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Abstract 

In this paper, we consider and examine the performance of two-step LM unit root 
tests with trend-breaks. In the first step, we jointly test for the existence and 
location of breaks using a maximum F-test. In the second step, we utilize the 
identified breaks and test for a unit root. A transformation procedure is adopted so 
that the tests with trend-breaks are invariant to nuisance parameters. We show that 
the two-step LM unit root tests have better properties of size and power than 
endogenous break unit root tests. In addition, the two-step test can be conveniently 
applied to allow for multiple breaks. 
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1  Introduction 
In this paper, we consider and examine the performance of two-step Lagrange 
Multiplier (LM) unit root tests with trend breaks.  Our goal is to look for more 
reliable unit root tests when trend breaks are included in the model.  As is well 
known, the distribution of unit root tests with breaks often depends on the 
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parameter(s) describing the break(s).  When the break location is known, one can 
use the exogenous test as in Perron (1989) and Amsler and Lee (1995).  The break 
locations are rarely known a priori.  When the break location is not known, the so-
called endogenous break unit root tests have been considered.  

However, Nunes, Newbold and Kuan (1997) and Lee and Strazicich (2001) raised 
the question on the endogenous unit root tests, regarding the dependency on the 
nuisance parameter(s).4  Despite popularity, it has been reported in the literature 
that these tests depend on the nuisance parameter describing the break(s) under the 
null.  As such, these tests assume that breaks are absent under the null.  In the 
usual tests with breaks, the magnitude of breaks under the null should not affect 
the distribution of the test statistic so the same critical values can be used 
throughout.  To achieve this outcome in endogenous tests, the critical values in the 
above tests are derived by assuming that the magnitude of any break under the null 
is zero.  However, as noted in Nunes, Newbold and Kuan (1997) and Lee and 
Strazicich (2001), these endogenous unit root tests are not pivotal and spurious 
rejections occur under the null when the magnitude of breaks is not zero.  As a 
result, when adopting these tests, rejection of the null does not imply a trend-
(break) stationary time series and the possibility of a unit root with break(s) 
remains.  Note that these endogenous tests contrast with the exogenous tests, 
which are invariant to the magnitude of breaks under the null.  A recent survey 
paper by Perron (2006) also recognizes this critical drawback of assuming the 
absence of breaks under the null and provides a warning in this regard. 5 

In a related issue, we note that the existing endogenous unit root tests always find 
and include the number of breaks that are pre-specified in the model. For example, 
the one-break minimum or maximum unit root tests always identify and include 
one break.  However, what if there is no break and the one-break test is adopted?  
Or, what if there is one break and the two-break test is adopted?  In either case, 
one or more unnecessary breaks will be included in the unit root test and lower 
power will result.  Whether or not a structural break exists is an empirical issue 
that must be determined from the data. 

In practice, there is another conceptual issue in the use of exogenous versus 
endogenous break unit root tests.  If the break point is known, then the exogenous 
unit root test will be preferred to increase power.  In contrast, when the break 
point is unknown and must be estimated, endogenous tests are typically adopted to 

                                                 
4  Perhaps the most popular endogenous type unit root tests have been the minimum tests 
of Zivot and Andrews (1992) and Lumsdaine and Papell (1997), and the maximum tests 
of Perron (1997) and Vogelsang and Perron (1998). 
 
5 Lee, Strazicich and Meng (2012) compare properties of nine different Dickey-Fuller 
type endogenous break tests and issue similar warnings for these tests. 
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jointly identify the break and test for a unit root.  However, these endogenous unit 
root tests have larger (absolute) critical values than those in the corresponding 
exogenous tests.  As a result, the unit root null might be rejected for a times series 
when using the exogenous test, but not with the endogenous test.  This begs the 
question, what if the break point is initially unknown, but can be accurately 
identified prior to performing the unit root test? 

To address the above questions and improve upon the extant literature, in this 
paper we will consider a two-step procedure to identify breaks and test for a unit 
root.  In the first step, we jointly determine whether and where structural breaks 
occur in the data, and in the second step we test for a unit root.  To identify and 
test the significance of breaks, we adopt a maximum F (maxF) test.  For example, 
in the simplest case, where no structural break should be included in the model, 
we want to utilize the no-break test.  Then, since the location and/or existence of 
breaks are known following the first step, we utilize the exogenous test in the 
second step.  This is important, since, as noted, the exogenous tests have greater 
power than the endogenous tests.   

We additionally utilize new unit root testing procedures that are invariant to trend-
breaks.6  When there is only one break, we can find and utilize critical values at 
different break points.  With two or more breaks, however, providing the correct 
critical values at different break point combinations can be inconvenient and may 
not be readily available to practitioners, especially in cases with trend breaks.  
Although this drawback is more of a practical inconvenience than a detriment to 
the validity of the unit root test, it would be helpful if the relevant critical values 
are readily available even with two or three breaks.  We do this by adopting the 
data transformation procedure described in Park and Sung (1994).  As we will 
demonstrate, when the lagged regressor variable is transformed using the ratio of 
sub-samples before or after the break, the unit root test statistic no longer depends 
on the location of trend-breaks.  Relevant asymptotic properties are provided to 
justify the procedure.  Moreover, the same transformation method can be 
conveniently applied to models with multiple breaks.  This will be especially 
convenient when considering a larger number of possible break point 
combinations as the number of structural breaks increases.   

Note that some existing unit root tests with multiple breaks tend to ignore the 
dependency on the nuisance parameter by assuming no break under the null, as in 
the endogenous DF-type unit root tests noted above.  Such tests are simply invalid 
and are subject to spurious rejections.  In contrast to these other tests, the two-step 
test with multiple breaks is a valid unit root test, since the test remains invariant to 

                                                 
6 In the presence of trend-breaks, the minimum LM unit root test depends on the location 
of the break(s) (Lee and Strazicich, 2003, 2004).  More recently, Nunes (2004) utilizes a 
t-max LM unit root test and finds improved performance.  However, the t-max unit root 
test still depends on the location of the trend-break. 
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nuisance parameters.  As we will show, with multiple breaks the two-step unit root 
test depends only on the number of breaks and is valid whether the underlying 
series is stationary or not.  Overall, we find that the proposed two-step unit root 
test accurately identifies breaks and has better properties of size and power than 
the endogenous break unit root tests. 

The remainder of the paper is organized as follows.  In Section 2, we examine 
properties of the LM unit root test when trend-breaks are known.  In Section 3, 
two-step procedures are developed to determine the existence and location of 
unknown trend-breaks.  In Section 4, simulation results are provided to examine 
the performance of the two-step unit root test.  Comparisons to endogenous tests 
are also provided in the simulations.  Section 5 summarizes and concludes.  
Throughout the paper, " " indicates weak convergence as . 

