, if there were a positive odd num-
ber s1 that was not a Collatz number, it would fill the Hilbert Hotel until
there was no room left. Because when we apply Collatz operations (CO) to
s1, we get an infinite set S0. If we repeat the Collatz inverse operations on
the elements of this set as in Figure 1, we get infinite layers of sets with no
Collatz numbers, these sets fill the odd-numbered rooms of the Hilbert Hotel
and there are no rooms left (Figure 5). Thus, the set of odd numbers that are
not Collatz numbers covers the Nodd set, i.e. is equal to it.
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S0 = {{s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, . . .}} |S0| =1

S1 =
[
s∗1 ={s11, s12, s13,. . . } s∗2 ={s21, s22, s23,. . . } s∗3 ={s31, s32, s33,. . . }

s∗4={s41, s42, s43,. . . } . . .
]

|S1| = ℵ0

S2 =
[
s∗1={s∗11={s111, s112,. . . } s∗12={s121, s122,. . . } . . . } s∗2={s∗21={s211, s212,. . . }

s∗22={s221, s222,. . . } . . . } . . .
]

|S2| = ℵ0 + ℵ0 + ℵ0 . . . = ℵ0.ℵ0

...
...

...
...

...
...

...
...

... |S| = ℵ0.ℵ0.ℵ0 . . .

The set of disjoint Sets that are not Collatz number sets:

S=
[
{s1, s2, s3, . . .}{s11, s12, s13,. . . } {s21, s22, s23,. . . }{s31, s32, s33,. . . }

{s41, s42, s43,. . . } {s111, s112,. . . } {s121, s122,. . . } . . .
]

|S| = ℵ0.ℵ0.ℵ0 . . .

Figure 5: Sets that are not Collatz number sets.| | represents cardinality of
the set of sets, and * represents conversions of numbers that are not multiples
of 3 using equation (7).

The elements of each set in Figure 5, obtained by converting each number that
is not a Collatz number, form a sequence such that the next term is 4 times
the previous term plus 1. Thus, the elements of each set form a loop with
remainders 0,1,2 according to (mod 3). New sets are formed continuously to
infinity from numbers with remainders 1 and 2 according to (mod 3).
Therefore, the cardinality of the set of disjoint sets that are not Collatz num-
ber sets in Figure 5 is ℵ0.ℵ0.ℵ0. . .

In Figure 5, all disjoint sets are transformed into the set S0 by Collatz oper-
ations, and the set S0 is then transformed into a positive odd number, such
as sn. The set S is equal to the set Nodd. The number of disjoint sets that
are not Collatz sets cannot be less than the number of sets in the Nodd set
because, as shown by induction, set formation is continuous and the number
of sets cannot be greater because the numbers that are not Collatz numbers
are elements of the Nodd set (Corollary 2.12). So the set of the numbers that
are not Collatz numbers covers the Nodd set, and since Nodd set covers this set,
they are equal. Thus we find that the set of the numbers that are not Collatz
numbers is equal to the set N+ (Remark 2.2). This leads to a contradiction
with Corollary 2.12. Either all elements of the set N+ are Collatz numbers or
none of them are. Therefore, all elements of the set N+ are Collatz numbers.
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4 Conclusion

We proved the Collatz conjecture using the Collatz inverse operation method.
It is shown that all positive integers reach 1, as stated in the Collatz conjec-
ture. With the methods described in this study for 3n + 1, it can be found
whether numbers such as 5n+ 1, 7n+ 1, 9n+ 1, . . . also reach 1.

References

[1] O’ Connor, J.J. and Robertson, E.F. (2006). Lothar Collatz. St Andrews
University School of Mathematics and Statistics, Scotland.

[2] Lacort, M.O.(2019). Fermat Equation Over Several Fields and Other
Historical Mathematical Conjectures. United States: Lulu Press.
ISBN:9780244166458

[3] Lagarias, J.C. (1985). The 3x + 1 problem and its gen-
eralizations. The American Mathematical Monthly.92(1):3-
23.doi:10.1080/00029890.1985.11971528.JSTOR 2322189.

[4] Maddux, C.D. and Johnson, D.L. (1997). The problem is also known by
several other names, including: Ulam’s conjecture, the Hailstone prob-
lem, the Syracuse problem, Kakutani’s problem, Hasse’s algorithm, and
the Collatz problem. Logo: A Retrospective. New York: Haworth Press.
p. 160. ISBN 0-7890-0374-0.

[5] Moore, G. H. (2002). Hilbert on the infinite: The role of set theory in the
evolution of Hilbert’s thought. Historia Mathematica, 29(1), 40-64.

[6] Hausdorff, F. (2021). Set theory (Vol. 119). American Mathematical Soci-
ety.




