
Journal of Applied Mathematics & Bioinformatics, vol.7, no.1, 2017, 1-25

ISSN: 1792-6602 (print), 1792-6939 (online)

Scienpress Ltd, 2017

Positive weighted pseudo almost automorphic

solution for a class of systems of neutral

nonlinear delay integral equations

A. Sadrati1 and A. Zertiti2

Abstract

In this work, we shall explain a new result concerning weighted
pseudo almost automorphic solutions for more general systems of non-
linear neutral infinite delay integral equations. We establish a new fixed
point theorem in the cone, which extend some existing results even in
the case of scalar version, and then, we apply it to prove our results.

Mathematics Subject Classification: 92B20; 43A60; 44B20

Keywords: Fixed point in the cone; Unique fixed point; Nonlinear neutral

delay integral systems; weighted pseudo almost automorphic; positive solutions

1 M2I Laboratory, MAMCS Group, Department of Mathematics, FST,Erracidia,
University Moulay-Ismal, B.P: 509, Boutalamine, 52000, Errachidia, Morocco.
E-mail: abdo2sadrati@gmail.com

2 Department of Mathematics, Faculty of sciences, University Abdelmalek Essaadi,
BP 2121, Tetouan, Morocco. E-mail: abdzertiti@hotmail.fr

Article Info: Received : February 10, 2017. Revised : March 12, 2017.
Published online : April 30, 2017.



2 Positive weighted pseudo almost automorphic solution ...

1 Introduction

Since the work of Bochner in [7], almost automorphy, as a natural gen-

eralization of the concept of almost periodicity in the sense of Bohr [6], has

been of great interest for many authors to study almost automorphic solu-

tions to various equations including linear and nonlinear evolution equations,

integro-differential equations, delay integral equations, functional-differential

equations, etc. For more details about this topics we refer to the recent book

[22], where the author gave an important overview about the theory of almost

automorphic functions and their applications to differential equations.

The concept of weighted pseudo almost automorphic functions with values

in a Banach space, was introduced by G.M.N’Guérékata et al. [8] as a general-

ization of that of pseudo almost automorphic functions, which generalizes that

of pseudo almost periodic functions introduced by Diagana [13]. Since then,

these functions have generated lot of developments and applications. For more

details we refer the reader to [8, 13, 21, 22] and the references therein.

The study of the existence of almost periodic, almost automorphic, pseudo

almost periodic, pseudo almost automorphic, weighted pseudo almost periodic

and weighted pseudo almost automorphic solutions is one of the most inter-

esting topics in the qualitative theory of differential and integral equations. In

[25], we considered the existence and uniqueness of positive almost periodic

solution to the following system of nonlinear finite delay integral equations

x(t) =

∫ t

t−τ1(t)

f̃(s, x(s), y(s))ds

y(t) =

∫ t

t−τ2(t)

g̃(s, x(s), y(s))ds

(1)

which is a model for the evolution in time of two species with interaction.

Also, in [9, 10, 23, 24, 27], the existence of positive periodic solutions for other

forms of (1) was studied by using the method of upper and lower solutions or

by topological methods.

In this work, we investigate the existence and uniqueness of a positive

weighted pseudo almost automorphic solution for the following more general
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system of nonlinear neutral infinite delay integral equations

x(t) = α1(t)x(t− β1) +

∫ t

−∞
c1(t, t− s)f̃(s, x(s), y(s))ds + k1(t, x(t))

y(t) = α2(t)y(t− β2) +

∫ t

−∞
c2(t, t− s)g̃(s, x(s), y(s))ds + k2(t, y(t))

(2)

Note that the existence of pseudo almost periodic solutions to the scalar version

of system (2)

x(t) = α(t)x(t− β) +

∫ t

−∞
a(t, t− s)f(s, x(s))ds + h(t, x(t)) (3)

was studied in [14]. Also, the existence of almost periodic, almost automorphic

and pseudo almost automorphic of various forms of (3) was studied by many

authors (see, e.g. [1, 2, 3, 16, 17] and references therein)

To the best of our knowledge, there is no work reported in the literature on

weighted pseudo almost automorphic solution to the system (2). Therefore,

motivated by the works in [14, 15], the purpose of this paper is to establish a

new fixed point theorem in partially ordered Banach spaces, which extend some

existing results even in the scalar cases, and then used to prove the existence

of positive weighted pseudo almost automorphic solution for (2). This paper is

organized as follows. In Section 2, we recall some notations and preliminaries.

Namely some basic results for almost automorphy and weighted pseudo almost

automorphy. Section 3, is divoted to extend and prove a fixed point theorem

in the cone. In section 4, we prove our results for the existence and uniqueness

of positive weighted pseudo almost automorphic solution. In the last section,

we give an example.

2 some definitions and Preliminaries

We denote by R the set of real numbers, by R+ the set of nonnegative real

numbers, by Ω a closed subset in Rq (q = 1, 2) and by BC(X), where X is

a metric set, the space of continuous bounded functions defined on X with

values in R. we recall some definitions and notation for almost automorphy

and weighted pseudo almost automorphy.
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2.1 Almost automorphy

Definition 2.1 ([22]). A continuous function f : R −→ R is called al-

most automorphic if for every sequence of real numbers (S ′m)m there exists a

subsequence (Sn)n such that

lim
m→+∞

lim
n→+∞

f(t + Sn − Sm) = f(t), ∀t ∈ R.

This limit means that

g(t) = lim
n→+∞

f(t + Sn)

is well defined for each t ∈ R and

f(t) = lim
n→+∞

g(t− Sn), ∀t ∈ R.

The collection of all such functions will be denoted by AA(R).

Notice that some fundamental properties of almost periodic functions are

not verified by the almost automorphic functions, as exemple the property of

uniform continuity. A well known example of almost automorphic function not

almost periodic is

f(t) = sin
1

2 + cos t + cos
√

2t
.