 
 

2  LM Unit Root Tests with Known Trend-Breaks 
We consider the following data generating process (DGP) based on the 
unobserved component representation: 

                     ,                                   (1) 
where  contains exogenous variables.  The unit root null hypothesis is .  If 

, then the DGP is the same as that in the no-break test of Schmidt and 
Phillips (1992, hereafter SP).  The level-shift only, or “crash,” model can be 
described by , where  for  and zero otherwise, 
and  stands for the time period of the break.  The LM version of the crash 
model was initially examined in Amsler and Lee (1995).  The trend-break, or 
“changing growth,” model can be described by , where 

 for , and zero otherwise.  Finally, when 
, we have the most general model with level and trend break.  

This general model is the most widely utilized in applied works and will be the 
focus of our paper. 

To consider multiple breaks, we can include additional dummy variables such 
that: 

        ,                                 (2) 
where  for , , and zero otherwise, and 

 for  and zero otherwise.  Following the LM (score) 
principle, we impose the null restriction  and consider in the first step the 
following regression in differences: 
                               ,                                              (3) 
where , .  The unit root test statistics are then 
obtained from the following regression: 
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                                                      ,                             (4) 
where  denotes the de-trended series 

                                .                                           (5) 
Here,  is the coefficient in the regression of  on  in (3), and  is the 
restricted MLE of .  That is, .  Subtracting  in (5) makes the 
initial value of the de-trended series begin at zero with , while letting  
leads to the same result.  It is important to note that in the de-trending procedure 
(5), the coefficient  was obtained in regression (3) using first differenced data.  
Thus, the de-trending parameters are estimated in the first step regression in 
differences.  Through this channel the dependency on nuisance parameters is 
removed in the crash model.  However, as we will discuss later, the dependency 
on nuisance parameters is not removed with this de-trending procedure in the 
model with trend breaks. 

The LM unit root test statistic is defined by: 

      -statistic  for  the  null  hypothesis  .                       (6) 
To allow for serially correlated and heterogeneously distributed innovations, we 
require the assumption that the innovations  satisfy the regularity conditions of 
Phillips and Perron (1988, p. 336).  We define two nuisance parameters 

 and  , and let .  
The innovation variance  is estimated as the error sum of squares from 
regression (4).  The long-run variance is estimated by choosing a truncation lag 
parameter  and a set of weights , : , where  is 
the th sample autocovariance of the residuals from regression (4).  We can 
modify the statistics accordingly with the correction factor  to correct 
for the effect of autocorrelated errors with .  Alternatively, one can 

include the terms ,  in (4) to correct for serial correlation in the 
usual augmented type tests: 

            .                          (7) 

The asymptotic distribution of the test statistics can be based on the following 
result, as shown in Im, Lee and Tieslau (2011).   

Proposition 1  Suppose that the data generating process implies (1) with  
and   for the model with level and trend-
breaks.  We define , the weak limit of the partial sum residual process   in 
(5), as follows: 
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 .      (8) 

Then, we have   

                             ,                                    (9) 

where  denotes the fraction of sub-samples in each regime such 
that  , , , and . 
Here,  is the projection of the process  on the orthogonal complement of 
the space spanned by the trend break function , as defined over the 
interval , where , and  is a Wiener process 
for .7 

The result in (9) shows that in contrast to the model with level shift in Amsler and 
Lee (1995), the asymptotic distribution of the test statistic with trend breaks 
depends on the nuisance parameters, .  Thus, as noted in Im, Lee and Tieslau 
(2011), we adopt an approach similar to that in Park and Sung (1994).  Then, the 
dependency of the test statistic on the nuisance parameter can be removed by 
performing the following transformation: 

             .                        (10) 

We then replace  with  in the testing regression and change (7) to as 
follows: 

 .                                   (11) 

 

Theorem 1  Let  be the  -statistic for .  Then, the asymptotic distributions 
of these test statistics will be invariant to the nuisance parameter � 

                                                 
7 In the above, the argument  is defined over the range between 

and , which has been transformed into  defined over the range 0 to 1. 
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                      ,                           (12) 

where  is defined in Proposition 1. 

  
The proof is given in Im, Lee and Tieslau (2011).  The above result shows that, 
following the transformation, the unit root test statistic  no longer depends on 
the nuisance parameter  in the trend-break model, although information on  is 
required to construct the test statistic.  Instead, the asymptotic distribution of  
depends only on the number of trend breaks, since the distribution is given as the 
sum of  independent stochastic terms.  With one trend-break ( ), the 
distribution of  is the same as that of the untransformed test  using , 
regardless of the initial location of the break(s).  Similarly, with two trend-breaks 
( ), the distribution of  is the same as that of the untransformed test  using 

 and .  In general, for the case of  multiple breaks, the same 
analogy holds: the distribution of  is the same as that of the untransformed test  
using , .  Therefore, we do not need to simulate new 
critical values at all possible break point combinations.  Instead, we only need 
critical values that correspond to the number of breaks, .  The critical values of 
the transformed LM tests with trend shifts are provided in Im, Lee and Tieslau 
(2011) for various values of T when . 

As we will see, the above invariance results will prove helpful in constructing LM 
unit root tests with unknown trend-breaks.  However, the invariance result does 
not mean that one can adopt an incorrect number and/or placement of breaks, even 
under the null.  In fact, one should include the correct number of breaks and their 
correct placement when performing unit root tests.  First is the matter of power: 
unit root tests will lose power under the stationary alternative hypothesis if the 
number and/or placement of the break(s) are incorrect.  As noted, Perron (1989) 
showed that the usual ADF tests will be biased against rejecting the null when the 
stationary alternative is true and a structural break is ignored.  This outcome will 
similarly hold for LM tests with trend-breaks.  However, what about properties 
under the null when an incorrect model is adopted?  Amsler and Lee (1995) 
showed that the LM unit root tests with level-shifts will be unaffected 
asymptotically under the null, even when an incorrect number of breaks or their 
incorrect location is adopted.  However, this is not the case with trend-breaks.  In 
the following, we demonstrate that LM unit root tests allowing for level-shifts will 
be affected even under the null if trend breaks exist but are ignored.8 

                                                 
8 Perron (1989) initially examined the effect of ignoring breaks when the alternative 
hypothesis is true, but did not examine the effect of ignoring breaks when the null is true. 
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Proposition 2  Suppose that the data generating process implies (1) with  
and  , but the crash model with level-shifts 
only is adopted.  We denote the resulting test statistic as .  Then, it follows that 
the asymptotic distribution of tests using the mis-specified model will be as 
follows: 

 . 
Proof: see the Appendix. 
 
