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Abstract

Principal component analysis (PCA) is a well established technique
for data analysis and processing. Recently, it has been shown that the
principal axes of a set of observed data vectors might be determined
trough maximum likelihood estimation of parameter in a specific form
of latent variable model closely related to factor analysis. It is assumed
that the latent variables have a unit isotropic Gaussian distribution. In
view of this, in this study, we express some interpretation for covariance
between PPCs, correlation between PPCs and variables, and covariance
matrix between PPCs and PCs in common PCA case. Further, we
consider more general case in which the latent variables are independent
with different variances. We also investigate properties of the associated
likelihood function.
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1 Introduction

It is well known that PCA is a dimensionality reduction technique which
is used in many application areas such as data compression, image process-
ing, data visualization, pattern recognition, and so on. Common derivation
of PCA is in terms of a standardized linear projection which maximizes the
variance in the projected space. For a set of d-dimensional observation vectors
{t1, ..., tN}, PCA can be obtained by computing the sample variance matrix,
S = 1

N

∑N

n=1 (tn − µ) (tn − µ)′ and by finding the eigenvectors ui and eigenval-

ues λi (i = 1, 2, ..., d) such that; Sui = λiui, where t̄ = 1
N

∑N

n=1 tn is the data
sample mean. The q principal axes (q < d for parsimonious representation)
U = (u1, u2, ..., uq) is the orthogonal onto which the retained variance under
projection is maximized and U is corresponds to the eigenvalues of sample
covariance matrix S [2]. A q dimensional reduction representation of the ob-
served vector tn is thus Zn = U ′ (tn − t̄) and the covariance matrix 1

N

∑

ZnZ
′

n

is diagonal with uncorrelated elements (λ1, λ2, ..., λq) . An important property
of PCA is that, it corresponds to the linear projection for which the sum of

square reconstruction error
∑

∥

∥tn − t̂n
∥

∥

2
is minimized; t̂n = UZn + µ where µ

is mean vector. One limiting disadvantage of common PCA is the absence of
a probability density model, where this is solved in a notable paper by Tip-
ping and Bishop (1999). They in fact introduced a probability model in to
PCA in which extent to assume the observed data is linear mapping of latent
variables, with unit isotropic Gaussian distribution plus Gaussian error [6].
Driving PCA from the perspective of density estimation convert the common
PCA into statistical inference problem. Further, Bayesian inference method is
also applied into PCA [7].

In view of this, this paper is organized as follows; the latent variable model
and probabilistic principal component analysis (PPCA) with unit isotropic
Gaussian distribution of latent variable are described in next section. In sec-
tion 3, we express some interpretation for probabilistic principal components.
PPCA with anisotropic Gaussian distribution of latent variables and dimen-
sionality reduction are investigated in section 4. We give an exmple in section
5, and conclusion is summarized in section 6.

2 Latent variable model and PPCA with isotropic

Gaussian distribution of latent variables

2.1 Latent Variable Model

The goal of the latent variable model is to express the set of d-dimensional
data vectors {tn} in terms of a smaller number of latent variablesX = (X1, X2, ..., Xq)
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(where q < d), such that,

t = y(X;W ) + ε

where y(X;W ) is a function of the latent variables X with parameter W and ε

is an X-independent noise process. The definition of the latent variable model
is completed with determining the distribution of ε, the mapping y(X;W ) and
the prior distribution of latent variable.
One of the simplest latent variable model is Factor analysis, in which the
mapping y(X;W ) is linear so that:

t = WX + µ+ ε (1)

where W is d× q parameter matrix and parameter µ is non-zero mean vector.
The distribution of X is defined to be a zero mean unit covariance Gaussian
N(0, I). While the noise model for ε is also a zero mean Gaussian with a
diagonal covariance matrix Ψ [3]. It follows from (2) that the distribution of
t is also normal N(µ,C) where, C = Ψ+WW ′. Because of WW ′ term in the
covariance C, the likelihood function is invariant with respect to orthogonal
post multiplication of W .