Lemma 2.2 ([22]). Assume that f, g ∈ AA(R) and λ is any scalar. Then

the following hold true:

i) f + g, f.g, λf, fτ (t) = f(t + τ),
s
f(t) = f(−t) are almost automorphic.

ii) The range Rf = {f(t) : t ∈ R} is precompact in R, and so f is bounded.

iii) If {fn} is a sequence of almost automorphic functions and fn → f uni-

formly on R, then f is almost automorphic.

iii) Equipped with the sup norm

‖f‖ = sup
t∈R
|f(t)|

AA(R) turns out to be a Banach space.
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Definition 2.3 ([22]). A continuous function f : R × Ω −→ R is called

almost automorphic in t uniformly for x in compact subset of Ω ⊂ R ( respec-

tively for (x, y) in compact subset of Ω ⊂ R × R) if for every compact subset

K of Ω and every real sequence (Sm)m, there exists a subsequence (Sn)n such

that

g(t, x) = lim
n→+∞

f(t + Sn, x) (resp.g(t, x, y) = lim
n→+∞

f(t + Sn, x, y))

is well defined for each t ∈ R, x ∈ K (resp.(x, y) ∈ K) and

f(t, x) = lim
n→+∞

g(t− Sn, x) (resp.f(t, x, y) = lim
n→+∞

g(t− Sn, x, y)), ∀t ∈ R.

The collection of all such functions will be denoted by AA(R× Ω).

2.2 Weighted pseudo almost automorphy

Let U denote the collection of all functions (weights) ρ : R −→ (0, +∞)

which are locally integrable over R such that ρ(t) > 0 for almost each t ∈ R.

For ρ ∈ U and r > 0, we set

m(r, ρ) =

∫ r

−r

ρ(t)dt.

Throughout this paper, the set of weights U∞ stands for

U∞ = {ρ ∈ U : lim
r→+∞

m(r, ρ) = ∞}.

Obviously, U∞ ⊂ U , with strict inclusions.

Let ρ ∈ U∞. Set

PAA0(R, ρ) = {f ∈ BC(R) : lim
r→+∞

1

m(r, ρ)

∫ r

−r

|f(t)|ρ(t)dt = 0}.

In the same way, we define PAA0(R×R+, ρ) (PAA0(R×R+×R+, ρ)) as the

collection of continuous functions f defined on R × R+ (R × R+ × R+) such

that f(., x) (f(., x, y)) is bounded for each x ∈ R+ ((x, y) ∈ R+ × R+) and

lim
r→+∞

1

m(r, ρ)

∫ r

−r

|f(t, x)|ρ(t)dt = 0 ( lim
r→+∞

1

m(r, ρ)

∫ r

−r

|f(t, x, y)|ρ(t)dt = 0)

uniformly in x ∈ R+ ((x, y) ∈ R+ × R+).
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Definition 2.4 ( [8] ). Let ρ ∈ U∞. A functon f ∈ BC(R) is called

weighted pseudo almost automorphic (or ρ-pseudo almost automorphic ) if it

can be expressed as f = faa + f e, where faa ∈ AA(R) and f e ∈ PAA0(R, ρ).

The collection of such functions is denoted by WPAA(R, ρ).

The functions faa and f e appearing in definition above are respectively

called the almost automorphic and the weighted ergodic perturbation compo-

nents of f .

Example 2.5 ([26]). Consider the functions

f(t) = sin
1

2 + cos t + cos
√

2t
+ eαt and ρ(t) =





1 if t < 0

e−βt if t ≥ 0

If 0 < α ≤ β, we have f ∈ WPAA(R, ρ) and f does not belongs to PAA(R),

the space of all pseudo almost automorphic functions.

In the followng lemma we give some properties of the space WPAA(R, ρ).

Lemma 2.6 ( [8, 20] ). Let ρ ∈ U∞.

(i) WPAA(R, ρ) equipped with the sup norm is a Banach space .

(ii) If f = faa +f e ∈ WPAA(R, ρ) with faa ∈ AA(R) and f e ∈ PAA0(R, ρ),

then faa(R) ⊂ f(R).

(iii) If f ∈ BC(R), then f ∈ PAA0(R, ρ) if and only if for every ε > 0

lim
r→+∞

1

m(r, ρ

∫

Mr,ε(f)

ρ(t)dt = 0,

where Mr,ε(f) = {t ∈ [−r, r] : |f(t)| ≥ ε}.

(iv) If we consider that ρ ≡ 1, then we obtain the standard spaces PAA(R).

Definition 2.7. A subset B of BC(R) is said to be translation invariant if

for any x ∈ B we have x(. + τ) ∈ B for any τ ∈ R.

Lemma 2.8 ([19]). Let ρ ∈ U∞. Assume that PAA0(R, ρ) is translation

invariant. Then the decomposition of weighted pseudo almost automorphic is

unique.
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Lemma 2.9. Let us fix ρ ∈ U∞.

1) Following the same reasoning as in the proof of [5] it follows that If

f, g ∈ WPAA(R, ρ), then f.g ∈ WPAA(R, ρ)

2) We know from Agarwal et al. [4] that if the limits

lim sup
t→∞

ρ(t + τ)

ρ(t)
< ∞ and lim sup

t→∞

m(r + τ, ρ)

m(r, ρ)
< ∞. (4)

exist for each τ ∈ R. Then the spase PAA0(R, ρ) is translation invariant.

Definition 2.10 ( [8] ). A functon f ∈ BC(R×R+) (f ∈ BC(R×R+×R+))

is called weighted pseudo almost automorphic (or ρ-pseudo almost automorphic

) if it can be expressed as f = faa + f e, where faa ∈ AA(R × R+) and f e ∈
PAA0(R×R+, ρ) (faa ∈ AA(R×R+×R+) and f e ∈ PAA0(R×R+×R+, ρ)).

The collection of such functions is denoted by WPAA(R×R+, ρ) (WPAA(R×
R+ × R+, ρ)).

Theorem 2.11 ([8, 18]). Fix ρ ∈ U∞. Let σ, τ ∈ WPAA(R, ρ) and

f = faa + f e ∈ WPAA(R×R+, ρ) (f = faa + f e ∈ WPAA(R×R+×R+, ρ)).