Proposition 2 indicates that the effect of ignoring trend-breaks in the unit root 
testing model is not negligible even asymptotically.  Downward size distortions 
will occur when existing trend-breaks are ignored and only level shifts are 
included.  We expect a similar bias to occur if the usual LM unit root test without 
breaks is adopted when the underlying model includes trend-breaks.  The results 
of Proposition 2 can be easily generalized: similar size distortions are expected 
when the number of trend-breaks is under-estimated. 

 
 

3  LM Unit Root Tests with Unknown Trend-Breaks 
In practice, one rarely knows the correct number ( ) and location ( ) of 
structural breaks.  As noted, the correct number and location of breaks is 
necessary to avoid a loss of power.  Determining the correct number of breaks, 
however, has been difficult due mainly to the nuisance parameter dependency 
problem.  Following Davies (1987), it is well known that tests for  versus  
breaks face a nuisance parameter problem, due to the fact that the location 
parameter is not identified under the null of  breaks.  With stationary data there 
are good solutions to this problem, but these solutions cannot be applied when the 
order of integration is one or unknown.9  To propose a solution, we suggest 
adopting a two-step procedure.  In the first step, we identify and test for the 

                                                 
9 For example, the popular Bai and Perron (1998) procedure cannot be used to determine 
the number and/or location of breaks in unit root tests, since the method is valid only 
when the data is known to be stationary.  The paper by Vogelsang (1998) is encouraging 
in this regard, since the suggested method to test for a trend is argued to be valid whether 
the order of integration is 1 or 0.  But, it seems that this method cannot be directly 
applicable to unit root testing procedures.  In order to apply the procedure to unit root 
tests, prior information on the order of integration is necessary, which must first be 
determined with a unit root test.  In a recent paper, Perron and Kim (2006) propose a two-
step method to identify a trend-break that is suggested to be valid in unit root tests where 
the order of integration is unknown. However, their method may not be directly 
applicable to LM tests and we do not pursue their method in the present paper.  Moreover, 
there is a sense that information on the persistence of the data is required before the trend-
break can be identified. 
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significance of breaks using an -test.  Then, in the second step, we utilize the 
exogenous LM unit root test with one break if the null of no break is rejected.  
Similarly, we use the conventional no break LM unit root test if the null of no 
break is not rejected.  We can utilize the same -test to sequentially determine the 
number of breaks. 

There are compelling reasons why a two-step procedure is appropriate.  Most 
important, when utilizing the endogenous break unit root tests there is a size 
distortion leading to under rejections of the null that will depend on the likelihood 
of correctly identifying the break(s).10  For example, suppose that the magnitude 
of a break is small or negligible under the null or alternative.  If so, using a 
minimum or maximum endogenous unit root test that assumes a certain number of 
breaks would be inappropriate.  In our two-step procedure, we suggest that if the 
magnitude of the break (in a one-break test) is small, it is more sensible to apply a 
unit root test without break.  In contrast, if the magnitude of the break is large then 
the chance of identifying the break correctly is almost certain, and it is sensible to 
include the break in the unit root test.  As such, in cases where the magnitude of 
the break is large and can be estimated with certainty, it seems misleading to use 
the larger (in absolute value) critical values from the endogenous break unit root 
test.11 

From the above, it is clear that the distribution of the endogenous break unit root 
test statistic will depend on the probability of correctly estimating the break 
location, , such that 

 , 

where  is the asymptotic distribution of  conditional on .  
In essence, it is simply difficult to determine the exact distribution of the test 
statistic and the question remains as to which critical values to adopt.  As an 
extreme case, suppose that .  In this case, the break points are 

                                                 
10 Note that this (negative) size distortion in endogenous break unit root tests is more 
general and differs from the spurious rejections found in the Dickey-Fuller type 
endogenous break tests. 
 
11 Perron (1997) argues convincingly that using exogenous unit root tests is appropriate in 
many cases when the break dates are known to relate to well recognized events, such as 
the Great Depression or the oil price shocks of the early 1970s.  In applied works, 
practitioners can be confused about which test to use in such cases.  For example, suppose 
that a break occurs and the break point is known.  Any good endogenous test should be 
able to detect the known break point.  Then, it is not clear if the exogenous or endogenous 
test critical values should be used if the break point was estimated and conclusions may 
differ in each case. 
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correctly estimated with certainty.  This is the case when Assumption (a) is 
satisfied as follows: 

Assumption (a) 

 , and , as . 
Under Assumption (a) the distribution of  asymptotically approaches that of the 

 test, which assumes known, or exogenous, breaks.  This outcome will occur 
when the size of the break ( ) is large enough.  When  is small,  departs 

from one, and when ,  has a uniform distribution.  As such, using 
endogenous test critical values can lead to (negative) size distortions that depend 
on the magnitude of the break(s).   

The above begs the question: how big should a break be in order to be considered 
as important structural change?  The answer to this question is an empirical matter 
that must be determined by statistical inference and will depend on the magnitude 
of the break.  To do so, we utilize an -test in the first step to test for the existence 
of breaks.  As the location and size of the break(s) is unknown, we estimate the 
break locations obtained by maximizing the -statistic for the joint significance of 
the break dummy variables (we refer to this method as max ).  The max  method 
is essentially the same as the -max method, which amounts to minimizing the 
SSR.  As we will demonstrate, the max  procedure determines the break point 
with 100% accuracy for large breaks and provides justification for using the 
exogenous test in our second step.  At the same time that we identify the break 
point, we apply the -statistic to test the null hypothesis of no break against the 
alternative that a break exists.  We use the following -statistic: 

                          or ,                            (13) 

where  is the number of restrictions,  is the number of regressors in (7) or (11), 
and  denotes the SSR from the LM unit root test without breaks. The use of 

 or depends on whether  denotes the SSR from regression (7) for the 
untransformed tests ( ), or from regression (11) for the transformed tests ( ).  A 
sequential method using the same -test can be adopted to test for the existence of 
multiple breaks.  For example, given the presence of one break, we can then 
similarly test for the existence of two breaks, and so on.  Alternatively, we can test 
for the existence of two breaks against the alternative hypothesis of no break.  In 
this case, the restricted and unrestricted models can be properly defined. 

When the break location is known a priori, the distribution of the -statistic in 
(13) is standard and the usual critical values can be employed. When  is 
unknown, using the untransformed and transformed data respectively, we identify 
the break by performing the following grid search: 

                  and                      (14) 
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where  uses the estimated break location,  

( ).  The asymptotic distribution of the -test is given as follows: 

 

Proposition 3  Suppose that  is generated by the data generating process (1) 
with , there are no breaks.  Then, 

 ,   (15) 

where  is a demeaned Brownian bridge, and  is defined in Proposition 
1. 

Proof.  See the Appendix. 
 