In Factor analysis because of the diagonal noise model Ψ the factor loadings
W will in general differ from the principal axes. It is considered that, principal
component emerge when the data is assumed to comprise a systematic compo-
nent plus an independent error term for each variable with common variance
σ2 [8]. Thus the similarity between the factor loadings and the principal axes
can be observed when the diagonal element of Ψ be equal.

2.2 PPCA with isotropic Gaussian distribution of latent
variables

By considering the model (1) with an isotropic noise structure such that,
Ψ = σ2Id and isotropic Gaussian distribution of latent variable X ∼ N(0, I),
it is shown that the columns of maximum likelihood estimation WML are the
scaled and rotated eigenvectors of sample covariance matrix S. In PPCA has
been assumed that, the observation tn is a linear transformation of Xn (where
Xn is normally distributed. Here we show this by X N(0, I)), with additive
Gaussian noise ε which is normally distributed (ε ∼ N(0,Ψ)). It is also follows
from (1) that;

t|X ∼ N(WX + µ, σ2I),

t ∼ N(µ,C), where C = WW ′ + σ2Id,

X|t ∼ N
(

M−1W ′ (t− µ) , σ2M−1
)

, where M = WW ′ + σ2Iq.
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The parameters of model can be also estimated by maximizing the log likeli-
hood of observed data as follows;

` =
∑

lnp(tn) = −Nd

2
ln(2π)− N

2
ln |C| − N

2
tr
[

C−1S
]

,

where

S =
1

N

N
∑

n=1

(tn − µ)(tn − µ)′,

WML = Uq(Λq − σ2Iq)
1

2R,

σ2
ML =

1

d− q

d−q
∑

j=1

λj,

where Uq is matrix whose columns are eigenvectors of S and Λq is diagonal
matrix with corresponding q eigenvalues of S, and R is an arbitrary orthogonal
rotation matrix.

Also a dimensionality reduction representation for observed data is com-
puted as (Tipping and Bishop, 1999 ):

〈Xn〉 = M−1W ′(tn − µ).

We use model (1) with isotropic noise model ε with normal distribution
N(0,Ψ) and anisotropic Gaussian distribution of latent variable X with nor-
mal distribution N(0, V ), where V is diagonal matrix with different elements.
Further, we investigate the properties of the maximum likelihood estimator for
this model under the latter assumptions.

3 Interpretation of probabilistic principal com-

ponents(PPCs)

3.1 Covariance matrix of probabilistic principal compo-
nents

According to the maximum likelihood estimator of matrix W,WML, and
with consideration R = I, we can calculate the covariance matrix between
PPCs as follows;

M = W ′

MLWML + σ2Iq

=
(

Λq − σ2Iq
) 1

2 U ′

qUq
(

Λq − σ2Iq
) 1

2

= Λq
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Therefore

Cov(〈X〉) = Cov(M−1W ′t)

= M−1W ′SWM−1

= (Λq)
−1

(

Λq − σ2Iq
) 1

2 U ′

qSUq

(

Λq − σ2Iq
) 1

2 (Λq)
−1. (2)

With substituting spectral decomposition of sample covariance matrix, S into
(2),

Cov(〈X〉) = (λq)
−1(Λq − σ2Iq). (3)

Note that for simplicity, the mean vector of d-dimensional vector t, is assumed
to be zero. So, probabilistic principal components are independent, and vari-
ance of each component is given by:

V ar(〈X〉k) =
λk − σ2

λk

3.2 Correlations between variables and probabilistic prin-
cipal components

For interpretation of a probabilistic principal components we can use the
correlation between variables and the components.

To obtain an expression for ρ(tj, 〈X〉k), the correlation between jth vari-
able in observed vector t and kth probabilistic principal component, we begin
with the vector of sample covariance between the variables in t and the kth
component 〈X〉k that compute as follows;

〈X〉 = (Λq)
−1W ′t

=



















1
λ1

0 0 · · · 0

0 1
λ2

0
...

0
. . . . . . . . . 0

... 0 1
λq−1

0

0 · · · 0 0 1
λq

































W11 W12 W13 · · · W1q

W21 W22 W13 · · · W2q

W31 W32 W13 · · · W3q
...

...
... · · · ...