Assume both f and faa are uniformly continuous in any bounded subset K ∈
R+ (K ∈ R+ × R+) uniformly in t ∈ R. Then, f(., σ(.)) ∈ WPAA(R, ρ)

(f(., σ(.), τ(.)) ∈ WPAA(R, ρ)).

Corollary 2.12 ( [20]). Fix ρ ∈ U∞. Let σ, τ ∈ WPAA(R, ρ) and f =

faa + f e ∈ WPAA(R × R+, ρ) (f = faa + f e ∈ WPAA(R × R+ × R+, ρ)).

Assume both f and faa are lipschitzian in x ∈ R+ ((x, y) ∈ R+×R+) uniformly

in t ∈ R. Then, f(., σ(.)) ∈ WPAA(R, ρ) (f(., σ(.), τ(.)) ∈ WPAA(R, ρ)).

3 Fixed point theorem

Definition 3.1 ( [12]). Let E be a real Banach space. A closed convex set

P in E is called a convex cone if the following conditions are satisfied

1. If x ∈ P , then λx ∈ P for any λ ∈ R+;

2. If x ∈ P and −x ∈ P , then x = 0.
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A cone P induces a partial ordering ≤ in E by x ≤ y if and only if y−x ∈ P .

A cone P is called normal if there exists a constant N > 0 such that 0 ≤ x ≤ y

implies ‖x‖ ≤ N‖y‖, where ‖.‖ is the norm on E. We denote by
◦
P the interior

set of P . A cone P is called a solid cone if
◦
P 6= ∅.

In the following theorem, we extend the results obtained in [14, Theorem

3.1] and [15, Theorem 2.1], used in the scalar case, to other used in the case

of systems.

Theorem 3.2. Let P be a normal solid cone in a real Banach space X.

D1, D2 are linear operators from P to P and A1, A2, B1, B2 :
◦
P×

◦
P×

◦
P×

◦
P −→

◦
P are operators with

A1(x, u, y, ξ) = B1(x, u, y, ξ) + D1(x),

A2(x, u, y, ξ) = B2(x, u, y, ξ) + D2(y)

such that

(S1) B1(., u, y, ξ) is increasing and B1(x, ., y, ξ), B1(x, u, ., ξ), B1(x, u, y, .) are

decreasing;

B2(x, u, ., ξ) is increasing and B2(., u, y, ξ), B2(x, ., y, ξ), B2(x, u, y, .) are

deccreasing.

(S2) There exist positive functions φ1, φ2 defined on (0, 1)×
◦
P ×

◦
P ×

◦
P such

that for each x, u, y, ξ ∈
◦
P and α ∈ (0, 1), φi(α, x, u, y) > α (i = 1, 2)and

B1(αx,
1

α
u,

1

α
y, ξ) ≥ φ1(α, x, u, y)B1(x, u, y, ξ),

B2(
1

α
x,

1

α
u, αy, ξ) ≥ φ2(α, x, u, y)B2(x, u, y, ξ).

(S3) There exist x0, x
0, y0, y

0 ∈
◦
P with x0 ≤ x0, y0 ≤ y0 such that

x0 ≤ A1(x0, x
0, y0, x0), A1(x

0, x0, y0, x
0) ≤ x0,

y0 ≤ A2(x
0, y0, y0, y0), A2(x0, y0, y

0, y0) ≤ y0
(5)

and for each α ∈ (0, 1)

inf
y∈[y0,y0],x,u∈[x0,x0]

φ1(α, x, u, y) > α,

inf
x∈[x0,x0],v,y∈[y0,y0]

φ2(α, x, v, y) > α.
(6)
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(S4) There exist constants L1, L2 > 0 such that for all x, u, y, ξ1, ξ2 ∈
◦
P with

ξ1 ≥ ξ2,

Bi(x, u, y, ξ1)−Bi(x, u, y, ξ2) ≥ −Li(ξ1 − ξ2) (i = 1, 2).

Then operator A :
◦
P ×

◦
P ×

◦
P ×

◦
P ×

◦
P ×

◦
P −→

◦
P ×

◦
P defined by

A(x, u, v, y, ξ, ν) = (A1(x, u, y, ξ), A2(x, v, y, ν))

has a unique fixed point (x∗, y∗) ∈ [x0, x
0]× [y0, y

0]; that is

A(x∗, x∗, y∗, y∗, x∗, y∗) = (x∗, y∗).

Moreover, if (6) is true for all u0, u
0, v0, v

0 ∈
◦
P with u0 ≤ u0 and v0 ≤ v0:

inf
y∈[v0,v0],x,u∈[u0,u0]

φ1(α, x, u, y) > α,

inf
x∈[u0,u0],v,y∈[v0,v0]

φ2(α, x, v, y) > α.

Then (x∗, y∗) is the unique fixed point of A in
◦
P ×

◦
P .

Proof. ¿From (S1) and the linearity of the operators D1, D2 : P −→ P , we

obtain A1(., u, y, ξ), A2(x, u, ., ξ) are increasing and A1(x, ., y, ξ), A1(x, u, ., ξ),

A1(x, u, y, .), A2(., u, y, ξ), A2(x, ., y, ξ), A2(x, u, y, .) are decreasing.

Let λ ∈ (0, 1]. Denote by

ελ = sup{r > 0 : rA1(
1

λ
x0, λx0, λy0, λx0) ≤ B1(λx0,

1

λ
x0,

1

λ
y0,

1

λ
x0) and

rA2(λx0, λy0,
1

λ
y0, λy0) ≤ B2(

1

λ
x0,

1

λ
y0, λy0,

1

λ
y0)}

and by

φ1,λ(r, x, u, y) = r + ελ[φ1(r, x, u, y)− r],

φ2,λ(r, x, v, y) = r + ελ[φ2(r, x, v, y)− r],

for all r ∈ (0, 1), x, u ∈ [λx0,
1
λ
x0], v, y ∈ [λy0,

1
λ
y0].