The critical values of the max  test are displayed in Panel A of Table 1 for 
, and were obtained against the DGP involving no breaks.  For 

comparison, the critical values of the -test using the untransformed regression 
(7) are reported in Panel B of Table 1 for .  Note that the distribution of the 

-statistic in (13) is non-standard for two reasons.  First, this outcome is due to 
the fact that the nuisance parameter  is present only under the alternative 
hypothesis and is not identified under the null hypothesis of no break. However, 
any nuisance parameter dependency is resolved due to the fact that max  is an 
order statistic estimated by finding the maximum -statistic (13) over the range of 
breaks .  Second, the unit root null is imposed in the DGP (1) with 

 in constructing test statistics for max .  Certainly, it is desirable to 
develop a test that is valid regardless of whether the data is integrated or not.  This 
task, however, seems difficult in our case of applying to unit root tests.  A 
troublesome issue noted in recent developments in this direction, such as in 
Vogelsang (1998) and elsewhere, involves the fact that there is no feasible way to 
develop valid tests without using a priori information on the order of integration.  
However, if the order of integration is known, there is no need to perform unit root 
tests.   As a solution, one may possibly impose  in the DGP, but this also 
poses a difficulty.  This way of dealing with the problem includes the approach 
suggested by Bai and Perron (1998) when testing for the presence of multiple 
structural changes.  While these types of tests are valid with stationary data, they 
tend to diverge when the data is persistent or integrated.  This outcome is obvious 
from the findings in Phillips (1986), who showed that an -test tends to diverge 
spuriously in integrated series.  For this reason, the Bai and Perron (1998) method 
cannot be adopted to test for structural changes in unit root tests.  However, 
imposing  in the DGP is justified for our -test and can be used to obtain 
valid tests under the unit root null hypothesis.  Our proposed -test has decent 
size and power against trend-breaks under the unit root hypothesis.  How this 
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treatment affects performance under the stationarity alternative is a question to 
consider.  Fortunately, our simulation results in the next section show that any 
power loss problem is mild or negligible.  We conclude that the -test can be well 
applied to a stationary or nonstationary process. 

 

Table 1: Critical Values of -Statistics with Trend-Breaks 

  sig. 
level 

Sample Size 

Test  (%)  50 100  
200 

 
500 

 
1000 

 

Panel A.  Max -statistic for the Significance of Structural Changes 
(Transformed Tests with Trend-breaks) 

 
max  1 1 14.084 13.089 12.960 13.369 13.691 

  5 10.801 10.435 10.546 11.062 11.532 
  10 9.397 9.245 9.466 10.045 10.486 
 2 1 12.490 11.612 10.881 11.120 11.889 
  5 10.456 9.591   9.546 9.988 10.371     
  10 9.373 8.777   8.728    9.286      9.807      

 

Panel B. Max -statistic for the Significance of Structural Changes  
(Untransformed Tests with Trend-breaks) 

 
max  1 1 13.683 12.654 12.352   13.132   13.166 

  5 10.262   9.862   10.109 10.670 11.148 
  10 8.931 8.751   8.932     9.554   10.120 

 
 

The two-step procedure can be summarized as follows.  First, we apply the max  
test to identify the break locations and test the significance of breaks.  Second, if 
we cannot reject the null of no break, we apply the usual no-break LM unit root 
test of Schmidt and Phillips (1992).  If the null of no break is rejected, then we 
know both the existence and location of the break(s) and can employ the one break 
(or  breaks) exogenous LM unit root tests in Amsler and Lee (1995) and Lee and 
Strazicich (2003).  Thus, our testing procedure is as follows: 

          (16) 
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Comparison with Endogenous Tests 
For comparison, we also consider two popular approaches to identify a structural 
break.  The first approach uses the minimum test statistic as suggested in Zivot 
and Andrew (1992).  The break location is determined at the point where the t-
statistic testing the unit root null hypothesis is minimized.  The second approach 
utilizes the method suggested by Perron (1997) and Vogelsang and Perron (1998), 
who suggest estimating the break point where the absolute value of the -statistic 
on the parameter associated with the break dummy variable is maximized.  As 
noted in Section 1, these Dickey-Fuller type tests assume the absence of breaks 
under the null in order to eliminate the dependency of the test statistics on 
nuisance parameters.  However, no such assumption is required in the LM 
framework, since the test statistic is free of this nuisance parameter (see Amsler 
and Lee, 1995, and Lee and Strazicich, 2003). 

From the results in Perron (1997), we expect that using the -max method will 
lead to better performance in identifying the break location.  We therefore 
examine properties of the following two LM unit root test statistics: 

and , where a grid search is implemented over the 

range of the nuisance parameter, .   denotes the minimum 

value of the unit root t-test statistic, and   denotes the maximum 
absolute value of the - or -statistic for the significance of the break dummy 
coefficients, respectively.  If we impose the restriction that the coefficients of both 

 and , , are jointly zero, we employ an -statistic.  For 
convenience we continue to denote the resulting break estimate and corresponding 
statistics with the subscript .  Note that the above grid search is justified since 
the distribution of  does not depend on .However, the search is implemented in 
the testing regression (7) or (11) by using different values of the break locations 
(  to define the dummy variables for the transformation in (10).  As a 
practical matter, we trim the end points and grid-search the value of  over the 
range .  The asymptotic distribution is obtained accordingly from 

Theorem 1.  We let   and can have  

and , where  and  are obtained from the search procedures 

above.  We denote  in terms of to signify that it is the asymptotic 
distribution of the statistic obtained by using a certain optimal value of (i.e., 

) in constructing  in (10), although  is not dependent on   

 denotes the estimated locations of the breaks.  We report 
critical values of these endogenous tests in Panel A of Table 2 when  1 and 2.  
We have chosen to omit critical values for  3 due to the computational burden 
in the grid search, but in general we advise not to consider more than 2 breaks in 
endogenous break models since they yield much less powerful tests.  As 
previously noted, this might appear contrary to the perception in many empirical 
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works that allowing for more breaks leads to higher power.  In fact, endogenous 
break unit root tests with more than two breaks lose considerable power.12  As 
such, we recommend using a parsimonious number of breaks; or adopting a non-
linear model if the data is subject to many breaks (see Enders and Lee, 2011).  For 
comparison, in panel B of Table 2, we provide critical values of the untransformed 
endogenous tests when R = 1.   