Wd1 Wd2 W32 · · · Wdq





























t1
t2
...
...
td















=











( 1
λ1

, 0, · · · , 0)W ′t

(0, 1
λ2

, · · · , 0)W ′t
...

(0, 0, · · · , 1
λq
)W ′t











.
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Therefore

〈X〉k =
(

0, 0, · · · , 1

λk

, · · · , 0
)

W ′t. (4)

Now, we compute Cov(tj, 〈X〉k);

Cov(tj, 〈X〉k) = Cov(I ′jt, 〈X〉k)

= Cov

(

I ′jt,

(

0, 0, · · · , 1

λk

, · · · , 0
)

W ′t

)

,

where Ij is a q × 1 vector in which its jth element is one and others are zero.
Then

Cov(tj , 〈X〉k) = I ′jSW





















0
0
...
1

λk

...
0





















= I ′jUΛU ′Uq

(

Λq − σ2Iq
)

1

2





















0
0
...
1

λk

...
0





















= I ′jUqΛq

(

Λq − σ2Iq
)

1

2





















0
0
...
1

λk

...
0





















= I ′j















U11 U12 U13 · · · U1q

U21 U22 U13 · · · U2q

U31 U32 U13 · · · U3q

...
...

... · · ·
...

Ud1 Ud2 U32 · · · Udq

























(λ1 − σ2)
1

2 0 · · · 0

0 (λ2 − σ2)
1

2 · · · 0
...

. . .
...

0 · · · 0 (λq − σ2)
1

2











= (0, 0, · · · , 1, · · · , 0)























U1k(λk − σ2)
1

2

U2k(λk − σ2)
1

2

...

Ujk(λk − σ2)
1

2

...

Udk(λk − σ2)
1

2























= Ujk(Λk − σ2Iq)
1

2 . (5)



A. Vosta, F. Yaghmaei and M. Babanezhad 115

The standard variation of tj is
√

Sjj, the square root of jth diagonal ele-

ment of S, and the standard deviation of 〈X〉k is

(

λk − σ2

λk

)
1

2

.

Hence the correlation between the jth variable and kth component, 〈X〉k
is given by:

ρ(tj, 〈X〉k) =
Cov (tj, 〈X〉k)

(V ar(tj))
1

2 (V ar(〈X〉k))
1

2

=
Ujk (Λq − σ2Iq)

1

2

(Sjj)
1

2

(

λq−σ2

λq

) 1

2

=
Ujk

√
λk

√

Sjj

. (6)

As we can see, it is the same as correlation between jth variable and kth
component in common principal component analysis and is proportional to
Ujk.

Remark 3.1. Covariance matrix between probabilistic principal compo-
nents and components of common PCA can be obtained as follows;

Cov(〈X〉 , Z) = Cov(M−1W ′t, U ′

qt)

= M−1W ′SUq

= (Λq)
−1

(

Λq − σ2Iq
) 1

2 U ′

qUΛU ′Uq

= (Λq)
−1

(

Λq − σ2Iq
) 1

2 U ′

qUqΛq

=
(

Λq − σ2Iq
) 1

2 . (7)

Therefore probabilistic principal components and components of common PCA
are uncorrelated.

4 PPCA with anisotropic Gaussian distribu-

tion of latent variables

By considering an anisotropic Gaussian distribution for latent variables
X ∼ N(0, V ), where V is diagonal matrix with elements v1, v2, ..., vq, in the
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latent variable model presented in (1), the probability distribution over t-space
for given X is in the form;

p (t|x) =
(

2πσ2
)

−
d
2 exp

{

−1

2
‖t−WX − µ‖2

}

⇒ t|X ∼ N(WX + µ, σ2Id).

The Gaussian prior over the latent variables is defined as follows;

p (X) = (2π)−
q

2 |V |−
1

2 exp

{

−1

2
X ′V −1X

}

⇒ X ∼ N(0, V ).

The marginal distribution of t can then be obtained as the follows;

p (t) =

∫

p (t|X) p (X) dX,

= (2π)−
d
2 |G|−

1

2 exp

{

−1

2
(t− µ)′ G−1 (t− µ)

}

,

where

G = γγ′ + σ2Id, γ = WV
1

2 .