It is clear that 0 < ελ ≤ 1, and for each λ ∈ (0, 1], r ∈ (0, 1)

inf
y∈[y0,y0],x,u∈[x0,x0]

φ1,λ(r, x, u, y) > r,

inf
x∈[x0,x0],v,y∈[y0,y0]

φ2,λ(r, x, v, y) > r.
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Also, we have

ελA1(
1

λ
x0, λx0, λy0, λx0) ≤ B1(λx0,

1

λ
x0,

1

λ
y0,

1

λ
x0),

ελA2(λx0, λy0,
1

λ
y0, λy0) ≤ B2(

1

λ
x0,

1

λ
y0, λy0,

1

λ
y0).

It follows that for all y ∈ [λy0,
1

λ
y0], x, u, ξ ∈ [λx0,

1

λ
x0]

ελA1(x, u, y, ξ) ≤ ελA1(
1

λ
x0, λx0, λy0, λx0) ≤ B1(λx0,

1

λ
x0,

1

λ
y0,

1

λ
x0)

≤ B1(x, u, y, ξ)

and for all v, y, ν ∈ [λy0,
1

λ
y0], x ∈ [λx0,

1

λ
x0]

ελA2(x, v, y, ν) ≤ ελA2(λx0, λy0,
1

λ
y0, λy0) ≤ B2(

1

λ
x0,

1

λ
y0, λy0,

1

λ
y0)

≤ B2(x, v, y, ν).

Therefore, for all r ∈ (0, 1), x, u, ξ ∈ [λx0,
1

λ
x0], y ∈ [λy0,

1

λ
y0]

A1(rx,
1

r
u,

1

r
y, ξ) = B1(rx,

1

r
u,

1

r
y, ξ) + D1(rx)

≥ φ1(r, x, u, y)B1(x, u, y, ξ) + rD1(x)

= rA1(x, u, y, ξ) + [φ1(r, x, u, y)− r]B1(x, u, y, ξ)

≥ rA1(x, u, y, ξ) + ελ[φ1(r, x, u, y)− r]A1(x, u, y, ξ)

= φ1,λ(r, x, u, y)A1(x, u, y, ξ).

Similarly, fo all r ∈ (0, 1), x ∈ [λx0,
1

λ
x0], v, y, ν ∈ [λy0,

1

λ
y0], we obtain

A2(
1

r
x,

1

r
v, ry, ν) ≥ φ2,λ(r, x, v, y)A2(x, v, y, ν).

Now, we prove that for each i = 1, 2 and x, u, y ∈
◦
P , there exists a unique

point in
◦
P , which we denote by Φi(x, u, y), such that

Ai(x, u, y, Φi(x, u, y)) = Φi(x, u, y), i = 1, 2.

Fix x, u, v, y ∈
◦
P .Then, there exists λ ∈ (0, 1] such that x, u ∈ [λx0,

1

λ
x0] and

v, y ∈ [λy0,
1

λ
y0]. Let

Ψ1(x, u, y)(ξ) =
A1(x, u, y, ξ) + L1ξ

1 + L1

, Ψ2(x, v, y)(ξ) =
A2(x, v, y, ξ) + L2ξ

1 + L2

, ξ ∈
◦
P .
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It is clear that Ψ1(x, u, y)(.), Ψ2(x, v, y)(.) are operators from
◦
P to

◦
P and by

(S4) they are increasing in
◦
P . From (S1)-(S3) we have for every λ ∈ (0, 1)

A1(x, u, y, λx0) ≥ A1(λx0,
1

λ
x0,

1

λ
y0, x0)

≥ φ1(λ, x0, x
0, y0)A1(x0, x

0, y0, x0) ≥ λx0.

And if λ = 1, we have A1(x, u, y, x0) ≥ x0. Thus, A1(x, u, y, λx0) ≥ λx0, ∀λ ∈
(0, 1]. Similarly, we obtain

A1(x, u, y,
1

λ
x0) ≤ 1

λ
x0.

And analogously, one can show that

A2(x, v, y, λy0) ≥ λy0, A2(x, v, y,
1

λ
y0) ≤ 1

λ
y0.

It follows that

Ψ1(x, u, y)(λx0) ≥ λx0, Ψ1(x, u, y)(
1

λ
x0) ≤ 1

λ
x0,

Ψ2(x, v, y)(λy0) ≥ λy0, Ψ2(x, v, y)(
1

λ
y0) ≤ 1

λ
y0.

(7)

Set

Xn
xuy = ψ1(x, u, y)(Xn−1

xuy ), Un
xuy = ψ1(x, u, y)(Un−1

xuy ),

X0
xuy = λx0, U0

xuy =
1

λ
x0,

Y n
xvy = ψ2(x, v, y)(Y n−1

xvy ), V n
xvy = ψ2(x, u, y)(V n−1

xvy ),

Y 0
xvy = λy0, V 0

xvy =
1

λ
y0.

Next, a similar proof to [28, Theorem 2.1] yields that Ψ1(x, u, y)(.) has a

unique fixed point Φ1(x, u, y) ∈ [λx0,
1

λ
x0] and Ψ2(x, v, y)(.) has a unique fixed

point Φ2(x, v, y) ∈ [λy0,
1

λ
y0], that is

A1(x, u, y, Φ1(x, u, y)) = Φ1(x, u, y) and A2(x, v, y, Φ2(x, v, y)) = Φ2(x, v, y),

with

Xn
xuy −→ Φ1(x, u, y), Un

xuy −→ Φ1(x, u, y) as n −→ +∞,

Y n
xvy −→ Φ2(x, v, y), V n

xvy −→ Φ2(x, v, y) as n −→ +∞.
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Now, if Φ′
1(x, u, y) is a fixed point of Ψ1(x, u, y)(.) in

◦
P , then there exists β ∈

(0, λ) such that Φ′
1(x, u, y) ∈ [βx0,

1
β
x0]. Since, by the above proof, ψ1(x, u, y)

has a unique fixed point in [βx0,
1
β
x0], it follows that Φ′

1(x, u, y) = Φ1(x, u, y).