Note that  (either  or ) has a well-defined probability distribution over the 

parameter space , and the true value of  is included in the sample space of  
when the DGP implies the stationary alternative.  Assuming a stationary time 
series, Bai (1994) shows that for the maximum likelihood estimate of , say , 

 and  for , where  denotes the 
magnitude of structural breaks in the regression model.  These results also hold in 
our case under the alternative hypothesis.  The ML estimate  is obtained as the 
value minimizing the sum of squared residuals in regression (11), while  is 
obtained in (13) or (14).  Thus, both  and  are -consistent, but only when  is 
large enough.  Therefore, neither  nor  is expected to be estimated correctly in 
finite samples if  is small.13 

 

 

 

 

                                                 
12 As described in Section 1, many empirical papers report that the null of a unit root is 
rejected more often when more breaks are included.  This is possible if the data is truly 
trend-stationary with breaks (i.e., the alternative hypothesis is true and breaks occur in the 
data).  However, in many cases, the results of greater rejections with more breaks might 
also reflect spurious rejections from the presence of a unit root with break(s) as described 
in Section 1. Given that the power in unit root tests will be extremely low when the 
number of breaks is increased, we suspect that the latter explanation might be more 
common. 
 
13 The properties of  or  under the unit root null have not been fully examined in the 
literature, while Perron and Zhu (2005) provide a useful insight that the order of 
convergence is usually lower in an integrated process than in a stationary process in the 
specific model they consider.  This issue, however, remains beyond the scope of the 
present paper. 
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Table 2: Critical Values of Endogenous LM Unit Root Test Statistics with  

              Trend-Breaks 

  sig. 
level 

Sample Size 

Test  (%)  50  
100 

 
200 

 
500 

 1000 

 

Panel A.  Transformed Endogenous Tests 
 1 1 -5.429 -5.106 -5.059 -4.975 -4.938 

  5 -4.772 -4.598 -4.497 -4.438 -4.417 
  10 -4.447 -4.301 -4.218 -4.166 -4.151 
 2 1 -6.751 -6.332     -6.204     -6.125     -6.152     
  5 -6.099 -5.775 -5.654 -5.643 -5.688     
  10 -5.796 -5.512 -5.372 -5.433 -5.496     

 1 1 5.004 4.760 4.696 4.591 4.530 

  5 4.338 4.153 4.073 3.976 3.952 
  10 3.994 3.832 3.766 3.691 3.684 
 2 1 6.289      5.975     5.647     5.580     5.542     
  5 5.572 5.222 5.036 5.037 5.028     
  10 5.182 4.928 4.747 4.783 4.757     

 

Panel B.  Untransformed Endogenous Tests  
 1 1 5.483 5.126 4.963 4.797 4.755 

  5 4.730 4.507 4.322 4.284 4.270 
  10 4.399 4.196 4.062 4.024 4.005 

 1 1 4.938    4.744   4.575   4.386    4.449  
  5 4.291    4.050   3.939   3.854    3.867  
  10 3.897    3.699   3.626   3.590    3.580  

Notes:  denotes the number of level and trend-breaks. 
 
 

4  Simulation Results 
In this section, we provide finite sample Monte Carlo simulation results on the LM 
unit root tests with trend-breaks and the two-step test.  Our goal is to verify the 
theoretical results presented above and to examine the general performance of the 
tests.  To perform our simulations, pseudo-iid (0,1) random numbers were 
generated using the Gauss procedure RNDNS with all calculations conducted 
using the Gauss software version 6.0.  The DGP used in the simulations has the 
form in (1).  The initial values  and  are assumed to be random, and we assume 
that .  All simulation results are calculated using 20,000 replications for the 
tests with exogenous breaks, and 5,000 replications for the endogenous break tests.  
The size (frequency of rejections under the null when ) and power 
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(frequency of rejections under the alternative when ) of the tests are 
evaluated using 5% critical values. 

In Table 3, we report the size and power properties of the exogenous break unit 
root tests for different level and trend break magnitudes (d1 and d2) and locations 
().  In each case, we wish to examine how the transformed test ( ), 
untransformed test ( ), and two-step test ( ) behave under the null and 
alternative hypotheses.  In particular, we wish to examine if the transformed test 
( ) and the two-step test ( ) are invariant to the size and location of breaks.  
The results reported in Table 3 show that both tests have reasonably good size 
under the null.  While they show mild size distortions in many cases, there is no 
clear pattern and the distortions are small.  This is an encouraging finding and 
supports our proposition that the size properties in the transformed tests are 
invariant to different break locations (  0.3 or 0.8) and magnitudes.  Comparing 
the size properties of the transformed test with the untransformed test we see little 
difference, although the transformed test has marginally more accurate size in 
most cases.  We also report the 5% rejection rates for the -test of the significance 
of breaks.  It is clear that the -test has good power when the DGP has a unit root.  
While the power is lower when the magnitude of the trend-break is smaller (  
0.5), the power increases quickly to 1.0 as the magnitude of the break increases.  
Unreported results also show that the -test has a correct 5% rejection rate when 
there is no break (  0) in the DGP.  As noted, the -test assumes a unit 
root (  1.0) in the DGP.  Therefore, we also want to know how the -test 
performs when the DGP is a stationary process (  0.9).  The results in the last 
column of Table 3 indicate that the power of the -test in a stationary process is 
high and nearly identical to the power when the DGP has a unit root.  This is an 
important property of the -test.  Most notably, this outcome differs from the 
reverse case found in some other tests, where the -test assuming a stationary 
series exhibits spurious rejections when the DGP is non-stationary.  No evidence 
of spurious rejections is found here in any case. 
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Table 3: Size and Power Properties of the Exogenous Break LM Unit Root Tests  

DGP Size (  1.0) Power (  0.9) 

       

 

-test    -test 

100 2 0.5 0.3 0.043 0.039 0.038 0.760 0.138 0.137 0.108 0.767 
   0.5 0.054 0.054 0.047 0.791 0.149 0.149 0.124 0.832 
   0.8 0.040 0.034 0.037 0.776 0.120 0.120 0.100 0.792 
 5 0.5 0.3 0.049 0.042 0.049 0.998 0.131 0.128 0.131 0.996 
   0.5 0.053 0.053 0.053 0.999 0.149 0.149 0.149 0.998 
   0.8 0.039 0.031 0.039 0.998 0.130 0.134 0.129 0.998 
 2 1 0.3 0.042 0.041 0.036 0.926 0.134 0.132 0.122 0.944 
   0.5 0.048 0.048 0.045 0.953 0.147 0.147 0.143 0.984 
   0.8 0.043 0.030 0.042 0.941 0.125 0.128 0.119 0.957 
 5 1 0.3 

0.046 0.040 0.046 1.000 0.129 0.133 0.129 1.000 
   0.5 

0.047 0.047 0.047 1.000 0.148 0.148 0.148 1.000 
   0.8 

0.040 0.031 0.040 1.000 0.122 0.125 0.122 1.000 
 5 1.5 0.3 0.043 0.038 0.043 1.000 0.137 0.127 0.137 1.000 
   0.5 