The posterior distribution of the latent variables given the observed vector
t can be obtained by using Baye’s rule;

p (X|t) = (2π)−
q

2

∣

∣σ−2H
∣

∣

1

2 exp{−1

2

(

X −H−1W ′ (t− µ)
) (

σ−2H
) (

X −H−1W ′ (t− µ)
)

},
⇒ X|t ∼ N(H−1W ′ (t− µ) , σ2H−1).

where H = W ′W + σ2V −1.

Note that H is q × q while G is d × d matrix. The log-likelihood of the
observed data is given by:

` =
N
∑

n=1

lnp (tn) ,

= −N

2

{

dln (2π) + ln |G|+ tr
(

G−1S
)}

, (8)

where

S =
1

N

N
∑

n=1

(tn − µ) (tn − µ)′ .
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4.1 Properties of maximum likelihood estimation

In this section we estimate the parameters of model (1) by maximizing the
log-likelihood `. First we consider the derivation of ` with respect to γ [9]:

∂`

∂γ
= N

(

G−1SG−1γ −G−1γ
)

. (9)

At the stationary point:

SG−1γ = γ,

assume that rank(S) > q and thus G−1 to be existed. This is a necessary and
sufficient condition for the density model to be nonsingular.

There are three possible classes of solution:

[i] γ = 0 → W = 0, this will yeild minimum of the likelihood function.

[ii] G = S, in this case the covariance model is exact and factor loadings are
identical from the eigen-decomposition of S [1]:

γ = Uq

(

Λq − σ2Iq
) 1

2 → WML = Uq

(

Λq − σ2Iq
) 1

2 V −
1

2 . (10)

[iii] In this case we assume that

SG−1γ = γ, γ 6= 0, S 6= G

where

γ = ULZ ′

and U = (u1, u2, ..., uq) is a d× q matrix whose columns are orthonormal
and eigenvector of γγ′, L = diag (l1, l2, ..., lq) is diagonal matrix of singu-
lar values, Z is q×q orthogonal matrix whose columns are q eigenvectors
of γγ′, and

G−1γ =
(

σ2Iq + γγ′
)

,

= γ
(

σ2Iq + γ′γ
)

−1
,

= ULZ ′
(

σ2Iq +RL2R′
)

−1
,

= ULZ ′Z
(

L2 + σ2Iq
)

−1
Z ′,

= UL
(

L2 + σ2Iq
)

−1
Z ′.
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Then, substituting the latter in stationary point;

SG−1γ = γ ⇒ SUL
(

L2 + σ2Iq
)

−1
Z ′ = ULZ ′,

SUL = U
(

σ2Iq + L2
)

L.

Thus Suj = (σ2 + lj
2) uj for lj 6= 0 and each columns of U must be an

eigenvector of S with corresponding eigenvalue λj = σ2 + l2j , therefore

lj =
(

λj − σ2
) 1

2 .

Then all potential solutions for γ may be obtained as:

γ = Uq

(

Kq − σ2Iq
) 1

2 R

where Uq is d× q matrix whose columns are eigenvector of S, R is an arbitrary
orthogonal matrix, Kq is a diagonal matrix as follows:

kj =

{

1 lj 6= 0,
0 lj = 0.

So for lj 6= 0 (j = 1, 2, ..., q) , γ = Uq (Λq − σ2Iq)
1

2 R,

⇒ WML = Uq

(

Λq − σ2Iq
) 1

2 RV −
1

2 (11)

where the columns in matrix Uq are the principal eigenvectors of S. Elements of
diagonal matrixΛq are eigenvalues for S, and R is an arbitrary q×q orthogonal
rotation matrix where for simplicity we would effectively ignore R (i.e choose
R = I ).

By substituting WML into log-likelihood (8), we obtain,

` = −N

2

{

dln2π +

q
∑

j=1

λj +
1

σ2

d
∑

j=q+1

λj + (d− q) lnσ2 + q

}

. (12)

The maximum likelihood estimator of σ2 is given by:

σ2
ML =

1

d− q

d
∑

j=q+1

λj. (13)

The latter expresses the variance lost in the projection that averaged over lost
dimension.