Also, we have the uniqueness of Φ2(x, v, y) in
◦
P . Moreover, by a similar proof to

step 2 and step 3 of [15, Theorem 2.1], one can show that Φ1(., u, y), Φ2(x, u, .)

are increasing and Φ1(x, ., y), Φ1(x, u, .), Φ2(., u, y), Φ1(x, ., y) are decreasing.

Therefore,

Φ1(αx,
1

α
u,

1

α
y) = A1(αx,

1

α
u,

1

α
y, Φ1(αx,

1

α
u,

1

α
y))

≥ A1(αx,
1

α
u,

1

α
y, Φ1(x, u, y))

≥ φ1,λ(α, x, u, y)Φ1(x, u, y),

for all α ∈ (0, 1), x, u ∈ [λx0,
1

λ
x0], y ∈ [λy0,

1

λ
y0]. Also, we obtain

Φ2(
1

α
x,

1

α
u, αy) ≥ φ2,λ(α, x, u, y)Φ2(x, u, y),

for all α ∈ (0, 1), x ∈ [λx0,
1

λ
x0], u, y ∈ [λy0,

1

λ
y0].

Finally, Φ1, Φ2 satisfy all hypotheses of [25, Theorem 2.7]. Thus, the opera-

tor Φ :
◦
P×

◦
P×

◦
P×

◦
P −→

◦
P×

◦
P defined by Φ(x, u, v, y) = (Φ1(x, u, y), Φ2(x, v, y))

has a unique fixed point (x∗, y∗) ∈ [x0, x
0]× [y0, y

0]; that is

Φ(x∗, x∗, y∗, y∗) = (x∗, y∗).

Hence

A(x∗, x∗, y∗, y∗, Φ1(x
∗, x∗, y∗), Φ2(x

∗, y∗, y∗))

= (A1(x
∗, x∗, y∗, Φ1(x

∗, x∗, y∗)), A2(x
∗, y∗, y∗, Φ2(x

∗, y∗, y∗)))

= (Φ1(x
∗, x∗, y∗), Φ2(x

∗, y∗, y∗))

= Φ(x∗, x∗, y∗, y∗) = (x∗, y∗).
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4 Weighted pseudo almost automorphic solu-

tion

In this section, our goal is to prove the existence and uniqueness of weighted

pseudo almost automorphic solution for (2). Throughout the rest of this paper,

we consider ρ ∈ U∞ such that PAA0(R, ρ) is translation invariant and that

the functions f̃ and g̃ in (2) admit the decomposition

f̃(t, x, y) = h1(t, x)f(t, x, y) and g̃(t, x, y) = h2(t, y)g(t, x, y).

As in [14, Lemma 3.2], we have the following lemma.

Lemma 4.1. Suppose that f ∈ WPAA(R×R+, ρ) and one of the following

two conditions holds:

(i) f(t, .) is increasing in R+, and there exists ϕ : (0, 1)× (0, +∞) → (0, 1]

such that ϕ(α, x) > α and f(t, αx) ≥ ϕ(α, x)f(t, x) for all x > 0, α ∈
(0, 1) and t ∈ R.

(ii) f(t, .) is decreasing in R+, and there exists ψ : (0, 1)× (0, +∞) → (0, 1]

such that ψ(α, x) > α and f(t, 1
α
x) ≥ ψ(α, x)f(t, x) for all x > 0, α ∈

(0, 1) and t ∈ R.

Then, for each [a, b] ⊂ (0, +∞), there exists L > 0 such that

|f(t, u)− f(t, v)| ≤ L|u− v|, ∀t ∈ R, ∀u, v ∈ [a, b].

Lemma 4.2. Suppose that f ∈ WPAA(R × R+ × R+, ρ) and one of the

following two conditions holds:

(i) f(t, ., y) is increasing in R+, f(t, x, .) is decreasing in R+, and there

exists ϕ : (0, 1) × (0, +∞) × (0, +∞) → (0, 1] such that ϕ(α, x, y) > α

and f(t, αx, 1
α
y) ≥ ϕ(α, x, y)f(t, x, y) for all x, y > 0, α ∈ (0, 1) and

t ∈ R.

(ii) f(t, ., y) is decreasing in R+, f(t, x, .) is increasing in R+, and there

exists ψ : (0, 1) × (0, +∞) × (0, +∞) → (0, 1] such that ψ(α, x, y) > α

and f(t, αx, αy) ≥ ψ(α, x, y)f(t, x, y) for all x, y > 0, α ∈ (0, 1) and

t ∈ R.
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Then, for each [a, b], [c, d] ⊂ (0, +∞), there exists L > 0 such that

|f(t, x1, y1)− f(t, x2, y2)| ≤ L‖(x1, y1)− (x2, y2)‖
= L(|x1 − x2|+ |y1 − y2|),

∀t ∈ R, ∀x1, x2 ∈ [a, b], ∀y1, y2 ∈ [c, d].

Proof. Suppose (i). Let [a, b], [c, d] ⊂ (0, +∞). Since f ∈ WPAA(R × R+ ×
R+, ρ), we have

L =

sup
t∈R

sup
x∈[a,b],y∈[c,d]

f(t, x, y)

min(a, c)
< +∞.

Let x1, x2 ∈ [a, b], y1, y2 ∈ [c, d]. If x1 ≥ x2, y1 ≤ y2, then

f(t, x1, y1)− f(t, x2, y2) ≥ 0 ≥ −L‖(x1 − x2, y1 − y2)‖.

If x1 < x2, y1 ≤ y2, then

f(t, x1, y1)− f(t, x2, y2) = f(t,
x1

x2

x2, y1)− f(t, x2, y2)

≥ f(t,
x1

x2

x2,
x2

x1

y1)− f(t, x2, y2)

≥ ϕ(
x1

x2

, x2, y1)f(t, x2, y1)− f(t, x2, y2)

≥ x1

x2

f(t, x2, y2)− f(t, x2, y2)

= −|x1 − x2|f(t, x2, y2)

x2

≥ −L|x1 − x2|
≥ −L‖(x1, y1)− (x2, y2)‖.