0.052 0.052 0.052 1.000 0.148 0.148 0.148 1.000 
   0.8 

0.043 0.033 0.043 1.000 0.120 0.132 0.120 1.000 
 10 1.5 0.3 

0.048 0.038 0.048 1.000 0.136 0.132 0.136 1.000 
   0.5 

0.051 0.051 0.051 1.000 0.144 0.144 0.144 1.000 
   0.8 

0.044 0.034 0.044 1.000 0.121 0.122 0.121 1.000 
 5 3 0.3 

0.046 0.040 0.046 1.000 0.137 0.134 0.137 1.000 
   0.5 

0.048 0.048 0.048 1.000 0.149 0.149 0.149 1.000 
   0.8 

0.041 0.029 0.041 1.000 0.131 0.126 0.131 1.000 

500 2 0.5 0.3 0.045 0.044 0.039 0.942 0.973 0.991 0.946 0.973 
   0.5 

0.048 0.048 0.043 0.958 0.995 0.995 0.987 0.992 
   0.8 

0.050 0.038 0.044 0.927 0.874 0.996 0.824 0.946 
 5 0.5 0.3 

0.041 0.036 0.041 0.999 0.976 0.991 0.976 0.999 
   0.5 

0.050 0.050 0.050 0.999 0.996 0.996 0.996 1.000 
   0.8 

0.044 0.028 0.044 0.999 0.872 0.996 0.872 1.000 
 2 1 0.3 

0.049 0.041 0.049 0.999 0.970 0.990 0.970 1.000 
   0.5 

0.053 0.053 0.053 1.000 0.994 0.994 0.994 1.000 
   0.8 

0.048 0.029 0.048 0.998 0.880 0.994 0.879 0.999 
 5 1 0.3 0.044 0.040 0.044 1.000 0.975 0.993 0.975 1.000 
   0.5 

0.048 0.048 0.048 1.000 0.994 0.994 0.994 1.000 
   0.8 

0.048 0.033 0.048 1.000 0.870 0.997 0.870 1.000 
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 5 1.5 0.3 

0.051 0.042 0.051 1.000 0.972 0.992 0.972 1.000 
   0.5 

0.045 0.045 0.045 1.000 0.995 0.995 0.995 1.000 
   0.8 

0.050 0.031 0.050 1.000 0.873 0.998 0.873 1.000 
 10 1.5 0.3 

0.050 0.045 0.050 1.000 0.972 0.990 0.972 1.000 
   0.5 

0.048 0.048 0.048 1.000 0.995 0.995 0.995 1.000 
   0.8 

0.051 0.033 0.051 1.000 0.870 0.994 0.870 1.000 
 5 3 0.3 0.050 0.041 0.050 1.000 0.974 0.992 0.974 1.000 
   0.5 

0.048 0.048 0.048 1.000 0.994 0.994 0.994 1.000 
   0.8 

0.054 0.034 0.054 1.000 0.876 0.997 0.876 1.000 
 

 

In Tables 4 and 5, we repeat the experiments of Table 3 to examine the size and 
power of the endogenous break unit root tests and compare them to the two-step 
test.  In each case, we examine both the transformed and untransformed versions 
of the tests.  We begin by examining the size properties in Table 4.  As expected, 
neither the transformed or untransformed minimum nor maximum LM unit root 
test suffers from a general problem of over-rejections.  However, both the 
transformed and untransformed tests have negative size distortions (i.e., under-
rejections), which are more pronounced for the -max test and remain as the 
sample size increases to  500.  Following the discussion in Section 3, this 
outcome motivates our two-step procedure, where the two-step test utilizes the 
estimated break from the max  test.  The two-step transformed test shows 
virtually no size distortions, and is invariant to both the size and location of the 
trend-break.  This again demonstrates that the same critical values can be utilized 
to test for a unit root regardless of the size and/or location of the break.  We next 
examine the power properties in Table 5.  The results in Table 5 show that the 
two-step tests are more powerful than either the minimum ( ) or maximum ( ) 

endogenous break unit root tests in sample size T = 100.  As in Table 4, the power 
of the -test to identify the break is good and increases quickly to 1.0 as the 
magnitude of the break increases.  Overall, the properties of the two-step test in 
the endogenous case are good and similar to those in the exogenous case.14 

We next compare the accuracy of determining the break point using the 
transformed minimum, maximum, and two-step test.  The results are displayed in 
Table 6.  In each case, we report the relative frequencies of estimating the correct  

                                                 
14  In unreported results, we also examined simulations to compare the properties of 
similar ADF-type two-step transformed tests.  While the size properties of the ADF 
version of the two-step test are similar to the LM version, the power of the LM two-step 
test is greater in all cases.  These results are available from the authors upon request. 
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Table 4: Size Properties of the Endogenous Break LM Unit Root Tests  
(5% Rejection Rates) 

DGP Transformed Tests Untransformed Tests 

 

        -test    -test 

1 100 2 0.5 0.3 

0.026 0.033 0.049 0.297 0.028 0.030 0.046 0.325 
    0.5 0.025 0.030 0.053 0.359 0.034 0.032 0.050 0.408 
    0.8 0.033 0.034 0.049 0.264 0.026 0.028 0.030 0.238 

  5 0.5 0.3 0.038 0.021 0.052 0.814 0.040 0.023 0.045 0.829 
    0.5 0.032 0.020 0.051 0.825 0.044 0.028 0.056 0.849 
    0.8 0.059 0.021 0.049 0.829 0.047 0.022 0.042 0.824 

  2 1 0.3 0.016 0.018 0.044 0.824 0.017 0.020 0.042 0.865 
    0.5 0.021 0.019 0.050 0.893 0.026 0.027 0.054 0.922 
    0.8 0.022 0.020 0.053 0.731 0.016 0.020 0.034 0.712 
  5 1 0.3 0.023 0.018 0.050 0.975 0.028 0.024 0.047 0.989 
    0.5 0.026 0.018 0.050 0.985 0.034 0.029 0.054 0.991 
    0.8 0.077 0.025 0.057 0.986 0.026 0.018 0.033 0.983 

  5 1.5 0.3 0.021 0.016 0.045 0.998 0.034 0.020 0.042 1.000 
    0.5 0.028 0.020 0.049 1.000 0.044 0.026 0.056 1.000 
    0.8 0.106 0.028 0.062 0.998 0.022 0.018 0.033 0.999 

  10 1.5 0.3 0.021 0.016 0.048 1.000 0.047 0.019 0.036 1.000 
    0.5 0.033 0.019 0.051 1.000 0.063 0.024 0.051 1.000 
    0.8 0.224 0.015 0.044 1.000 0.048 0.015 0.032 1.000 

  5 3 0.3 0.024 0.018 0.046 1.000 0.044 0.020 0.041 1.000 
    0.5 0.039 0.018 0.048 1.000 0.050 0.023 0.046 1.000 
    0.8 0.203 0.033 0.066 1.000 0.032 0.016 0.036 1.000 