By substituting σ2
ML and WML in `, it can be seen easily that the matrix

U which maximizes the likelihood function must be corresponds to q largest
eigenvalue of sample covariance matrix S. Thus with using the anisotropic
Gaussian distribution of latent variable (X ∼ N(0, V )) the columns of W are
correspond to principal axes.

Remark 4.1. The columns of matrix WML are not orthogonal, because

W ′

MLWML = V −
1

2R′
(

Λq − σ2Iq
)

RV −
1

2 .
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4.2 Dimensionality reduction

From a probabilistic perspective, process of dimensionality reduction con-
sider in term of the posterior distribution of latent variable can be summarized
by posterior mean of latent variable as;

〈Xn〉 = H−1W ′ (tn − µ) . (14)

If σ2 → 0, then

H−1 = (W ′W )
−1

and WH−1W ′

represent an orthogonal projection in to data and PCA is recovered:

W 〈Xn〉 = WH−1W ′ (tn − µ)

However because of σ2 → 0 the density model is singular and undefinable.
Also with σ2 > 0, W 〈Xn〉 is not an orthogonal projection of tn, but with

W = WML,

we can obtain optimal reconstruction of the observed data by using posterior
mean of latent variable as follows:

t̂n = WML (W
′

MLWML)
−1

H 〈Xn〉+ µ,

= WML (W
′

MLWML)W
′

ML (tn − µ) + µ. (15)

Remark 4.2. In the case that latent variables are anisotropic normal dis-
tributed the covariance matrix of PPCs can be expressed, as:

CovV (〈X〉) = CovV (H
−1W ′t)

With respect to WML in (11) and substuting R = I;

H = W ′

MLWML + σ2Iq

= V
−1

2

(

Λq − σ2Iq
) 1

2 U ′

qUq

(

Λq − σ2Iq
) 1

2 V
−1

2 + σ2Iq

= V −1
(

Λq − σ2Iq
)

+ σ2Iq

Therefore

〈X〉 = H−1W ′t

=
(

V −1(Λq − σ2Iq) + σ2Iq
)

−1
V −

1

2 (Λq − σ2Iq)
1

2U ′

qt



120 Interpretation of the Probabilistic Principal Components...

=



















V1

λ1+σ2(V1−1)
0 · · · 0

0 V2

λ2+σ2(V2−1)
· · · 0

...
. . .

...
... Vq−1

λq−+σ2(Vq−1−1)

...

0 · · · 0 Vq

λq+σ2(Vq−1)



















W ′t

=













( V1

λ1+σ2(V1−1)
, 0, · · · , 0)W ′t

(0, V2

λ2+σ2(V2−1)
, · · · , 0)W ′t

...

(0, 0, · · · , Vq

λq+σ2(Vq−1)
)W ′t













Therefore kth component can be obtained as follows:

〈X〉k = (0, 0, · · · , Vk

λk + σ2(Vk − 1)
)W ′t (16)

Covariance matrix is given by:

CovV (H
−1W ′t) = Cov

(

(

V −1(Λq − σ2Iq) + σ2Iq
)

−1
V −

1

2 (Λq − σ2Iq)
1

2U ′

qt
)

= V −1(Λq − σ2Iq)
(

V −1(Λq − σ2Iq) + σ2Iq
)

−2
(17)

So components are independent, as case that latent variables were isotropic
normal distributed. Variance of each component is then;

V arV (〈Xk〉) =
λkVk(λk − σ2)

(λk + σ2(Vk − 1))2

Remark 4.3. The correlation between kth probabilistic principal compo-
nent and jth variable, in this case is given by:

ρV (tj, 〈X〉k) =
CovV (tj, 〈Xk〉V )

(V ar(tj))
1

2 (V ar(〈Xk〉V ))
1

2

.

where CovV (tj, 〈Xk〉) is calculated by:

CovV (tj, 〈X〉k) = Cov

(

I ′jt,

(

0, 0, · · · , Vk

λk + σ2(Vk − 1)
, · · · , 0

)

W ′t

)

= I ′jSW





















0
0
...
Vk

λk+σ2(Vk−1)
...
0




















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SW = UΛU ′Uq(λq − σ2Iq)
1

2V −
1

2 .