Similarely if x1 ≥ x2, y1 > y2. If x1 < x2, y1 > y2, then

f(t, x1, y1)− f(t, x2, y2) = f(t,
x1

x2

x2,
y1

y2

y2)− f(t, x2, y2)

≥ min(
x1

x2

,
y2

y1

)f(t, x2, y2)− f(t, x2, y2)

≥ −L‖(x1, y1)− (x2, y2)‖.

Thus, f(t, x1, y1)−f(t, x2, y2) ≥ −L‖(x1−x2, y1−y2)‖ for all x1, x2 ∈ [a, b], y1, y2 ∈
[c, d] and t ∈ R. Then by changing the role of (x1, y1) and (x2, y2), we obtain

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ L‖(x1− x2, y1− y2)‖ for all x1, x2 ∈ [a, b], y1, y2 ∈
[c, d] and t ∈ R. The proof in the case of f satisfying (ii) is similar.
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Lemma 4.3. Let c : R × R+ −→ R be such that the function t −→
c(t, .) is in WPAA(L1(R+), ρ). we assume that there exists b ∈ L1(R+)

such that |caa(t, s)| ≤ b(s) for all t ∈ R and almost everywhere in R+. If

f ∈ WPAA(R, ρ), then the function

h(t) =

∫ t

−∞
c(t, t− s)f(s)ds

is in WPAA(R, ρ). Furthermore the almost automorphic component of h is

given by

haa(t) =

∫ t

−∞
caa(t, t− s)faa(s)ds

Proof. It is easy to show that haa ∈ AA(R). In addition, by a similar proof of

[3, Lemma 5.4] and using the fact that PAA0(R, ρ) is translation invariant ,

one can show that lim
r→+∞

I(r, ρ) = 0, where

I(r, ρ) =
1

m(r, ρ)

∫ r

−r

|
∫ t

−∞
(c(t, t− s)f(s)− caa(t, t− s)faa(s))ds|ρ(t)dt.

This means that h ∈ WPAA(R, ρ) and haa(t) =
∫ t

−∞ caa(t, t− s)faa(s)ds.

Next, we list the following assumptions that we will use them throughout

the rest of this paper.

(H1) α1, α2 ∈ WPAA(R, ρ) and h1, h2, k1, k2 ∈ WPAA(R × R+, ρ) are

nonnegative functions such that haa
1 , haa

2 , kaa
1 , kaa

2 are uniformly con-

tinuous in any bounded subset K ∈ R+ uniformly in s ∈ R. Also,

f, g ∈ WPAA (R× R+ × R+, ρ) are nonnegative functions such that

faa, gaa are uniformly continuous in any bounded subset K ∈ R+ × R+

uniformly in s ∈ R.

(H2) For all s ∈ R, f(s, ., y), g(s, x, .), are increasing and f(s, x, .), g(s, ., y),

h1(s, .), h2(s, .), k1(s, .), k2(s, .) are decreasing. Moreover, there exist

constants L1, L2 > 0 such that for i = 1, 2

ki(s, ξ)− ki(s, ν) ≥ −Li(ξ − ν), ∀s ∈ R, ∀ξ ≥ ν ≥ 0. (8)
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(H3) There exist ϕ1, ϕ2 : (0, 1)× (0, +∞) → (0, 1], ψ1, ψ2 : (0, 1)× (0, +∞)×
(0, +∞) → (0, 1] such that

h1(s,
1

α
x) ≥ ϕ1(α, x)h1(s, x), f(s, αx,

1

α
y) ≥ ψ1(α, x, y)f(s, x, y),

h2(s,
1

α
x) ≥ ϕ2(α, x)h2(s, x), g(s,

1

α
x, αy) ≥ ψ2(α, x, y)f(s, x, y),

and

ϕi(α, x) > α, ψi(α, x, y) > α, i = 1, 2,

∀x, y > 0,∀α ∈ (0, 1), ∀s ∈ R. Moreover, for any 0 < a ≤ b < +∞ and

0 < c ≤ d < +∞

inf
x,u∈[a,b],y∈[c,d]

ϕ1(α, u)ψ1(α, x, y) > α,

inf
x∈[a,b],u,y∈[c,d]

ϕ2(α, u)ψ2(α, x, y) > α,

for every α ∈ (0, 1).

(H4) c1, c2 are functions from R × R+ to R+ and the function t −→ ci(t, .) is

in WPAA(L1(R+), ρ) for i = 1, 2 . Moreover, there exist b1, b2 ∈ L1(R+)

such that |caa
i (t, s)| ≤ bi(s), i = 1, 2, for all t ∈ R and almost everywhere

for s ∈ R+.

Now, we are ready to present and prove our results for the existence and

uniqueness of positve solution.

Theorem 4.4. Assume that (H1)-(H4) hold. Moreover, for each τ > 0

there exist σ1, σ2 ∈ (0, τ ] and there exist τ1 ≥ σ1, τ2 ≥ σ2 such that

(i)

inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ1)f(s, σ1, τ2)ds ≥ σ1,

inf
t∈R

∫ t

−∞
c2(t, t− s)h2(s, τ2)g(s, τ1, σ2)ds ≥ σ2.

(9)

(ii)

sup
t∈R

α1(t)τ1 + sup
t∈R

∫ t

−∞
c1(t, t− s)h1(s, σ1)f(s, τ1, σ2)ds + k1(t, τ1) ≤ τ1,

sup
t∈R

α2(t)τ2 + sup
t∈R

∫ t

−∞
c2(t, t− s)h2(s, σ2)g(s, σ1, τ2)ds + k2(t, τ2) ≤ τ2,

(10)
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Then, system (2) has exactly one weighted pseudo almost automorphic solution

(x∗, y∗) ∈
◦
P ×

◦
P .

Proof. It consist to prove that all hypotheses of Theorem 3.2 are satisfied for

adequate operators A1 and A2. Denote by P the following set in the Banach

space WPAA(R, ρ)

P = {x ∈ WPAA(R, ρ) : x(t) ≥ 0, ∀t ∈ R}.

It is not difficult to verify that P is a normal and solid cone in WPAA(R, ρ)

and ◦
P = {x ∈ P : ∃ε > 0 such that x(t) ≥ ε, ∀t ∈ R}.