1 500 2 0.5 0.3 

0.012 0.018 0.045 0.939 0.017 0.022 0.035 0.946 
    0.5 0.013 0.017 0.045 0.970 0.023 0.026 0.045 0.969 
    0.8 0.016 0.021 0.050 0.746 0.014 0.020 0.024 0.758 

  5 0.5 0.3 0.027 0.023 0.046 0.816 0.036 0.030 0.047 0.849 
    0.5 0.027 0.023 0.052 0.832 0.046 0.034 0.055 0.847 
    0.8 0.035 0.019 0.043 0.821 0.039 0.024 0.035 0.829 

  2 1 0.3 0.010 0.016 0.041 1.000 0.016 0.024 0.038 1.000 
    0.5 0.011 0.017 0.042 1.000 0.019 0.023 0.044 1.000 
    0.8 0.011 0.017 0.042 0.997 0.011 0.016 0.027 1.000 
  5 1 0.3 0.014 0.016 0.041 1.000 0.015 0.019 0.033 1.000 
    0.5 0.017 0.018 0.044 1.000 0.028 0.029 0.048 1.000 
    0.8 0.027 0.022 0.050 1.000 0.015 0.019 0.031 1.000 

  5 1.5 0.3 0.014 0.020 0.046 1.000 0.021 0.025 0.041 1.000 
    0.5 0.014 0.016 0.038 1.000 0.023 0.024 0.040 1.000 
    0.8 0.032 0.025 0.055 1.000 0.013 0.018 0.029 1.000 

  10 1.5 0.3 0.023 0.020 0.048 1.000 0.037 0.024 0.038 1.000 
    0.5 0.027 0.018 0.045 1.000 0.044 0.031 0.048 1.000 
    0.8 0.134 0.024 0.057 1.000 0.023 0.018 0.029 1.000 

  5 3 0.3 0.014 0.019 0.047 1.000 0.025 0.023 0.041 1.000 
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    0.5 0.015 0.018 0.040 1.000 0.024 0.028 0.047 1.000 
    0.8 0.044 0.031 0.072 1.000 0.014 0.021 0.033 1.000 

 

 

Table 5: Power Properties of the Endogenous Break LM Unit Root Tests  

(  0.9, 5% Rejection Rates) 

DGP Transformed Tests Untransformed Tests 

 
        -test    -test 

1 100 2 0.5 0.3 0.070 0.073 0.089 0.245 0.074 0.076 0.089 0.283 
    0.5 0.071 0.072 0.104 0.320 0.096 0.092 0.115 0.380 
    0.8 0.091 0.080 0.094 0.239 0.071 0.079 0.060 0.181 

  5 0.5 0.3 0.087 0.066 0.143 0.760 0.086 0.078 0.145 0.796 
    0.5 0.086 0.071 0.140 0.787 0.092 0.080 0.139 0.828 
    0.8 0.132 0.066 0.137 0.821 0.104 0.076 0.123 0.800 

  2 1 0.3 0.054 0.063 0.136 0.887 0.061 0.069 0.129 0.923 
    0.5 0.056 0.067 0.142 0.968 0.071 0.081 0.138 0.981 
    0.8 0.074 0.072 0.148 0.813 0.057 0.076 0.118 0.822 

  5 1 0.3 0.067 0.060 0.130 0.980 0.085 0.075 0.141 0.993 
    0.5 0.069 0.069 0.148 0.996 0.095 0.079 0.148 0.999 
    0.8 0.167 0.077 0.152 0.993 0.085 0.076 0.132 0.995 

  5 1.5 0.3 0.068 0.060 0.132 1.000 0.095 0.077 0.134 1.000 
    0.5 0.085 0.065 0.140 1.000 0.112 0.093 0.155 1.000 
    0.8 0.209 0.079 0.157 1.000 0.087 0.070 0.127 1.000 

  10 1.5 0.3 0.045 0.054 0.136 1.000 0.100 0.080 0.146 1.000 
    0.5 0.082 0.063 0.144 1.000 0.122 0.077 0.142 1.000 
    0.8 0.326 0.049 0.121 1.000 0.145 0.071 0.123 1.000 

  5 3 0.3 0.071 0.052 0.126 1.000 0.131 0.070 0.126 1.000 
    0.5 0.104 0.065 0.140 1.000 0.147 0.084 0.142 1.000 
    0.8 0.382 0.091 0.173 1.000 0.108 0.071 0.131 1.000 

1 500 2 0.5 0.3 0.915 0.798 0.882 1.000 0.991 0.905 0.937 1.000 
    0.5 0.984 0.869 0.931 1.000 0.995 0.897 0.926 1.000 
    0.8 0.788 0.662 0.764 0.942 0.993 0.865 0.894 0.996 

  5 0.5 0.3 0.933 0.893 0.856 0.881 0.996 0.961 0.897 0.907 
    0.5 0.991 0.962 0.913 0.920 0.994 0.970 0.929 0.938 
    0.8 0.872 0.769 0.796 0.899 0.997 0.985 0.880 0.884 

  2 1 0.3 0.895 0.869 0.939 1.000 0.988 0.958 0.977 1.000 
    0.5 0.976 0.925 0.966 1.000 0.988 0.953 0.972 1.000 
    0.8 0.770 0.654 0.775 1.000 0.992 0.904 0.928 1.000 

  5 1 0.3 0.907 0.890 0.955 1.000 0.996 0.950 0.969 1.000 
    0.5 0.987 0.936 0.972 1.000 0.995 0.951 0.971 1.000 
    0.8 0.859 0.719 0.822 1.000 0.995 0.975 0.983 1.000 

  5 1.5 0.3 0.907 0.888 0.949 1.000 0.992 0.927 0.953 1.000 
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    0.5 0.987 0.940 0.977 1.000 0.994 0.957 0.975 1.000 
    0.8 0.860 0.713 0.828 1.000 0.997 0.980 0.987 1.000 

  10 1.5 0.3 0.907 0.907 0.964 1.000 1.000 0.975 0.984 1.000 
    0.5 0.993 0.962 0.984 1.000 0.997 0.975 0.986 1.000 
    0.8 0.960 0.745 0.861 1.000 0.998 0.989 0.995 1.000 

  5 3 0.3 0.906 0.869 0.947 1.000 0.996 0.928 0.953 1.000 
    0.5 0.985 0.948 0.975 1.000 0.993 0.961 0.979 1.000 
    0.8 0.892 0.734 0.841 1.000 0.991 0.983 0.990 1.000 

 
 
break location ( ) and nearby locations within , , , and 

.  Throughout, we assume that the break location parameter is given as 0.5, 
but other values of do not significantly affect the results.  Note that frequencies 
of the two-step test can be under-evaluated when the break size is small or 
insignificant, since the no-break LM test would be suggested in such cases.  It is 
clear that the - max method can identify the break more accurately than the 
minimum -test.   