Then the sample covariance vector is given by:

CovV (tj, 〈Xk〉) = I ′j















U11 U12 U13 · · · U1q

U21 U22 U13 · · · U2q

U31 U32 U13 · · · U3q
...

...
... · · · ...

Ud1 Ud2 U32 · · · Udq





































0
0
...

V
1

2

k
λk(λk−σ2)

1

2

λk+σ2(Vk−1)
...
0























= (0, 0, · · · , 1, · · · , 0)































U1k
V

1

2

k
λk(λk−σ2)

1

2

λk+σ2(Vk−1)

U2k
V

1

2

k
λk(λk−σ2)

1

2

λk+σ2(Vk−1)
...

Ujk
V

1

2

k
λk(λk−σ2)

1

2

λk+σ2(Vk−1)
...

Udk
V

1

2

k
λk(λk−σ2)

1

2

λk+σ2(Vk−1)































= Ujk

V
1

2

k λk(λk − σ2)
1

2

λk + σ2(Vk − 1)
.

Therefore,

ρV (tj, 〈Xk〉) =
Ujk

V
1

2

k
λk(λk−σ2)

1

2

λk+σ2(Vk−1)

(Sjj)
1

2 (
V

1

2

k
λk(λk−σ2)

1

2

λk+σ2(Vk−1)
)
1

2

=
Ujk

√
λk

√

Sjj

. (18)

As it is yielded, the correlation between jth variable and kth component in
the case that latent variables are anisotropic normal distributed is same as the
correlation of component with jth variable, where latent variables are isotropic
normal ditributed and both of them are same as corresponding correlation in
common PCA.
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Remark 4.4. Probabilistic principal components and principal components
of common PCA are uncorrelated, because :

CovV (〈X〉 , Z) = Cov(H−1W ′t, U ′

qt)

= H−1W ′WSUq

= H−1W ′UqΛq

=
(

V −1(Λq − σ2Iq) + σ2Iq
)

−1
V

−1

2 (Λq − σ2Iq)
1

2U ′

qUqΛq

= V −
1

2Λq(Λq − σ2Iq)
1

2

(

V −1(Λq − σ2Iq) + σ2Iq
)

−1
(19)

So with respect to the diagonal matrix that resulted above, in this case,
PPCs and PCs are also uncorrelated.

5 Simulation Study

We consider now a data set of 20 points in 10-dimensional space that gen-
erated from a Gaussian distribution that have standard deviation in first 5
dimension as (1.0, 0.8, 0.6, 0.4, 0.2) and standard deviation 0.04 in the remain-
ing 5 directions, and it is assumed, µ = 0 and latent variables are from the
Gaussian distribution whit mean = 0 and covariance matrix,

V = diag(0.1, 0.2, 0.3, 0.4, 0.5) (X ∼ N(0, V )).

Applying PPCA with anisotropic Gaussian distribution for latent variable,
the effective dimensionality for principal component that is correspond to q = 5
largest eigenvalues of ariance matrix S. We obtained 5-dimensional principal
component by (14) in section 4, also the reconstruction of the data from these
principal component can be obtained by using (15) in section 4.

Figure1 shows the image plots for original data, the compressed data (prob-
abilistic principal components) and the reconstructed data.
It can be seen that the compressed data represents the original data appro-
priately and the reconstruction from the compressed data also recovered the
original data well with exact recovery up to the first 5 component of the data.
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Figure 1: Image plots for the original data (left), reconstructed data(middle),
and compressed data (right).

6 Conclusion

There have been various works for PCA based on the PPCA model since its
introduction by Tipping and Bishop (1999). In all of these works, an isotropic
Gaussian distribution for latent variables has been used.
In this paper, we provide some interpretation for PPCs and extended Bishop
and Tipping’s approach by using anisotropic Gaussian distribution for latent
variables. Furthermore it is resulted that, common PCs and PPCs are uncor-
related. The latent variable model with anisotropic Gaussian distribution of
latent variable may be used in Bayesian PCA [4]. This will be considered in
detail in our further work.
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