Consider the nonlinear operator A(x, u, v, y, ξ, ν) = (A1(x, u, y, ξ), A2(x, v, y, ν))

with

A1(x, u, y, ξ) = B1(x, u, y, ξ) + D1(x), A2(x, v, y, ν) = B2(x, v, y, ν) + D2(y).

such that for all x, u, v, y, ξ, ν ∈
◦
P and t ∈ R

B1(x, u, y, ξ)(t) =

∫ t

−∞
c1(t, t− s)h1(s, u(s))f(s, x(s), y(s))ds + k1(t, ξ(t)),

B2(x, v, y, ν)(t) =

∫ t

−∞
c2(t, t− s)h2(s, v(s))f(s, x(s), y(s))ds + k2(t, ν(t)).

and

D1(x)(t) = α1(t)x(t− β1), D2(y)(t) = α2(t)y(t− β2).

By Lemma 2.9, it is easy to show that D1, D2 are linear operators from P to P .

In addition, it follows from (H1)-(H3), Lemma 4.1, Lemma 4.2 and Theorem

2.11 that

h1(., x(.)), h2(., x(.)), f(., x(.), y(.)), g(., x(.), y(.)) ∈ WPAA(R, ρ), ∀x, y ∈
◦
P .

Also, since k1(t, .) and k2(t, .) are decreasing in R+ and satisfying (8), one can

obtain for i = 1, 2

|ki(t, ξ)− ki(t, ν)| ≤ Li|ξ − ν|,∀t ∈ R,∀ξ, ν ≥ 0,

which, with (H1) and Theorem 2.11 , yields that k1(., ξ(.)), k2(., ξ(.)) ∈ WPAA(R, ρ), ∀ξ ∈
◦
P. Combining this with Lemma 2.6, Lemma 2.9, Lemma 4.3 and (H4) we ob-

tain A1(x, u, y, ξ), A2(x, u, y, ξ) ∈ WPAA(R, ρ) for all x, u, y, ξ ∈
◦
P .
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Next, we prove that B1, B2 :
◦
P ×

◦
P ×

◦
P ×

◦
P −→

◦
P . Let x, u, y, ξ ∈

◦
P .

Denote

ε = inf
t∈Rx(t) and τ = max{sup

t∈R
u(t), sup

t∈R
y(t)}.

Then,

inf
t∈RB1(x, u, y, ξ)(t) ≥ inf

t∈R

∫ t

−∞
c1(t, t− s)h1(s, u(s))f(s, x(s), y(s))ds

≥ inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ)f(s, ε, τ)ds.

By (9), there exist σ1, σ2 ∈ (0, τ ] and there exist τ1 ≥ σ1, τ2 ≥ σ2 such that

inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ1)f(s, σ1, τ2)ds ≥ σ1.

Suppose that ε < σ1, τ > τ1, τ > τ2 (the other cases are similar and easier to

prove), then

inf
t∈RB1(x, u, y, ξ)(t) ≥ inf

t∈R

∫ t

−∞
c1(t, t− s)h1(s,

τ

τ1

τ1)f(s,
ε

σ1

σ1,
τ

τ2

τ2)ds

≥ τ1

τ
min(

ε

σ1

,
τ2

τ
)inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ1)f(s, σ1, τ2)ds

≥ τ1

τ
min(

ε

σ1

,
τ2

τ
)σ1 > 0.

Thus, B1(x, u, y, ξ) ∈
◦
P and hence A1(x, u, y, ξ) ∈

◦
P . Analogously, one can

show that A2(x, u, y, ξ) ∈
◦
P for all x, u, y, ξ ∈

◦
P .

Now, let us prove (S1)-(S4) of Theorem 3.2. It is easy to see that (S1) and

(S4) follow from (H2). To prove (S2), suppose x, u, y, ξ ∈
◦
P and α ∈ (0, 1).

Set

a(x, u, y) = min{inf
s∈R x(s), inf

s∈R u(s), inf
s∈R y(s)},

b(x, u, y) = max{sup
s∈R

x(s), sup
s∈R

u(s), sup
s∈R

y(s)}.

Then, 0 < a(x, u, y) ≤ b(x, u, y) < +∞ and x(s), u(s), y(s) ∈ [a(x, u, y), b(x, u, y)]

for all s ∈ R. We difine

φi(α, x, u, y) = inf
β,γ,η∈[a(x,u,y),b(x,u,y)]

ϕi(α, γ)ψi(α, β, η), i = 1, 2.
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By (H3), we have

B1(αx,
1

α
u,

1

α
y, ξ)(t) =

∫ t

−∞
h1(s,

1

α
u(s))f(s, αx(s),

1

α
y(s))ds + k1(t, ξ(t))

≥ φ1(α, x, u, y)

∫ t

−∞
h1(s, u(s))f(s, x(s), y(s))ds + k1(t, ξ(t)),

which means that

B1(αx,
1

α
u,

1

α
y, ξ) ≥ φ1(α, x, u, y)B1(x, u, y, ξ)

for each x, u, y, ξ ∈
◦
P and α ∈ (0, 1). Similarly, we obtain

B2(
1

α
x,

1

α
u, αy, ξ) ≥ φ2(α, x, u, y)B2(x, u, y, ξ)

for each x, u, y, ξ ∈
◦
P and α ∈ (0, 1). Finally, (S3) follows from (9), (10) and

(H3). The proof is completed.

In the following corollary, we give a concrete way to obtain the constants

τ1, τ2, σ1, σ2 of the previous theorem. First, let us introduce some notations.

We set uniformly in t ∈ R and p, q ∈ [0, 1]:

lim inf
(x,y)−→(0+,+∞)

f(t, x, y)

xp
= fp,(0+,+∞)(t), lim inf

u−→+∞
h1(t, u)

uq
= h1,q,+∞(t),

lim sup
(x,y)−→(+∞,0+)

f(t, x, y)

xp
= f p,(+∞,0+)(t), lim sup

u−→0+

h1(t, u)

uq
= hq,0+

1 (t),

lim inf
(x,y)−→(+∞,0+)

g(t, x, y)

yp
= gp,(+∞,0+)(t), lim inf

u−→+∞
h2(t, u)

uq
= h2,q,+∞(t),

lim sup
(x,y)−→(0+,+∞)

g(t, x, y)

yp
= gp,(0+,+∞)(t), lim sup

u−→0+

h2(t, u)

uq
= hq,0+

2 (t).