 

Table 6: Estimated Break Locations from the Transformed Endogenous LM  

               Unit Root Tests 

DGP Null (  1.0) Alternative (  0.9) 


 

   
 

Test   1  2  3  5   1  2  3  5 

100 2 0.5 0.5  0.041 0.151 0.211 0.265 0.363 0.059 0.193 0.271 0.346 0.464 
     

0.280 0.355 0.403 0.446 0.517 0.235 0.345 0.416 0.479 0.567 
    2-step 0.142 0.179 0.202 0.217 0.244 0.116 0.161 0.187 0.207 0.235 

 5 0.5 0.5  0.101 0.245 0.295 0.324 0.368 0.176 0.321 0.381 0.412 0.453 
     

0.960 0.962 0.963 0.965 0.966 0.958 0.961 0.963 0.965 0.968 
    2-step 0.817 0.817 0.818 0.818 0.819 0.780 0.781 0.781 0.781 0.782 

 2 1 0.5  0.052 0.270 0.393 0.501 0.657 0.081 0.326 0.464 0.578 0.761 
     

0.360 0.512 0.590 0.643 0.730 0.308 0.556 0.673 0.749 0.843 
    2-step 0.343 0.483 0.557 0.605 0.684 0.305 0.550 0.665 0.738 0.828 

 5 1 0.5  0.066 0.308 0.402 0.484 0.632 0.114 0.341 0.437 0.523 0.685 
     

0.928 0.956 0.966 0.970 0.977 0.921 0.961 0.978 0.986 0.991 
    2-step 0.919 0.947 0.957 0.960 0.967 0.919 0.958 0.975 0.984 0.988 

 5 1.5 0.5  0.039 0.290 0.409 0.535 0.769 0.069 0.289 0.419 0.565 0.817 
     

0.883 0.949 0.967 0.971 0.980 0.868 0.960 0.985 0.990 0.995 
    2-step 0.883 0.949 0.967 0.971 0.980 0.868 0.960 0.985 0.990 0.995 

 10 1.5 0.5  0.076 0.226 0.280 0.365 0.605 0.133 0.238 0.282 0.368 0.635 
     

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
    2-step 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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This result confirms the findings of Perron (1997) and Nunes (2004) for the 
Dickey-Fuller and LM type tests, respectively.  Also, note that performance of the 
two-step test to identify the break is almost identical to that of the -max test.  As 
the magnitude of the break increases, the frequency of correctly estimating the 
break point approaches 1.0 in the t-max and two-step test, the same as in the 
exogenous case where the break point is known a priori. 

 
 

5  Concluding Remarks 
In this paper, we propose new two-step LM unit root tests that are invariant to 
level and trend-breaks.  In contrast to existing tests, the suggested two-step tests 
using transformed data have the invariance property that the asymptotic 
distribution is free of the nuisance parameter even in the presence of trend-breaks.  
The proposed tests depend only on the number of structural breaks, while they are 
invariant to the size and location of the breaks.  In the first step, we determine 
whether and where the break(s) exist by using a maximum -test.  This differs 
from the endogenous break unit root tests that implicitly assume or impose a 
specific number of breaks.  In the second step, we utilize the information from the 
first step and test the null hypothesis of a unit root. The two-step unit root test can 
be conveniently applied to allow for multiple breaks, and remains free of nuisance 
parameters whether the series is stationary or not. Overall, the two-step test 
accurately identifies the number and location of break(s) and has better properties 
of size and power than the endogenous break unit root tests. 
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Appendix  
Proofs of Proposition 1 and Theorem 1 are provided in Im, Lee and Tieslau 
(2011).  Here we prove Propositions 2 and 3 using the results in Proposition 1.   
 
Proof of Proposition 2 
We want to show the effect of mis-specifying the model under the null.  
Specifically, we examine the effect of using a “crash model” with level-shifts 
when the DGP implies the model with trend-breaks.   We consider under the null 
of a unit root: 

 DGP:      

 Estimation:   

Notice that including the one point dummy variables has the effect of “dummying-
out” the corresponding observation.  After omitting the corresponding 
observations, we get: 

                  (A.1) 

and 
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 (A.2) 

Then, from , we can show 

that 

(A.3) 

The first term in (A.3) follows , which is a standard result.  The second 
term in (A.3) follows: 
 

 

Since , we note that the first term of the last expression 

diverges; it is .   Then, 

              .                                (A.4) 

It can be shown that the third term in (A.3) is .   However, the last term in 
(A.3) is .  This term diverges as  increases, unless . Then, since 

 , we obtain 

                                    .                                      (A.5) 

Therefore, combining the results of (A.4) and (A.5), we have: 
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                          .                                    (A.6) 

Then, we have the result: .  We can see that not allowing 
for trend-breaks will cause a bias in  toward not rejecting the null hypothesis.  
This will result in downward size distortions, since: 
  and . 
This completes the proof.                                                                                         �                        
 
 
Proof of Proposition 3  
  We now obtain the asymptotic distribution of the -test in (13) that is 
based on the testing regression for the LM type statistic.  First, we examine SSR0, 
which is obtained from the (restricted) regression: 
 , 

where  and , and where  and  

are the OLS estimates in this regression.  Then, when the unit root assumption is 
imposed, we get: 

 . 

This can be expressed as 

            (A.7) 

where  , and .  The first term in (A.7) can be 

cancelled with the same term that appears in SSR1.  The second term in the above 
expression can be written as  

          

                                                                                                                            (A.8) 
where  is the demeaned Brownian bridge.  The third term in (A.8) is shown 
to follow 
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                                                                                                                (A.9) 
Next, SSR1 is similarly obtained from the unrestricted regression (7) or (11).  
When  1, for simplicity, we have 
 , 

where  is defined in (5), and where , , and  are the OLS estimates in 
regression (7) or (11).  Then, under the null of a unit root: 

 . 

This can be expressed as 

                                   (A.10) 

where   is the element of  with ; and 

where  is the element of  with .  The first 
term in (A.10) can be cancelled with the similar term in SSR0 under the null in the 
absence of non-linear terms.  The second and third terms in (A.10) follow the 
same asymptotic distributions as in (A.8) and (A.9), except that  is replaced 
with  as defined in Proposition 1.  Finally, the denominator of the -statistic 
is given by  

  ,                                           (A.11) 

where the  terms of the above expression are the same as in (A.10). The 
asymptotic distribution of the -statistic is given by collecting terms in (A.8) 
through (A.11) using multiple breaks 

 . � 

 