Corollary 4.5. Assume that (H1)-(H4) hold. Moreover there exist p, q ∈
[0, 1] such that the following conditions hold:

(i)′

inf
t∈R

∫ t

−∞
c1(t, t− s)h1,q,+∞(s)fp,(0+,+∞)(s)ds > 1,

inf
t∈R

∫ t

−∞
c2(t, t− s)h2,q,+∞(s)gp,(+∞,0+)(s)ds > 1.

(11)
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(ii)′

sup
t∈R

∫ t

−∞
c1(t, t− s)hq,0+

1 (s)fp,(+∞,0+)(s)ds < 1,

sup
t∈R

∫ t

−∞
c2(t, t− s)hq,0+

2 (s)gp,(0+,+∞)(s)ds < 1,

αi = sup
t∈R

αi(t) < 1, i = 1, 2.

(12)

Then system (2) has exactly one weighted pseudo almost automorphic solution

(x∗, y∗) ∈
◦
P ×

◦
P .

Proof. We prove that hypotheses (i) and (ii) of Theorem 4.4 are satisfied.

From (i)′ and (ii)′, there exist ε > 0 verifying

inf
t∈R

∫ t

−∞
c1(t, t− s)(h1,q,,+∞(s)− ε)(fp,(0+,+∞)(s)− ε)ds > 1,

sup
t∈R

∫ t

−∞
c1(t, t− s)(hq,0+

1 (s) + ε)(fp,(+∞,0+)(s) + ε)ds < 1.

It follows that there exist numbers δ,M with 0 < δ < 1 < M such that

h(s, u) ≥ (h1,q,+∞(s)− ε)uq, ∀u ≥ M, ∀s ∈ R,

f(s, x, y) ≥ (fp,(0+,+∞)(s)− ε)xp, ∀x ≤ δ, ∀y ≥ M, ∀s ∈ R

and

h(s, u) ≤ (hq,0+

1 (s) + ε)uq, ∀u ≤ δ, ∀s ∈ R,

f(s, x, y) ≤ (fp,(+∞,0+)(s) + ε)xp, ∀x ≥ M, ∀y ≤ δ, ∀s ∈ R.

Let τ1, τ2 ≥ M , σ1, σ2 ∈ (0, δ] with σq
1 < 1− α1 and σq

2 < 1− α2. Then,

inf
t∈R

∫ t

−∞
c1(t, t− s)h1(s, τ1)f(s, σ1, τ2)ds

≥ inf
t∈R

∫ t

−∞
c1(t, t− s)(h1,q,+∞(s)− ε)τ q

1 (fp,(0+,+∞)(s)− ε)σp
1ds

≥ τ q
1σp

1 ≥ σ1.

This prove the first inequalitie of (9). We follow the same reasoning to get the
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second inequalitie. On the other hand,

α1τ1 + sup
t∈R

∫ t

−∞
c1(t, t− s)h1(s, σ1)f(s, τ1, σ2)ds + k1(t, τ1)

≤ α1τ1 + sup
t∈R

∫ t

−∞
c1(t, t− s)(hq,0+

1 (s) + ε)σq
1(f

p,(+∞,0+)(s) + ε)τ p
1 ds + k1(t, 0)

≤ α1τ1 + σq
1τ

p
1 + k1(t, 0) ≤ (α1 + σq

1)τ1 + k1(t, 0).

Since k1(., 0) is bounded, we can choose a sufficiently large constant τ1 such

that (α1 + σq
1)τ1 + k1(t, 0) ≤ τ1. This prove the first inequalitie of (10). To

prove the second inequalitie, one can follows the same reasoning. The proof is

ended.

5 Example

Example 5.1. Consider system (2) by setting, for all (t, x, y) ∈ R×R+×R+

and α ∈ (0, 1)

ρ(t) = et, α1(t) = α2(t) ≡ 1

3
, β1 = β2 = 1,

f(t, x, y) = {1 + cos2 1

2 + sin t + sin
√

2t
+ e−t} 3

√
(y + 3) ln(x + 1)

y + 1

g(t, x, y) = {1 + cos2 1

2 + sin t + sin
√

2t
+ e−t} 3

√
(x + 3) ln(y + 1)

x + 1

c1(t, s) = c2(t, s) =
1

1 + s2
, h1(t, x) = h2(t, x) = 3

√
x + 3

x + 1
and

k1(t, x) = k2(t, x) =
1 + sin t

1 + x
.

Take p = 1
2
, q = 0, L1 = L2 = 1 and define

ϕ1(α, x) = 3

√
(x + 1)(x + 3α)

(x + α)(x + 3)
, ψ1(α, x, y) = 3

√
(y + 1)(y + 3α) ln(αx + 1)

(y + α)(y + 3) ln(x + 1)
,

ϕ2(α, y) = 3

√
(y + 1)(y + 3α)

(y + α)(y + 3)
and ψ2(α, x, y) = 3

√
(x + 1)(x + 3α) ln(αy + 1)

(x + α)(x + 3) ln(y + 1)
.
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It is easy to verify that for i = 1, 2

ϕi(α, x) > α
1
3 , ψi(α, x, y) > α

2
3 , hi,0,+∞(t) = 1, h0,0+

i (t) =
3
√

3 and

f 1
2
,(0+,+∞)(t) = g 1

2
,(+∞,0+)(t) = 1 + cos2 1

2 + sin t + sin
√

2t
+ e−t,

f
1
2
,(+∞,0+)(t) = g

1
2
,(0+,+∞)(t) = 0.

Then,we have all hypotheses of corollary 4.5 are verified. Hence, system (2)

with the above functions has a unique positive weighted pseudo almost auto-

morphic solution.
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